박사

교사의 스캐폴딩 제공에 따른 비(非)구조화된 수학문제의 해결과 학생 간 상호작용에 관한 연구

조미경 2016년
논문상세정보
    • 저자 조미경
    • 기타서명 교사의 스캐폴딩 제공에 따른 비구조화된 수학문제의 해결과 학생 간 상호작용에 관한 연구
    • 형태사항 x, 198 p.: 삽화
    • 일반주기 지도교수: 김민경, 참고문헌: p. 175-188
    • 학위논문사항 2016. 2. 졸업, 이화여자대학교 대학원:, 학위논문(박사)-, 초등교육학과,
    • DDC 300
    • 발행지 서울 :
    • 언어 kor
    • 출판년 2016
    • 발행사항 이화여자대학교 대학원,
    유사주제 논문( 860)
' 교사의 스캐폴딩 제공에 따른 비(非)구조화된 수학문제의 해결과 학생 간 상호작용에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 사회과학
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
516 0

0.0%

' 교사의 스캐폴딩 제공에 따른 비(非)구조화된 수학문제의 해결과 학생 간 상호작용에 관한 연구' 의 참고문헌

  • 학습 맥락을 고려한 활동 중심 과학 수업 전략 개발 및 적용: 중학교 과학 수업을 중심으로
    김경원 이화여자대학교 대학원 박사학위논문 [2014]
  • 토론 과정에서 사회적 합의 형성을 강조한 개념학습 전략: 교수 효과와 토론에서의 언어적 상호작용
    강석진 서울대학교 대학원 박사학위논문 [2000]
  • 초등학생의 학습 스타일에 따른 비구조화된 수학문제에서의 문 제해결전략 및 정당화 유형 분석
    김민경 주현정 학습자중심교과교육연구, 14(7), 127-148 [2014]
  • 초등학교 수학 교과서에 나타난 문제의 비구 조성에 관한 연구
    김민경 김은경 이지영 홍지연 학습자중심교과교육연구, 11(2), 1-21 [2011]
  • 질적연구방법과 실제
    조성남 서울: 도서출판 그린 [2011]
  • 질적 연구방법론-다섯 가지 접근 (조흥식, 정선욱, 김진숙, 권지성 공역). 서울: 학지사
    Creswell, J. W. (원서출판 2007) [2010]
  • 정성연구방법론과 사례연구(강윤수 외 공역). 서울: 교우사
    Merriam, S. B. (원 서출판 1998) [2005]
  • 전산용어사전편찬위원회 컴퓨터인터넷IT용어대사전
    서울: 일진사 [2011]
  • 열린 학습환경: 기초, 방법, 모형. 최욱 외 공역, 교수설계 이론과 모형 (pp. 93-115). 서울: 아카데미프레스
    Hannafin, M. J. Land, S. M. Oliver, K. (원서 출판 1997) [2005]
  • 어린이들의 학습에 비계 설정(scaffolding): 비고스 키와 유아교육 (홍용희 역). 서울: 창지사
    Berk, L. E. Winsler, A. (원서출판 1995) [1995]
  • 수학 6-1 교사용 지도서
    교육부 서울: 천재교육 [2015]
  • 생각의 힘을 키우는 초등수학 문제해결-非구조화된 문제 및 문제해결
  • 사회적 상호작용을 강조한 과학탐구실험에서 언어적 상호작용의 변화 와 특성
    성숙경 한국교원대학교 대학원 박사학위논문 [2005]
  • 비구조화된 문제의 해결 과정에 나타난 초등학생의 수학적 추상화 및 비례적 추론 연구
    홍지연 이화여자대학교 대학원 박사학위논문 [2013]
  • 비 개념에 대한 교육적 분석
    정은실(Jeong, Eun Sil) 수학교육학연구, 13(3), 247-265 [2003]
  • 문제해결과정에서 수학적 추론이 일어나는 언어적 상호작용분석
    최인숙 이화 여자대학교 대학원 박사학위논문 [2013]
  • 면대면과 웹기반에서의 협력적 문제해결과정 분석-비구조화된 문제를 중심으로
    조형정 교육방법연구, 20(1), 173-195 [2008]
  • 교육과학기술부 2009 개정 교육과정-수학과 교육과정 (교육과학기술부 고시 제 2011361호)
    서울: 우신기획 [2012]
  • 『왜 구성주의인가: 정보화시대와 학습자중심의 교육환경』
    강인애 서울: 문음사 [1997]
  • 「웹기반 문제해결학습환경에서 소집단 협동학습전략이 온라인토론의 참여도와 문제해결에 미치는 효과」
    임정훈 서울대학교 대학원 박사학위논문 [1999]
  • Yackel, E., Cobb, P., & Wood, T. (1991). Small-group interaction as a source of learning opportunities in second-grade mathematics. Journal for Research in Mathematics Education, 22(5), 390-408.
  • Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The Increasing Dominance of Teams in Production of Knowledge. Science, 316(5827), 1036-1039.
  • Wood, P. K. (1983). Inquiring systems and problem structures: implications for cognitive development. Human development, 26, 249-265.
  • Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
  • Wen, H. M. (1998). The effects of task structure on group process and quality of group product in a cooperative project-based learning environment. Unpublished Doctoral Dissertation, The Florida State University.
  • Webb, N. M. (1991). Task-related verbal interaction and mathematics learning in small groups. Journal for Research in Mathematics Education, 22(5), 366-389.
  • Webb, N. M. (1989). Peer interaction and learning in small groups. International Journal of Educational Research, 13(1), 21-39.
  • Webb, N. M. (1982). Student interaction and learning in small groups. Review of Educational Research, 52(3), 421-445.
  • Vygotsky의 사회 문화적 이론과 교육적 시사
    황해익 황정규 편저, 현대 교육 심리학의 쟁점과 전망 (pp.23-58). 서울: 교육과학사. [2000]
  • Voss, J. F., Wolfe, C. R., Lawrence, J. A., & Engle, R. A. (1991). From representation to decision: an analysis of problem solving in international relations. In R. J. Sternberg, & P. A. Frensh (Eds.), Complex problem solving (pp. 119-157). Hillsdale, NJ: lawrence Erlbaum.
  • Voss, J. F., & Post, T. A. (1988). On the solving of ill-structured problems. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. 261-285). Hillsdale, NJ: Erlbaum.
  • Van de Pol, J., Volman, M., Oort, F., & Beishuizen, J. (2014). Teacher scaffolding in small-group work: an intervention study. Journal of the Learning Sciences, 23(4), 600-650.
  • Van de Pol, J., Volman, M., & Beishuizen, J. (2012). Promoting teacher scaffolding in small-group work: A contingency perspective. Teaching and Teacher Education, 28(2), 193-205.
  • Van de Pol, J., Volman, M., & Beishuizen, J. (2011). Patterns of contingent teaching in teacher-student interaction. Learning and Instruction, 21, 46-57.
  • Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A decade of research. Educational Psychology Review, 22(3), 271-296.
  • Van de Pol, J., & Elbers, E. (2013). Scaffolding student learning: a micro-analysis of teacher-student interaction. Learning, Culture and Social Interaction, 2, 32-41.
  • Thomas, G. D. (2007). Predictors of successful team-based testing. Unpublished Doctoral Dissertation, The University of Texas at Austin.
  • Tharp, R. G., & Gallimore, R. (1988). Rousing minds to life: Teaching, learning, and schooling in social context. Cambridge: Cambridge University Press.
  • Tanner, H., & Jones, S. (2000). Scaffolding for success: Reflective discourse and the effective teaching of mathematical thinking skills. Research in Mathematics Education, 2(1), 19-32.
  • Swann, J. (1993). Observing and recording talk in educational settings. In D. Graddol, J. Maybin, & B. Stierer (Eds.), Researching language and literacy in social context (pp. 26-48). Clevedon, UK: Multilingual Matters.
  • Stinner, A. (1995). Providing a contextual base and theoretical structure to guide the teaching of science form early years to senior years. Science & Education, 5, 247-266.
  • Spiro, R. j., Coulson, R. L., Feltovich, P. J., & Anderson, D, K. (1988). Cognitive flexibility theory: advanced knowledge acquisition in ill-structured domains. (Tech Report No. 441). Champaign, IL: University of Illinois, Center for the Study of Reading.
  • Slavin, R. E. (1996). Research on cooperative learning and achievement: what we know, what we need to know. Contemporary Educational Psychology, 21, 43-69.
  • Slavin, R. E. (1995). Cooperative learning: theory, research, and practice (2nd ed.). Boston, MA: Allyn and Bacon.
  • Simon, D. P. (1978). Information processing theory of human problem solving. In W. Estes (Ed.), Handbook of learning and cognitive process (pp. 271-295). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Shin, N., Jonassen, D. H., & McGee, S. (2003). Predictors of well-structured and ill-structured problem solving in an astronomy simulation. Journal for Research in Science Teaching, 40(1), 6-33.
  • Scardamalia, M., Bereiter, C., McLean, R. S., Swallow, J., & Woodruff, E. (1989). Computer-supported intentional learning environments. Journal of Educational Computing Research, 5, 51-68.
  • Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educational Technology Research and Development, 50(3), 77-96.
  • Ryve, A (2011). Discourse research in mathematics education: a critical evaluation of 108 journal articles. Journal for Research in Mathematics Education, 42(2), 167-199.
  • Ruiz-Primo, M. A., & Furtak, E. M. (2007). Exploring teachers’ informal formative assessment practices and students’understanding in the context of scientific inquiry. Journal of Research in Science Teaching, 44(1), 57-84.
  • Rowland, G. (1992). What do instructional designers actually do? An initial investigation of expert practice. Performance Improvement Quarterly, 5(2), 65-86.
  • Rosenshine, B., Meister, C., & Chapman S. (1996). Teaching students to generate questions: a revciew of the intervention studies. Review of Educational Research, 66(2), 181-221.
  • Rosenshine, B., & Meister, C. (1994). Reciprocal teaching: a review of the research. Review of Educational Research, 64(4), 479-530.
  • Rosenshine, B., & Meister, C. (1992). The use of scaffolds for teaching higher-level cognitive strategies. Educational Leadership, 4, 26-33.
  • Rogoff, B., & Lave, J. (Eds.) (1984). Everyday cognition: its development in social context. Cambridge, MA: Harvard University Press.
  • Qualification and Curriculum Authority (2004). The key skills qualifications standards and guidance: working with others, improving own learning and performance and problem solving. London, Qualification and Curriculum Authority.
  • Puntambekar, S., & Hubscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have we gained and what have we missed? Educational Psychologist, 40(1), 1-12.
  • Petraglia, J. (1998). Reality by design: the rhetoric and technology of authenticity in education. Mahwah, NJ: Lawrence Erlbaum.
  • Patton, M. Q. (2002). Qualitative research and evaluation methods. Thousand Oaks, CA: Sage Publications.
  • Parlincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 2, 117-175.
  • Panitz, T. (1999). Collaborative versus cooperative learning: a comparison of the two concepts which will help us understand the underlying nature of interactive learning. (ERIC document No. ED448443)
  • Palm, T. (2008). Impact of authenticity on sense making in word problem solving. Educational Studies in Mathematics, 67(1), 37-58.
  • PISA와 TIMSS 상위국과 우리나라의 교육과정 및 성취 특성 비교 분석(연구보고 RRE 2009-7-2)
    강민경 김경희 김미영 김선희 김수진 박효희 정송 서울: 한 국교육과정평가원 [2009]
  • O’connor, M. C. (2001). “Can any fraction be turned into a decimal?” a case study of a mathematical group discussion. Educational Studies in Mathematics, 46(1-3), 143-185.
  • OECD 국제 학업성취 도 평가 연구: PISA 2012 본검사 시행 보고서(연구보고 RRE 2012-3-1)
  • OECD PISA 2015 협력적 문 제해결력 평가 도입에 따른 교육 개선 방안(ORM 2012-65-13)
    김성숙 동효관 옥현진 임해미 정혜경 조지민 서울: 한국교육과 정평가원 [2012]
  • OECD (2010). PISA 2012 Mathematics Framework. Retrieved from OECD PISA w e b s i t e : http://www.oecd.org/pisa/pisaproducts/pisa2012draftframeworks-mathematics problemsolvingandfinancialliteracy.htm
  • National Council of Teachers of Mathematics (2000). Principles and Standards for School Mathematics. Reston, VA: Author.
  • National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
  • Myers, J. J. (1992). Cooperative learning: a personal journey. Journal of Education, 174(2), 118-143.
  • Mumme, J., & Shepherd, N. (1990). Communicating in mathematics. Arithmetic Teacher, 38(1), 18-22.
  • Meyer, D. K., & Turner, J. C. (2002). Using instructional discourse analysis to study the scaffolding of student self-regulation. Educational Psychologist, 37(1), 17-25.
  • Mercer, N., Wegerif, R., & Dawes, L. (1999). Children’s talk and the development of reasoning in the classroom. British Educational Research Journal, 25(1), 95-111.
  • Mercer, N. (2008). Talk and the development of reasoning and understanding. Human Development, 51, 90-100.
  • Mercer, N. (1995). The guided construction of Knowledge: talk amongst teachers and learners. New York, NY: Multilingual Matters.
  • Lin, X., Hmelo, C., Kinzer, C. K., & Secules, T. J. (1999). Designing technology to support reflection. Educational Technology Research and Development,47(3), 43-62.
  • Lin, X. (2001). Designing metacognitive activities. Educational Technology Research and Development, 49(2), 23-40.
  • Lesh, R., Post, T., & Behr, M. (1988). Proportional reasoning. In M. Behr, & J. Hilbert (Eds.), Number concepts & operations for the middle grades (pp. 93-118). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Lenchner, G. (1983). Creative problem solving in school mathematics. Boston, MA: Houghton Mifflin Co.
  • Lee, C.-Y., Chen, M.-J., & Chang, W.-L. (2014). Effects of the multiple solutions and question prompts on generalization and justification for non-routine mathematical problem solving in a computer game context. Eurasia Journal of Mathematics, science, & Technology Education, 10(2), 89-99.
  • Lave, J. (1988). Cognition in practice. Cambridge, UK: Cambridge University Press.
  • Kutnik, P, & Rogers, C. (1994). Groups in schools. New York, NY: Cassell.
  • Kitchner, K. S. (1983). Cognition, metacognition, and epistemic cognition: a three-level model of cognitive processing. Human Development, 26, 222-232.
  • Kintsch, N., & Greeno, J. G. (1985). Understanding and solving word arithmetic problem. Psychological Review, 92(1), 109-129.
  • King, A.(1991). Effects of training in strategic questioning on children’'s problemsolving performance. Journal of Educational Psychology, 83(3). 307-317.
  • King, A. (1999). Discourse patterns for mediating peer learning. In A. M. O’Donnell & A. King (Eds.), Cognitive perspective on peer learning (pp. 87-115). Mahwah, NJ: Lawrence Erlbaum Associates.
  • King, A. (1992). Facilitating elaborative learning through guided student-generated questioning. Educational Psychologist, 27(1), 111-126.
  • Kim, M. C., & Hannafin, M. J. (2011b). Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computers & Education, 56(2), 403-417.
  • Kim, M. C., & Hannafin, M. J. (2011a). Scaffolding 6th graders’ problem solving in technology-enhanced science classrooms: a qualitative case study. Instructional Science, 39(3), 255-282.
  • Kim, I.-H., Anderson, R. C., Nguyen-Jahiel, K., & Archodidou, A. (2007). Discourse patterns during children’s collaborative online discussions. Journal of the Learning Sciences, 16(3), 333-370.
  • Kapur, M. (2010). Productive failure in mathematical problem solving. Instructional Science, 38(6), 523-550.
  • Kapur, M. (2008). Productive failure. Cognition and instruction, 26(3), 379-424.
  • Jurdak, M. (2006). Contrasting perspectives and performance of high school students on problem solving in real world, situated, and school contexts. Educational Studies in Mathematics, 63(3), 283-301.
  • Jonassen,D.H.(2003).Using cognitivetools to representproblems.JournalofResearch on TechnologyinEducation,35(3),362-381.
  • Jonassen, D. H. (1997). Instructional design models for well-structured and ill-structured problem-solving learning outcomes. Educational Technology Research and Development, 45(1), 283-301.
  • Johnson, D. W., Maruyama, G., Johnson, R. T., Nelson, D., & Skon, L. (1981). Effects of cooperative, competitive, and individualistic goal structures on achievement: A meta-analysis. Psychological Bulletin, 89(1), 47-62.
  • Johnson, D. W., & Johnson, R. T. (1989). Cooperative learning in mathematics education. In P. R. Trafton, & A. P. Shulte (Eds.), New directions for elementary school mathematics, 1989 yearbook (pp. 234-245). Reston, VA: National Council of Teachers of Mathematics.
  • Jackson, S. L., Krajcik, J., & Soloway, E. (1998, January). The design of guided learner-adaptable scaffolding in interactive learning environments. InProceedings of the SIGCHI conference on Human factors in computing systems (pp. 187-194). ACM Press/Addison-Wesley Publishing Co..
  • Hong, N. S. (1998). The relationship between well-structured and ill-structured problem solving in multimedia simulation. Unpublished doctoral dissertation, The Pennsylvania State University.
  • Holmes, E. E. (1995). New directions in elementary school mathematics. Englewood Cliffs, NJ: Merrill, Prentice Hall.
  • Hogan, K., Nastasi, B. K., & Pressley, M. (1999). Discourse patterns and collaborative scientific reasoning in peer and teacher-guided discussions. Cognition and Instruction, 17(4), 379-432.
  • Hogan, K., & Pressley, M. (1997). Scaffolding scientific competencies within classroom communities of inquiry. In K. Hogan, & M. Pressley (Eds.) Scaffolding student learning: Instructional approaches & issues (pp. 74-107). Cambridge, MA: Brookline Books.
  • Hertz-Lazarowitz, R. (1989). Cooperation and helping in the classroom: a contextual approach. International Journal of Educational Research, 13(1), 113-119.
  • Hennessey, S. & Murphy, P. (1999). The potential for collaborative problem solving in design and technology. International Journal of Technology and Design Education, 9, 1-36.
  • Hackman, J. R. & Morris, C. G. (1983). Group tasks, group interaction process, and group performance effectiveness. In H. H. Blumberg, A. P. Hare, V. Kent, & M. F. Davis (Eds.), Small group and social interaction (Vol. 1) (pp. 331-345). Hoboken, NJ: John Wiley & Sons.
  • Gunawardena, C. N., Lowe, C. A., & Anderson, T. (1997). Analysis of a global online debate and the development of an interaction analysis model for examining social construction of knowledge in computer conferencing. Journal of Educational Computing Research, 17(4), 397-431.
  • Greeno, J. (1978). Natures of problem-solving ability. In W. Estes (Ed.), Handbook of learning and cognitive processes (pp. 239-270). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Greene, B. A., & Land, S. M. (2000). A qualitative analysis of scaffolding use in a resource-based learning environment involving the world wide web. Journal of Educational Computing Research, 23(2), 151-179.
  • Glaser, R., & Chi, M. T. H. (1988). Overview. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. ⅹⅴ-ⅹⅹⅷ), Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Ge, X., & Land, S. M. (2003). Scaffolding students problem-solving processes in an ill-structured task using question prompts and peer interactions.Educational Technology Research and Development, 51(1), 21-38.
  • Ge, X., & Chen, C-H, & Davis, K. A. (2005). Scaffolding novice instructional designers’ problem-sovling processes using question prompts in a web-based learning environment. Journal of Educational Computing Research, 33(2), 219-248.
  • Ge, X. (2002). Scaffolding students’ problem-solving processes on an ill-structured task using question prompts and peer interactions. Unpublished Doctoral Dissertation, The Pennsylvania State University.
  • Ge, X, & Land, S. M. (2004). A conceptual framework for scaffolding ill-structured problem-solving processes using question prompts and peer interactions. Educational Technology Research and Development, 52(2), 5-22.
  • Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics education, 16(3), 163-176.
  • Edwards, A. D., & Westgate, D. P G. (1994). Investigating classroom talk. London: Falmer.
  • Dunkle, M. E., Schraw, G., & Bendixen, L. D. (1995, April). Cognitive processes in well-defined and ill-defined problem solving. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.
  • DiMatteo, R. W., & Lester, F. K. (2010). The role of problem solving in the secondary school mathematics classroom. In J. Lobato, & F. K. Lester (Eds.), Teaching and learning for secondary school teachers (pp. 7-12). Reston, VA: National Council of Teachers of Mathematics.
  • De Lange, J. (1996). Mathematics education and assessment. Journal of the Association of Mathematics Education of South Africa, 42, 14-20.
  • Davis, E. A., & Linn, M. (2000). Scaffolding student’s knowledge integration: Prompts for reflection in KIE. International Journal of Science Education, 22(8), 819-837.
  • Davidson, N. (1985). Small-group learning and teaching in mathematics. In R. Slavin, S. Sharan, S. Kagan, R. Hertz-Lazarowitz, C. Webb, & R. Schmuck (Eds.), Learning to cooperate, cooperating to learn (pp. 211-230). New York: Plenum Press.
  • Damon, W., & Phelps, E. (1989). Critical distinctions among three approaches to peer education. International Journal of Educational Research, 13, 9-19.
  • Common Core State Standards Initiative (2010). Common core state standards for mathematics. Retrieved from Common Core State Standards website: www.corestandards.org
  • Cole, M., John-Steiner, V., Scribner, S., & Souberman, E. (1978). Mind in society: the development of higher psychological processes. Cambridge, MA: Harvard University Press.
  • Cognition and Technology Group at Vanderbilt (2012). The Jasper project : lessons in curriculum, instruction, assessment, and professional development. Mahwah, NJ: Routledge.
  • Choppin, J. (2014). Situating expansions of students’ explanations in discourse contexts. In K. Karp, & A. R. McDuffie (Eds.), Annual perspectives in mathematics education 2014: Using research to improve instruction (pp. 119-128). Reston, VA: NCTM.
  • Cho, K. L., & Jonassen, D. H. (2002). The effects of argumentation scaffolds on argumentation and problem solving. Educational Technology, Research and Development, 50(3), 5-22.
  • Chin, C., & Brown, D. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching, 37(2), 109-138.
  • Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, R. G. (2001). Learning from human tutoring. Cognitive Science, 25(4), 471-533.
  • Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: how students study and use examples in learning to solve problems. Cognitive Science, 13(2), 145-182.
  • Chi, M. T. H., & Glaser, R. (1985). Problem solving ability. In R. J. Sternberg (Ed.), Human abilities: an information processing approach (pp. 227-250). New York, NY: W. H. Freeman.
  • Chen, C. H., & Bradshaw, A. C. (2007). The effect of web-based question prompts on scaffolding knowledge integration and ill-structured problem solving.Journal of research on Technology in Education, 39(4), 359-375.
  • Charles, R. L., & Lester, F. K. (1982). Teaching problem solving-what, why, and how. Palo Alto, CA: Dale Seymour Publicating.
  • Cagiltay, K. (2006). Scaffolding strategies in electronic performance support systems: Types and challenges. Innovations in Education and Teaching International, 43(1), 93-103.
  • CSCL에서 공유 리더십과 질문활용 협력적 문제해결에 미치는 영향
    윤수정 교 육학연구, 45(4), 115-144 [2007]
  • Belland, B. R. (2014). Scaffolding: Definition, current debates, and future directions. In J. M. Spector, & M. D. Merrill. (Eds.), Handbook of research on educational communications and technology (4th ed., pp. 505-518). New York, NY: Springer.
  • Azevedo, R., Cromley, J. G., Winters, F. I., Moos, D. C., & Greene, J. A. (2005). Adaptive human scaffolding facilitates adolescents’ self-regulated learning with hypermedia. Instructional Science, 33(5-6), 381-412.
  • Artzt, A. F., & Yaloz-Femia, S. (1999). Mathematical reasoning during small group problem solving. In S. Lee, & R. C. Frances (Eds.), Developing mathematical reasoning in grades K-12, 1999 yearbook (pp. 115-126). Reston, VA: National Council of Teachers of Mathematics.
  • Artzt, A. F., & Newman, C. M. (1990). Mathematical reasoning during small-group problem solving. In L. Stiff, & F. R. Curcio (Eds.), Developing mathematical reasoning in grades k-12, 1999 yearbook (pp. 115-126). Reston, VA: National Council of Teachers of Mathematics.
  • Artzt, A. F., & Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9(2), 137-175.
  • Arcavi, A. (2002). The everyday and the academic in mathematics. In M. E. Brenner, & J. N. Moschkovich (Eds.), Everyday and academic mathematics in the classroom (pp. 12-29). Reston, VA: National Council of Teachers of Mathematics.
  • (Eds.). 학습과학: 뇌, 마음, 경험 그리고 교육 (신종호, 박종효, 최지영, 김민성 공역). 서울: 학지사