박사

수학 문제유추에 의한 관계적 구조의 지도 = Teaching relational structure via mathematical problem analogy

박미미 2015년
논문상세정보
' 수학 문제유추에 의한 관계적 구조의 지도 = Teaching relational structure via mathematical problem analogy' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • aot 관점
  • rft 관점
  • 공적 비평
  • 관계적 구조
  • 교사 피드백
  • 수학 문제유추
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
57 0

0.0%

' 수학 문제유추에 의한 관계적 구조의 지도 = Teaching relational structure via mathematical problem analogy' 의 참고문헌

  • 교육과학기술부 수학과 교육과정
    교육과학기술부 고시 제 2011-361호 [2011]
  • 한인기 유추를 통한 수학탐구
    Erdniev, P. M. 서울: 승산 [2005]
  • 학습심리학 (김영채 역.). 서울:박영사
    Hergenhahn, B. R. Olson, M. H. (영어 원저 2005 출판) [2006]
  • 학습과 행동 (김문수 박소현 역.). 서울: 센게이지러닝코리아
    Chance, P. (영어 원저 2013 출판) [2014]
  • 학교수학의 교육적 기초(제2증보판)
    우정호 서울: 서울대학교출판문화원 [2007]
  • 학교수학을 위한 수학
    정상권 서울: 교우사 [2014]
  • 초등 수학 교재에서 활용되는 추론 분석
    서동엽 수학교육학연구,13(2), 159-178 [2003]
  • 지식의 구조와 구조주의
    박재문 서울: 교육과학사 [1998]
  • 지식의 구조와 교과(개정․증보판)
    이홍우 서울: 교육과학사 [2006]
  • 정성연구방법론과 사례연구 (강윤수 고상숙 권오남 류희찬 박만구 방정숙 이중권 정인철 황우형 역.). 서울:교우사
    Merriam, S. B. (영어 원저 1998 출판) [2005]
  • 인지학습의 이론(개정증보판)
    이홍우 서울: 교육과학사 [2015]
  • 인간의 학습 (김인규 역.). 서울: 시그마프레스
    Ormrod, J. E. (영어원저 2007 출판) [2009]
  • 유추 조건에 따른 수학적 문제 해결 효과
    반은섭 신재홍 한국학교수학회논문집, 15(3), 535-563 [2012]
  • 유사성 관점에서 본 대수 문장제 해결 과정에 대한 사례연구
    박현정 이화여자대학교 대학원 박사학위논문 [2007]
  • 유비사고
    이영애 한국 인지과학회 논문지, 8(2), 19-36 [1997]
  • 예비교사와 현직교사를 위한 수학교육과정과 교재연구(개정판)
  • 연구설계: 정성연구, 정량연구 및 혼합연구에 대한실제적인 접근 (강윤수 고상숙 권오남 류희찬 박만구 방정숙 이중권 정인철 황우형 역.). 서울: 교우사
    Creswell, J. W. (영어 원저 2003출판) [2005]
  • 수학적 지식의 구성에서 유추적 사고의 역할
    이경화 수학교육학연구, 19(3), 355-369 [2009]
  • 수학적 지식의 구성에 관한 연구
    남진영 서울대학교 대학원 박사학위논문 [2007]
  • 수학교육학 연구방법론
  • 수학 학습-지도 원리와 방법(제2개정판 수정판)
    우정호 서울: 서울대학교출판문화원 [2011]
  • 수학 학습 심리학 (구광조 오병승 전평국 역.). 서울: 교우사
    Ford, W. W. Resnick, L. B. (영어 원저 1981 출판) [1995]
  • 수학 문장제 해결과 유추
    이종희 교과교육학연구, 7(2), 63-79 [2003]
  • 사고와 문제해결심리학: 인지의 이론과 적용
    김영채 서울: 박영사 [1995]
  • 브루너 교육의 과정. (이홍우 역.). 서울: 배영사
    Bruner, J. S. (영어원저 1960 출판) [1973]
  • 박사
  • 교육인적자원부 수학과 교육과정
    교육인적자원부 고시 제 2007-79호 [2007]
  • 교육의 목적과 난점(제6판)
    이홍우 서울: 교육과학사 [1998]
  • 교육과정탐구(증보판)
    이홍우 서울: 박영사 [2010]
  • Wickelgren, W. A. (1995). How to solve mathematical problems. NewYork: Dover.
  • Wertheimer, M. (1959). Productive thinking. New York: Harper.
  • Watson, A., & Mason, J. (2005). Mathematics as a constructive activity:Learners generating examples. Mahwah, NJ: Lawrence ErlbaumAssociates.
  • Vosniadou, S., & Ortony, A. (1989). Similarity and analogical reasoning: Asynthesis. In S. Vosniadou & A. Ortony (Eds.), Similarity andanalogical reasoning (pp. 1-17). Cambridge, UK: CambridgeUniversity Press.
  • Ubuz, B., Ozdil, U., & Cevirgen, A. E. (2013). Preservice teachers'knowledge and beliefs: Their association to practice in thecontext of teaching function with analogies. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the EighthCongress of the European Society for Research in MathematicsEducation (CERME 8) (pp. 3277-3286). Antalya: Turkey.
  • Ubuz, B., Eryılmaz, A., Aydın, U., & Bayazit, I. (2009). Pre-serviceteacher-generated analogies for function concepts. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Azarello (Eds.),Proceedings of the sixth Congress of the European Society forResearch in Mathematics Education (CERME 6) (pp. 1871-1879). Lyon: France.
  • Thom, R. (1973). Modern mathematics: Does it exist? In A. G. Howson(Ed.), Developments in mathematical education (Proceeding ofICME-2) (pp. 194-209). Cambridge: Cambridge University Press.
  • Sternberg, R. J. (1977). Intelligence, information processing, and analogicalreasoning: The componential analysis of human abilities. Hillsdale,NJ: Lawrence Erlbaum Associates.
  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experimentmethodology: Underlying principles and essential elements. In R. A. Lesh & A. E. Kelly (Eds.), Handbook of research design inmathematics and science education (pp. 267-306). Mahwah, NJ:Lawrence Erlbaum Associates.
  • Sriraman, B., Haavold, P., & Lee, K. (2013). Mathematical creativity andgiftedness: A commentary on and review of theory, newoperational views, and ways forward. ZDM, 45(2), 215-225.
  • Sriraman, B. (2004). Gifted ninth graders' notions of proof. Investigatingparallels in approaches of mathematically gifted students andprofessional mathematicians. Journal for the Education of theGifted, 27(4), 267?292.
  • Sriraman, B. (2003). Mathematical giftedness, problem solving, and theability to formulate generalizations: The problem-solvingexperiences of four gifted students. The Journal of SecondaryGifted Education, 14(3), 151-165.
  • Singer, F. M., & Voica, C. (2013). A problem-solving conceptualframework and its implications in designing problem-posing tasks. Educational Studies in Mathematics, 83(1), 9-26.
  • Simon, H. A. (1973). The structure of ill-structured problems. ArtificialIntelligence, 4(3-4), 304-325.
  • Silver, E. A. (1994). On mathematical problem posing. For the Learning ofMathematics, 14(1), 19-28.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2) : 4-14.
  • Selden, A., & Selden, J. (2005). Perspectives on advanced mathematicalthinking. Mathematical Thinking and Learning, 7(1), 1-13.
  • Schoenfeld, A. H., & Herrmann, D. J. (1982). Problem perception andknowledge structure in expert and novice mathematical problemsolvers. Journal of Experimental Psychology: Learning, Memory,and Cognition, 8(5), 484-494.
  • Schoenfeld, A. H. (1989). Teaching mathematical thinking and problemsolving. In L. B. Resnick & L. E. Klopfer (Eds.), Toward thethinking curriculum: Current cognitive research (pp. 83-103). Washington, DC: Association for Supervision and CurriculumDevelopment.
  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL:Academic Press.
  • Reid, D. A., & Knipping, C. (2010). Proof in mathematics education:Research, learning and teaching. Rotterdam, The Netherlands:Sense Publishers.
  • Reeve, R. A., & Pattison, P. E. (1996). The referential adequacy ofstudents' visual analogies of fractions. Mathematical Cognition,2(2), 137-169.
  • Reed, S. K. (1987). A structure-mapping model for word problems. Journalof Experimental Psychology: Learning, Memory, and Cognition,13(1), 124-139.
  • Rattermann, M. J. (1997). Commentary: Mathematical reasoning andanalogy. In L. D. English (Ed.), Mathematical reasoning:Analogies, metaphors, and images (pp. 247-264). Mahwah, NJ:Lawrence Erlbaum Associates.
  • Rasmussen, C., Zandieh, M., King, K., & Teppo, A. (2005). Advancingmathematical activity: A practice-oriented view of advancedmathematical thinking. Mathematical Thinking and Learning, 7(1),51-73.
  • Polya, G. (1962). Mathematical discovery: On understanding, learning, andteaching problem solving (Vol. 1). New York: John Wiley & Sons.
  • Polya, G. (1957). How to solve it. Princeton, NJ: Princeton UniversityPress.
  • Polya, G. (1954). Mathematics and plausible reasoning Ⅰ: Induction andanalogy in mathematics. Princeton, NJ: Princeton UniversityPress.
  • Patton, M. Q. (2002). Qualitative research and evaluation methods (3rded.). Thousand Oaks: Sage Publications.
  • Park, M., Park, J., Cho, J., Park, M, & Lee, K. (2012). Mathematicallygifted students’ problem posing via analogy. In the 7thMathematical Creativity and Giftedness International ConferenceProceeding. Busan, Korea: International Group for MathematicalCreativity and Giftedness (MCG).
  • Oxford Dictionaries: problemhttp://www.oxforddictionaries.com/definition/english/problem
  • Online Etymology Dictionary: logiahttp://www.etymonline.com/index.php?term=analogy&allowed_in_frame=0
  • NCTM. (2000). Principles and standards for school mathematics. Reston,VA: National Council of Teachers of Mathematics.
  • NCTM. (1989). Curriculum and evaluation standards for schoolmathematics. Reston, VA: National Council of Teachers ofMathematics.
  • Movshovitz-Hadar, N., & Kleiner, I. (2009). Intellectual courage andmathematical creativity. In R. Leikin, A. Berman, & B. Koichu(Eds.), Creativity in mathematics and the education of giftedstudents (pp. 31-50). Rotterdam, The Netherlands: SensePublishers.
  • Mitchelmore, M. C., & White, P. (1995). Abstraction in mathematics:Conflict, resolution and application. Mathematics EducationResearch Journal, 7(1), 50-68.
  • Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematicalstructure for all. Mathematics Education Research Journal, 21(2),10-32.
  • Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically (2nded.). Harlow: Pearson.
  • Marton, F., & Tsui, A. B. M. (2004). Classroom discourse and the space oflearning. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ:Lawrence Erlbaum Associates.
  • Mamona-Downs, J., & Downs, M. (2005). The identity of problem solving. Journal of Mathematical Behavior 24, 385-401.
  • Lobato, J., & Siebert, D. (2002). Quantitative reasoning in a reconceivedview of transfer. The Journal of Mathematical Behavior, 21(1),87-116.
  • Lobato, J. (2012). The actor-oriented transfer perspective and itscontributions to educational research and practice. EducationalPsychologist, 47(3), 232-247.
  • Lobato, J. (2008). When students don’t apply the knowledge you thinkthey have, rethink your assumptions about transfer. In M. P. Carlson & C. Rasmussen (Eds.), Making the connection: Researchand teaching in undergraduate mathematics (pp. 289-304). Washington, DC: Mathematical Association of America.
  • Lobato, J. (2003). How design experiments can inform a rethinking oftransfer and vice versa. Educational Researcher, 32(1), 17-20.
  • Lo, M. L. (2012). Variation theory and the improvement of teaching andlearning. Goteborg, Sweden: Acta Universitatis Gothoburgensis.
  • Lin, F.-L., Yang, K.-L., Lee, K.-H., Tabach, M., & Stylianides, G. (2012). Principles of task design for conjecturing and proving. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematicseducation (pp. 305-325). New York: Springer.
  • Li, W. (2010). Mathematical logic: Foundations for information science. Basel: Birkhauser.
  • Lakatos, I. (1976). Proofs and refutations: The logic of mathematicaldiscovery (J. Worrall & E. Zahar Eds.). New York: CambridgeUniversity Press.
  • Krutetskii, V. A. (1976). The psychology of mathematical abilities inschoolchildren. Chicago: IL: The University of Chicago Press.
  • Krulik, S., & Rudnick, J. A. (1984). A sourcebook for teaching problemsolving. Boston: Allyn and Bacon.
  • Kontorovich, I., Koichu, B., Leikin, R., & Berman, A. (2012). Anexploratory framework for handling the complexity ofmathematical problem posing in small groups. The Journal ofMathematical Behavior, 31(1), 149-161.
  • Kontorovich, I., & Koichu, B. (2014). A case study of an expert problemposer for mathematics competitions. International Journal ofScience and Mathematics Education. Advance online publication.
  • Kline, M. (1973). Why Johnny can't add: The failure of the new math. New York: St. Martin's Press.
  • Klavir, R., & Gorodetsky, M. (2009). On excellence and creativity: A studyof gifted and expert students. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education ofgifted students (pp. 221-242). Rotterdam, The Netherlands: SensePublishers.
  • Kilpatrick, J. (1987). Problem formulating: Where do good problems comefrom. In A. H. Schoenfeld (Ed.), Cognitive science andmathematics education (pp. 123-147). Hillsdale, NJ: LawrenceErlbaum Associates.
  • Kilpatrick, J. (1978). Variables and methodologies in research on problemsolving. In L. L. Hatfield & D. A. Bradbard (Eds.), Mathematicalproblem solving: Papers from a research workshop (pp. 7-20). Columbus, Ohio: ERIC.
  • Katz, V. J. (2009). A history of mathematics: An introduction. Boston:Addison-Wesley.
  • Jonassen, D. H., & Hung, W. (2008). All problems are not equal:Implications for problem-based learning. Interdisciplinary Journalof Problem-Based Learning, 2(2), 6-28.
  • Jonassen, D. H. (1997). Instructional design models for well-structured andill-structured problem-solving learning outcomes. EducationalTechnology Research and Development, 45(1), 65-94.
  • Johnson, A. (1995). Geometric probability. Consortium for Mathematics andIts Applications.
  • Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books.
  • Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creativethought. Cambridge, MA: MIT Press.
  • Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity inanalogical transfer. Memory & Cognition, 15(4), 332-340.
  • Holland, J., Holyoak, K., Nisbett, R., & Thagard, P. (1989). Induction:Processes of inference, learning, and discovery. Cambridge, MA:MIT Press.
  • Hayes, S. C., Fox, E., Gifford, E. V., Wilson, K. G., Barnes-Holmes, D., &Healy, O. (2001). Derived relational responding as learnedbehavior. In S. C. Hayes, D. Barnes-Holmes, & B. Roche (Eds.),Relational frame theory: A post-Skinnerian account of humanlanguage and cognition (pp. 21-49). New York: Kluwer AcademicPublishers.
  • Hayes, S. C., Blackledge, J. T., & Barnes-Holmes, D. (2001). Language andcognition: Constructing an alternative approach within thebehavioral tradition. In S. C. Hayes, D. Barnes-Holmes, & B. Roche (Eds.), Relational frame theory: A post-Skinnerian accountof human language and cognition (pp. 3-20). New York: KluwerAcademic Publishers.
  • Haskell, R. E. (2001). Transfer of learning: Cognition, instruction, andreasoning. San Diego, CA: Academic Press.
  • Hardiman, P. T., Dufresne, R., & Mestre, J. P. (1989). The relationbetween problem categorization and problem solving amongexperts and novices. Memory & Cognition, 17(5), 627-638.
  • Greer, B., & Harel, G. (1998). The role of isomorphisms in mathematicalcognition. The Journal of Mathematical Behavior, 17(1), 5-24.
  • Goswami, U. (1992). Analogical reasoning in children. Hove, UK: LawrenceErlbaum Associates.
  • Gonzales, N. A. (1996). Problem formulation: Insights from studentgenerated questions. School Science and Mathematics, 96(3),152-157.
  • Goldin, G. A., & McClintock, C. E. (Eds.). (1984). Task variables inmathematical problem solving. Philadelphia: Franklin InstitutePress.
  • Gick, M. L., & Holyoak, K. J. (1987). The cognitive basis of knowledgetransfer. In S. M. Cormier & J. D. Hagman (Eds.), Transfer oflearning: Contemporary research and applications (pp. 9-47). SanDiego: Academic Press.
  • Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogicaltransfer. Cognitive Psychology, 15(1), 1-38.
  • Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. CognitivePsychology, 12(3), 306-355.
  • Gholson, B., Smither, D., Buhrman, A., Duncan, M. K., & Pierce, K. A. (1997). Children's development of analogical problem-solving skill. In L. D. English (Ed.), Mathematical reasoning: Analogies,metaphors, and images (pp. 149-189). Mahwah, NJ: LawrenceErlbaum Associates.
  • Gentner, D., Rattermann, M. J., & Forbus, K. D. (1993). The roles ofsimilarity in transfer: Separating retrievability from inferentialsoundness. Cognitive psychology, 25(4), 524-575.
  • Gentner, D., Holyoak, K. J., & Kokinov, B. N. (2001). The analogical mind:Perspectives from cognitive science. Cambridge, MA: MIT Press.
  • Gentner, D. (1989). The mechanisms of analogical learning. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning(pp. 199-241). Cambridge: Cambridge University Press.
  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155-170.
  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht,The Netherlands: Reidel.
  • Frederiksen, N. (1984). Implications of cognitive theory for instruction inproblem solving. Review of Educational Research, 54(3), 363-407.
  • Fox, E. J. (2006). Constructing a pragmatic science of learning andinstruction with functional contextualism. Educational TechnologyResearch and Development, 54(1), 5-36.
  • Fox, E. J. (2005). An introduction to relational frame theory. RetrievedMarch 02, 2015 fromhttp://www.contextualpsychology.org/rft_tutorial.
  • Fischbein, E. (1987). Intuition in science and mathematics: An educationalapproach. Dordrecht, The Netherlands: Reidel.
  • English, L. D., & Halford, G. S. (1995). Mathematics education: Models andprocesses. Mahwah, NJ: Lawrence Erlbaum Associates.
  • English, L. D. (2004). Promoting the development of young children'smathematical and analogical reasoning In L. D. English (Ed.),Mathematical and analogical reasoning of young learners (pp. 201-213). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5),i-11.
  • Diaz, C., & Batanero, C. (2009). University students' knowledge and biasesin conditional probability reasoning. International ElectronicJournal of Mathematics Education, 4(3), 131-162.
  • Dawis, R. V., & Siojo, L. T. (1972). Analogical reasoning: A review of theliterature. Technical Report No. 1. Minneapolis: University ofMinnesota.
  • Davydov, V. V. (1990). Types of generalization in instruction: Logical andpsychological problems in the structuring of school curricula (J. Kilpatrick & J. Teller, Trans.). Reston, VA: National Council ofTeachers of Mathematics. (Original work published in 1972)
  • Cifarellia, V. V., & Cai, J. (2005). The evolution of mathematicalexplorations in open-ended problem-solving situations. TheJournal of Mathematical Behavior, 24(3-4), 302-324.
  • Cifarelli, V. (1999). Abductive inference: Connections between problemposing and solving. In O. Zaslaysky (Ed.), Proceedings of the23rd Conference of the International Group for the Psychologyof Mathematics Education. (Vol. 2, pp. 217-224). Haifa, Israel:PME.
  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization andrepresentation of physics problems by experts and novices. Cognitive Science, 5(2), 121-152.
  • Chen, Z. (2002). Analogical problem solving: A hierarchical analysis ofprocedural similarity. Journal of Experimental Psychology:Learning, Memory, and Cognition, 28(1), 81-98.
  • Canadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory andimplications in practice. Journal of Teaching and Learning, 5(1),55-72.
  • Cai, J., & Cifarellia, V. V. (2005). Exploring mathematical exploration: Howtwo college students formulated and solved their ownmathematical problems. Focus on Learning Problems inMathematics, 27(3), 43-72.
  • Brown, S. I., & Walter, M. I. (1990). The art of problem posing (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Bourbaki, N. (1950). The architecture of mathematics. The AmericanMathematical Monthly, 57(4), 221-232.
  • Borovcnik, M., & Kapadia, R. (2014). From puzzles and paradoxes toconcepts in probability. In E. J. Chernoff & B. Sriraman (Eds.),Probabilistic thinking: Presenting plural perspectives (pp. 35-73). Dordrecht: New York.
  • Biela, A. (1991). Analogy in science: From a psychological perspective. Frankfurt am Main: Peter Lang.
  • Bernardo, A. B. I. (2001). Analogical problem construction and transfer inmathematical problem solving. Educational Psychology, 21(2),137-150.
  • Bassok, M. (2003). Analogical transfer in problem solving. In J. E. Davidson & R. J. Sternberg (Eds.), The psychology of problemsolving (pp. 343-368). New York: Cambridge University Press.
  • Barnes-Holmes, Y., Barnes-Holmes, D., Roche, B., & Smeets, P. M. (2001b). Exemplar training and a derived transformation offunction in accordance with symmetry Ⅱ. The PsychologicalRecord, 51, 589-603.
  • Barnes-Holmes, Y., Barnes-Holmes, D., Roche, B., & Smeets, P. M. (2001a). Exemplar training and a derived transformation offunction in accordance with symmetry. The Psychological Record,51, 287-308.
  • Barnes-Holmes, Y., Barnes-Holmes, D., McHugh, L., & Hayes, S. C. (2004). Relational frame theory: Some implications for understanding andtreating human psychopathology. International Journal ofPsychology and Psychological Therapy, 4(2), 355-375.
  • Barnes-Holmes, Y., Barnes-Holmes, D., & Cullinan, V. (2001). Education. In S. C. Hayes, D. Barnes-Holmes, & B. Roche (Eds.), Relationalframe theory: A post-Skinnerian account of human language andcognition (pp. 181-195). New York: Kluwer Academic Publishers.
  • Araya, R., Calfucura, P., Jimenez, A., Aguirre, C., Palavicino, M. A.,Lacourly, N., Soto-Andrade, J., & Dartnell, P. (2010). The effectof analogies on learning to solve algebraic equations. Pedagogies:An International Journal, 5(3), 216-232.