박사

다면적 모델링에 기반한 수학 교수 학습 연구

박진형 2015년
논문상세정보
' 다면적 모델링에 기반한 수학 교수 학습 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 다면적 모델링
  • 모델링
  • 모델링의 교육적 활용
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
212 0

0.0%

' 다면적 모델링에 기반한 수학 교수 학습 연구' 의 참고문헌

  • 주체, 구조, 담론, 그리고 수학 학습
    홍진곤 수학교육학연구, 22(4), 459-475 [2012]
  • 존 듀이 교육학에 대한 오해와 새로운 이해
    엄태동 교육원리연구, 6(1), 95-129 [2001]
  • 수학교육인식론 연구
    임재훈(Yim Jaehoon) 수학교육학연구, 11(2), 291-305 [2001]
  • 수학교육과 구성주의
    이경화 수학교육학연구, 9(1), 51-80 [1999]
  • 비트겐슈타인, 그 사람과 언어, 분석철학연구회 편, 비트겐슈타인과 분석철학(pp. 11-23)
    박영식 서울: 철학과 현실사 [1991]
  • 비트겐슈타인
    박병철 서울: 이룸 [2003]
  • 반영적 추상화와 조작적 수학 학습-지도
    홍진곤 서울대학교 박사학위논문 [1999]
  • 모형론적 귀결과 양상성
    최원배 한국수학사학회지, 25(4), 21-36 [2012]
  • 논리학, 존재론, 그리고 양상
    강수휘 철학적 분석, 28, 129-171 [2013]
  • 가능세계 의미론의 발전사와 그 쟁점들에 대한 비판적 고찰
    이창후 서울대학교 박사학위논문 [2008]
  • Zollman, A. (2010). Commentary 2 on problem solving for the 21st century, In B. Sriraman, & L. English (Eds). Theories of Mathematics Education: Seeking New Frontiers (pp. 297-301). New York: Springer.
  • Wittgenstein, L. (1967). Philosophical Investigations, (G. E. M. Anscombe & R. Rhees Eds., translated by G. E. M. Anscombe). Oxford: Blackwell.
  • Wittgenstein, L. (1961). TLP Logico-Philosophicus. (translated by D. F. Pears & B. F. McGuinness). New York: The Humanities Press.
  • Williamson, T. (2013b). Modal logic as metaphysics, Oxford: Oxford University Press.
  • Williamson, T. (2013a). Gettier cases in epistemic logic, Inquiry: An interdisciplinary journal of philosophy, 56(1), 1-14.
  • Williamson, T. (2009b). The philosophy of philosophy, Analysis, 69(1), 99-100.
  • Williamson, T. (2009a). Replies to Kornblith, Jackson and Moore, Analysis, 69(1), 125-135.
  • Williamson, T. (2007). The philosophy of philosophy, Oxford: Blackwell.
  • Williamson, T. (1994). Vagueness, London: Routledge.
  • Wallace, W. A. (1996). The modeling of nature: philosophy of science and philosophy of nature in synthesis. Washington: Catholic University of America Press.
  • Vosniadou, S., Skopeliti, I., & Ikospentaki (2004). Modes of knowing and ways of reasoning in elementary astronomy, Cognitive development, 19, 203-222.
  • Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational studies in mathematics, 54, 9-35.
  • Suarez, M. (1999). The role of models in the application of scientific theories: epistemological implications. In M. S. Morgan & M. Morrison (Eds), Models as mediators: Perspectives on natural and social science(pp. 168-195), Cambridge: Cambridge University Press.
  • Stake, R. (1995). The art of case study research, Thousand Oaks: Sage Publications.
  • Sfard, A. (2008). Thinking as communicating, human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.
  • Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Making sense of mathematics learning from a commognitive standpoint, The journal of the learning sciences, 16(4), 567-615.
  • Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one, Educational researcher, 27(2), 4-13.
  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin, Educational studies in mathematics, 22, 1-36.
  • Scribner, S. (1997). Mind in action: A functional approach to thinking. In M. Cole, Y. Engstrom, & O. Vasquez (Eds.), Mind, culture, and activity: Seminal papers from the Laboratory of Comparative Human Cognition (pp. 354-368). Cambridge: Cambridge University Press.
  • Schoenfeld, A. H. (2011). How we think: A theory of goal-oriented decision making and its educational applications. New York: Routledge.
  • Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press
  • Ryve, A. (2011). Discourse Research in Mathematics Education: A Critical Evaluation of 108 Journal Articles, Journal for Research in Mathematics Education, 42(2), 167-199.
  • Rorty, R. (1989). Contingency, irony, solidarity. Cambridge: Cambridge University Press.
  • Radu, M. (2008). Symbolic language versus understanding in mathematics education, In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom, and culture (pp. 249-262). Rotterdam: Sense.
  • Presmeg, N. (2005). Metaphor and metonymy in processes of semiosis in mathematics education. In M. H. G. Hoffinann, J. Lenhard & F. Seeger (Eds.) Activity and Sign - Grounding Mathematics Education (pp. 105-116). New York: Springer.
  • Prawat, R. S. (1999). Dewey, Peirce, and the learning paradox, American educational research journal, 36(1), 47-76.
  • Polya, G. (1954). Mathematics and plausible reasoning. Princeton: Princeton University Press.
  • Pollak, H. (1968). On some of the problems of teaching applications of mathematics, Educational studies in mathematics, 1, 24-30.
  • Peirce, C. S. (NEM) (1976). The new elements of mathematics by Charles S. Peirce (Vol. I - IV). Hague: Mouton.
  • Peirce, C. S. (C.P.) (1931–1935, 1958) Collected Papers of Charles Sanders Peirce. Cambridge, MA:Harvard UP.
  • Peirce, C. S. (1998). The essential Peirce. Volume 2, edited by the Peirce Edition Project. Bloomington: Indiana University Press.
  • Pegg, J. & Tall, D. (2010) The fundamental cycle of concept construction underlying various theoretical frameworks. In B. Sriraman & L. D. English (Eds.). Theories of Mathematics Education: Seeking New Frontiers (pp. 173-192). New York: Springer.
  • Park, J., Park, M., Park, M.-S., Cho, J. & Lee, K.-H. (2013). Mathematical modelling as a facilitator to conceptualization of the derivative and the integral in a spreadsheet environment, Teaching mathematics and its applications, 32, 123-139.
  • Park, J. & Lee, K.-H. (2014). Literature review of research on models in mathematics education, Journal of educational research in mathematics, 24(3), 285-310.
  • Overgaard, S., Gilbert, P., & Burwood, S. (2013). An Introduction to Metaphilosophy. Cambridge: Cambridge University Press.
  • Otte, M. (2008). Metaphor and contingency, In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom, and culture (pp. 63-82). Rotterdam: Sense Publishers.
  • Nagel, E. (1961), The Structure of Science. Problems in the Logic of Scientific Explanation. New York: Harcourt.
  • Nachlieli, T., & Tabach, M. (2012). Growing mathematical objects in the classroom - The case of function, International journal of educational research, 51-52, 10-27.
  • Movshovitz-Hadar, & Kleiner (2009). Intellectual Courage and Mathematical Creativity. In R. Leikin, A. Berman & B. Koichu (Eds.), Creativity in Mathematics and the Education of Gifted Students (pp.31-50). Rotterdam: Sense Publishers.
  • Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspectives on natural and social science (pp. 10–37). Cambridge: Cambridge University Press.
  • Morrison, M. (1998). Modelling Nature Between Physics and the Physical World, Philosophia Naturalis, 38(1), 65–85.
  • Merriam, S. (1998). Qualitative research and case study applications in education, San Francisco: Jossey-Bass.
  • McClain, K. & Cobb, P. (2001). Supporting students’ ability to reason about data, Educational studies in mathematics, 45, 103-129.
  • Mathematical modelling as a tool for the connection of school mathematics. ZDM ,38(3), 226-246.
  • Lesh, R., Middleton, J. A., Caylor, E., & Gupta, S. (2008). A science need: Designing tasks to engage students in modeling complex data, Educational studies in mathematics, 68, 113-130.
  • Lesh, R., & Doerr, H. (2003). In what ways does a models and modeling perspective move beyond constructivism? In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 519-556). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Lesh, R. & Lehrer, R. (2003). Models and modeling perspectives on the development of students and teachers, Mathematical thinking and learning, 5(2-3), 109-129.
  • Lesh, R. & Harel, G. (2003). Problem solving, Modeling, and Local conceptual development, Mathematical thinking and learning, 5(2-3), 157-189.
  • Lesh, R. & Fennewald, T. (2010). Introduction to Part Ⅰ Modeling: What is it? Why do it? In R. Lesh et al. (Eds.). Modeling students’ mathematical modeling competencies (pp. 5-10). New York: Springer.
  • Lenhard, J. (2005). Deduction, perception and modeling: The two Peirces on the essence of mathematics, In M. H. G. Hoffinann, J. Lenhard & F. Seeger (Eds.) Activity and Sign - Grounding Mathematics Education (pp. 313-324). New York: Springer.
  • Lee, K.-H. (2010). Modelling of and conjecturing on a soccer ball in a Korean eighth grade mathematics classroom, International journal of science and mathematics education, 9, 751-769.
  • Kornblith, H. (2009). Timothy Williamson's The Philosophy of Philosophy, Analysis, 69(1), 109-116.
  • Keyt, D. (1964). Wittgenstein's picture theory of language, The philosophical review, 73(4), 493-511.
  • Kaiser, G. & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education, ZDM, 38(3), 302-310.
  • Hutten, E. H. (1954). The role of models in physics, British Journal for the Philosophy of Science, 4, 284-301.
  • Hesse, M. (1953). Models in physics, British Journal for the Philosophy of Science, 4, 198-214.
  • Hartmann, S. (2008). Modeling in philosophy of science. In M. Frauchiger & W. K. Essler (Eds.), Representation, evidence, and justification: Themes from Suppes (pp. 95-121). Frankfurt: Ontos.
  • Grootenboer, P. (2010). Commentary 1 on problem solving for the 21st century, In B. Sriraman, & L. English (Eds). Theories of Mathematics Education: Seeking New Frontiers (pp. 291-295). New York: Springer.
  • Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics, Mathematical thinking and learning, 1(2), 155-177.
  • Gravemeijer, K. & Stephan, M. (2002). Emergent models as an instructional design heuristic. In K. Gravemeijer, R. Lehrer, B. V. Oers & L. Verschaffel (Eds.) Symbolizing, Modelling and Tool use in Mathematics Education (pp. 145-169). Dordrecht: Kluwer Academic Publishers.
  • Gettier, E. L. (1963). Is justified true belief knowledge? Analysis, 23, 121-123.
  • Gee, J. P. (2007). Social linguistics and literacies (3rd ed.). London: Taylor & Francis.
  • Garcia, F. J., Gascon, J., Higueras, L. R., & Bosch, M. (2006).
  • Galbraith, P. & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process, ZDM, 38(2), 143-162.
  • Freudenthal의 수학화 학습-지도론 연구
    정영옥 서울대학교 박사학위논문 [1997]
  • Freudenthal, H. (1991). Revisiting mathematics education china lectures, London: Kluwer Academic Publishers.
  • Fischbein, E.(1987). Intuition in Science and Mathematics: An Educational Approach, Dordecht: Reidel.
  • Fischbein, E. (2001). Tacit models and infinity, Educational studies in mathematics, 48, 309-329.
  • Fischbein, E. & Baltsan, M, (1998). The mathematical concept of set and the 'collection' model, Educational studies in mathematics, 37, 1-22.
  • Ernest, P.(1991). The Philosophy of Mathematics Education. London: The Falmer Press.
  • English, L. D. & Sriraman, B. (2010). Problem solving for the 21st century, In B. Sriraman, & L. English (Eds). Theories of Mathematics Education: Seeking New Frontiers (pp. 263-290). New York: Springer.
  • Duhem, P. (1954) [translated from the French 2nd edition, 1914], The Aim and Structure of Physical Theory, New Jersey: Princeton University Press.
  • Dubinsky, E. & McDonald, M. (2001) APOS: A constructivist theory of learning in undergrad mathematics education research. In D. Holton et. al. (Eds), The Teaching and Learning of Mathematics at University Level: An ICMI study (pp. 273-280). London: Kluwer Academic Publishers.
  • Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P. & Reed, H. (2012). Tool use and the development of the function concept: From repeated calculations to functional thinking, International journal of science and mathematics education, 10, 1243-1267.
  • Cobb, P. (2009). Learning as the evolution of discourse: Accounting for cultural, group and individual development. Human Development 52. 205-210.
  • Cobb, P. (2002). Reasoning with tools and inscriptions, The journal of learning sciences, 11(2-3), 187-215.
  • Cobb, P. & Hodge, L. L. (2011). Culture, identity, and equity in the mathematics classroom, In E. Yackel et al. (eds.), A Journey in Mathematics Education Research, New York: Springer.
  • Clement, J. J. (2009). Creative Model Construction in Scientists and Students: The Role of Imagery, Analogy, and Mental Simulation, New York: Springer.
  • Casti, J. (1989) Newton, Aristotle, and the Modeling of Living Systems. In Casti, J. & Anders, K. (Eds) Newton and Aristotle Towards a Theory of Models for Living System (pp. 47–98). Boston: Birkhuiser.
  • Caspi, S., & Sfard, A. (2012). Spontaneous meta-arithmetic as a first step toward school algebra, International journal of educational research, 51-52, 46-65.
  • Carnap, R. (1939). Foundations of logic and mathematics, International Encyclopedia of Unified Science, Chicago: Chicago University Press.
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical Modelling: Can It Be Taught And Learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.
  • Blum, W. et al. (2002). ICMI study 14: Applications and modelilng in mathematics education - Discussion document. Educational studies in mathematics, 51, 149-171.
  • Blomh j, M. & Kjeldsen, T. H. (2006). Teaching mathematical modelling through project work – Experiences from an in-service course for upper secondary teachers, ZDM, 38(2), 163-177.
  • Black, M. (1979). More about metaphor. In A. Ortony (Ed.), Metaphor and thought (pp. 19-45). Cambridge: Cambridge University Press.
  • Bailer-Jones, D. M. (1999), Tracing the Development of Models in the Philosophy of Science. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds), Model-based reasoning in scientific discovery (pp. 23–40). New York: Springer.
  • Bachelard 과학철학의 수학교육학적 의미 탐색 - 변증법적 발달을 중심으로
    정연준 수학교육학연구, 23(2), 237-252 [2013]
  • Arzarello, F. & Sabena, C. (2008) Semiotic and theoretic control in argumentation and proof activities. Educational studies in mathematics, 70, 97-109.
  • Anderson, J. R., Reder, L. M., & Simon, H. A. (1996). Situated learning and education. Educational researcher, 25, 5-11.