' 미니총설 : 바이오플라스틱 생산 미생물 플랫폼 제작을 위한 대사공학 전략 개발' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • biochemical
  • bioplastic
  • biorefinery
  • metabolic engineering
  • recombinantmicroorganism
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
160 0

0.0%

' 미니총설 : 바이오플라스틱 생산 미생물 플랫폼 제작을 위한 대사공학 전략 개발' 의 참고문헌

  • 효소를 이용한 고순도 감마 아미노 부틸산의 제조방법 국내등록특허 10-0857215
    김민홍 [2008]
  • The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens
    S. H. Hong NATURE BIOTECHNOLOGY 22 : 1275 ~ 1281 [2004]
  • The future of industrial biorefineries, World Economic Forum report
    [2010]
  • Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli
    T. H. Yang APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 90 (2) : 603 ~ 614 [2011]
  • Systems metabolic engineering of microorganisms for natural and non-natural chemicals
    J. W. Lee NATURE CHEMICAL BIOLOGY 8 (6) : 536 ~ 546 [2012]
  • Synthesis of poly(lactic acid): a review
    R. Mehta Polym. Rev 45 : 325 ~ 349 [2005]
  • Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli
    S. J. Park Bioprocess Biosyst. Eng 36 : 885 ~ 892 [2013]
  • Salt-free production of γ-aminobutyric acid from glutamate using glutamate decarboxylase separated from Escherichia coli
    T. H. Dinh J. Chem. Tech. Biotechnol [2013]
  • Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli
    S. J. Park JOURNAL OF BIOTECHNOLOGY 165 (2) : 93 ~ 98 [2013]
  • Propionate CoA-transferase from Clostridium propionicum. Cloning of gene and identification of glutamate 324 at the active site
    T. Selmer Eur. J. Biochem 269 : 372 ~ 380 [2002]
  • Production of succinic acid by bacterial fermentation
    H. Song ENZYME AND MICROBIAL TECHNOLOGY 39 : 352 ~ 361 [2006]
  • Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation
    H. Li Microb. Cell. Fact 9 : 85 ~ 92 [2010]
  • Polylactic acid technology
    R. E. Drumright Adv. Mater 12 : 1841 ~ 1846 [2000]
  • Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels
    X. Gao Curr. Opin. Biotechnol 22 : 768 ~ 774 [2011]
  • Overexpression of Neurospora crassa OR74A Glutamate Decarboxylase in Escherichia coli for Efficient GABA Production
    Tam Dinh Le Vo Biotechnology and Bioprocess Engineering 18 (6) : 1062 ~ 1066 [2013]
  • Mode of action of gamma aminobutyric acid on the cardiovascular system
    H. C. Stanton Arch. Int. Pharmacodyn. Ther 143 : 195 ~ 204 [1963]
  • Microbial production of lactate-containing polyesters
    J. E. Yang MICROBIAL BIOTECHNOLOGY 6 (6) : 621 ~ 636 [2013]
  • Metabolic engineering of poly-(3-hydroxyalkanoates): from DNA to plastic
    L. L. Madison Microbiol. Mol. Biol. Rev 63 : 21 ~ 53 [1999]
  • Metabolic engineering of Ralswwtonia eutropha for the biosynthesis of 2-hydroxyacid containing polyhydroxyalkanoates (PHAs)
    S. J. Park Metab. Eng 20 : 20 ~ 28 [2013]
  • Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine
    Z. G. Qian Biotechnol. Bioeng 104 : 651 ~ 662 [2009]
  • Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine
    Z. G. Qian Biotechnol. Bioeng 108 : 93 ~ 103 [2011]
  • Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals
    S. J. Park Metab. Eng 16 : 42 ~ 47 [2013]
  • Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
    H. Yim Nat. Chem. Biol 7 : 445 ~ 452 [2011]
  • Metabolic Engineering of Escherichia coli for the Production of Polylactic Acid and Its Copolymers
    Y. K. Jung BIOTECHNOLOGY AND BIOENGINEERING 105 (1) : 161 ~ 171 [2010]
  • Glutamic acid decarboxylase in brain
    E. Roberts J. Biol. Chem 188 : 789 ~ 795 [1951]
  • Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production
    S. J. Lee APPLIED AND ENVIRONMENTAL MICROBIOLOGY 72 : 1939 ~ 1948 [2006]
  • Expanding metabolism for biosynthesis of nonnatural alcohols
    K. Zhang Proc. Natl. Acad. Sci. USA 105 : 20653 ~ 20658 [2008]
  • Enhanced γ-aminobutyric acid-forming activity of recombinant glutamate decarboxylase (gadA) from Escherichia coli
    Q. Wang World J. Microbiol. Biotechnol 27 : 693 ~ 700 [2011]
  • Enhanced Butanol Production Obtained by Reinforcing the Direct Butanol-Forming Route in Clostridium acetobutylicum
    Y. S. Jang MBIO 3 (5) : 00314 ~ 00312 [2012]
  • Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli
    Y. K. Jung J. Biotechnol 151 : 94 ~ 101 [2011]
  • Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli
    T. D. Le Vo J. Ind. Microbiol. Biotechnol 40 : 927 ~ 933 [2013]
  • Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli
    T. D. Le Vo Bioprocess Biosyst. Eng 35 : 645 ~ 650 [2012]
  • Diversity of bacterial polyhydroxyalkanoic acids
    A. Steinbuchel FE Microbiol. Lett 128 : 219 ~ 228 [1995]
  • Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli
    S. Atsumi Appl. Environ. Microbiol 74 : 7802 ~ 7808 [2008]
  • Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol
    C. Rathnasingh Biotechnol. Bioeng 104 : 729 ~ 739 [2009]
  • Comparative study of the relationship between monomer structure and reactivity for two polyhydroxyalkanoate synthases
    S. Zhang Appl. Microbiol. Biotechnol 56 : 131 ~ 136 [2001]
  • Cloning and Expression of a Full-Length Glutamate Decarboxylase Gene from Lactobacillus brevis BH2
    Sung-Jong Jeon Biotechnology and Bioprocess Engineering 12 (6) : 707 ~ 712 [2007]
  • Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: characterization and substrate specificity studies
    W. Yuan Arch. Biochem. Biophys 394 : 87 ~ 98 [2001]
  • Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering
    Y. S. Jang Biotechnol. J 7 : 186 ~ 198 [2012]
  • Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli
    S. J. Park Appl. Microbiol. Biotechnol 93 : 273 ~ 283 [2012]
  • Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria
    S. J. Park BIOTECHNOLOGY JOURNAL 7 : 199 ~ 212 [2012]
  • Biosynthesis of Polylactic Acid and Its Copolymers Using Evolved Propionate CoA Transferase and PHA Synthase
    T. H. Yang BIOTECHNOLOGY AND BIOENGINEERING 105 (1) : 150 ~ 160 [2010]
  • Bacterial polyhydroxyalkanoates
    S. Y. Lee Biotechnol. Biong 49 : 1 ~ 14 [1996]
  • Applications of life cycle assessment to NatureWorksTM polylactide(PLA) production
    E. T. H. Vink Polym. Degrad. Stab 80 : 403 ~ 419 [2003]
  • Application of systems biology for bioprocess development
    J. H. Park TRENDS IN BIOTECHNOLOGY 26 (8) : 404 ~ 412 [2008]
  • Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters
    S. J. Park Biotechnol. Adv 30 : 1196 ~ 1206 [2012]