초청 총설 : 다음세대 리튬이온 배터리용 고에너지 밀도 게르마늄 음극

논문상세정보
' 초청 총설 : 다음세대 리튬이온 배터리용 고에너지 밀도 게르마늄 음극' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • germanium
  • highenergydensity
  • lithiumalloying
  • lithiumbatteries
  • nanotechnology
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
109 0

0.0%

' 초청 총설 : 다음세대 리튬이온 배터리용 고에너지 밀도 게르마늄 음극' 의 참고문헌

  • in Proc. Manganese Dioxide Symp
    H. Ikeda IC sample office [1975]
  • What are batteries, fuel cells, and supercapacitors?
    M. Winter Chem. Rev 104 : 4245 ~ 4269 [2004]
  • Ultrafast electrochemical lithiation of individual Si nanowire anodes
    X. H. Liu NanoLett 11 : 2251 ~ 2258 [2011]
  • Tough germanium nanoparticles under electrochemical cycling
    W. Liang ACS Nano 7 : 3427 ~ 3433 [2013]
  • Topochemical reactions of rutile related structures with lithium
    D. W. Murphy Mater. Res. Bull 13 : 1395 ~ 1402 [1978]
  • The role ofin situ generatednano-sized metal particles on the coulombic efficiency of MGeO3 (M = Cu, Fe, and Co) electrodes
    C. H. Kim Electrochim. Acta 54 : 4371 ~ 4377 [2009]
  • The effect of Cu addition on Ge-based composite anode for Li-ion batteries
    Y. Hwa Electrochim. Acta 55 : 3324 ~ 3329 [2010]
  • The crystal structure of Li15Ge4
    Q. Johnson Acta Cryst 18 : 131 ~ 132 [1965]
  • The birth of the lithium-ion battery
    A. Yoshino Angew. Chem. Int. Ed 51 : 5798 ~ 5800 [2012]
  • The Li-ion rechargeable battery: A perspective
    J. B. Goodenough J. Am. Chem. Soc 135 : 1167 ~ 1176 [2013]
  • Tetragonal phase germanium nanocrystals in lithium ion batteries
    Y. J. Cho ACS Nano 7 : 9075 ~ 9084 [2013]
  • Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage
    J. Gu NanoLett 12 : 4617 ~ 4623 [2012]
  • Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale
    Y. Liu NanoLett 13 : 4876 ~ 4883 [2013]
  • Synthesis of tin catalyzed silicon and germanium nanowires in a solvent-vapor system and optimization of the seed/nanowire interface for dual lithium cycling
    E. Mullane Chem. Mater 25 : 1816 ~ 1822 [2013]
  • Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties
    L. Li J. Mater. Chem. A 1 : 7666 ~ 7672 [2013]
  • Synthesis of NixSiy-SiGe core-shell nanowire arrays on Ni foam as a high-performance anode for Li-ion batteries
    J. Yu RSC Adv 3 : 7713 ~ 7717 [2013]
  • Surface-stabilized amorphous germanium nanoparticles for lithiumstorage material
    H. Lee J. Phys. Chem. B 109 : 20719 ~ 20723 [2005]
  • Study of germanium as electrode in thin-film battery
    B. Laforge J. Electrochem. Soc 155 : A181 ~ A188 [2008]
  • Structural properties of lithium thiogermanate thin film electrolytes grown by radio frequency sputtering
    I. Seo Inorg. Chem 50 : 2143 ~ 2150 [2011]
  • Structural changes in silicon anodes during lithium insertion/extraction
    M. N. Obrovac Electrochem. Solid State Lett 7 : A93 ~ A96 [2004]
  • Storage of lithium in hydrothermally synthesized GeO2 nanoparticles
    Y.-M. Lin J. Phys. Chem. Lett 4 : 999 ~ 1004 [2013]
  • Solution-grown germanium nanowire anodes for lithium-ion batteries
    A. M. Chockla ACS Appl. Mater. Interfaces 4 : 4658 ~ 4664 [2012]
  • Size-Dependent Fracture of Silicon Nanoparticles during Lithiation
    X. H. Liu ACS Nano 6 : 1522 ~ 1531 [2012]
  • Si/Ge double-layered nanotube array as a lithium ion battery anode
    T. Song ACS Nano 6 : 303 ~ 309 [2012]
  • Selfassembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery
    K. H. Seng Angew. Chem 124 : 5755 ~ 5759 [2012]
  • Role of nanosize in lithium reactive nanomaterials for lithium ion batteries
    K. T. Lee Nano Today 6 : 28 ~ 41 [2011]
  • Reversible nanopore formation in Ge nanowires during lithiationdelithiation cycling: An in situ transmission electron microscopy study
    X. H. Liu NanoLett 11 : 3991 ~ 3997 [2011]
  • Renewable Energy: Power for a Sustainable Future
    G. Boyle Oxford University Press [2012]
  • Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries
    X.-L. Wu Chem. -Asian J 8 : 1948 ~ 1958 [2013]
  • Rapid fabrication of a novel Sn-Ge alloy: Structure-property relationship and its enhanced lithium storage properties
    S. Fan J. Mater. Chem. A 1 : 14577 ~ 14585 [2013]
  • Quantum confinement and its related effects on the critical size of GeO2 nanoparticles anodes for lithium batteries
    Y. Son NanoLett
  • Potential impact of climate change on world food supply
    C. Rosenzweig Nature 367 : 133 ~ 138 [1994]
  • Our common future [Brundtland Report]
  • On the electrochemistry of an anode stack for all-solidstate 3D-integrated batteries
    L. Baggetto J. Power Sources 189 : 402 ~ 410 [2009]
  • Nanostructured silicon anodes for lithium ion rechargeable batteries
    R. Teki Small 5 : 2236 ~ 2242 [2009]
  • Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes
    N. G. Rudawski Appl. Phys. Lett 100 : 083111 ~ [2012]
  • Nanostructured anode materials for Li-ion batteries
    N. Zhao Pure Appl. Chem 80 : 2283 ~ 2295 [2008]
  • Nanostructured Si(1-x)Gex for tunable thin film lithium-ion battery anodes
    P. R. Abel ACS Nano 7 : 2249 ~ 2257 [2013]
  • Nanomaterials for energy conversion and storage
    Q. Zhang Chem. Soc. Rev 42 : 3127 ~ 3171 [2013]
  • Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities
    J. Graetz J. Electrochem. Soc 151 : A698 ~ A702 [2004]
  • Metal oxides and oxysalts as anode materials for Li ion batteries
    M. V. Reddy Chem. Rev 113 : 5364 ~ 5457 [2013]
  • Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemicalreaction
    L. C. Yang Electrochem. Commun 12 : 418 ~ 421 [2010]
  • Measurement of the elastic properties and intrinsic strength of monolayer graphene
    C. Lee Science 321 : 385 ~ 388 [2008]
  • Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material
    W. Li Energy Environ. Sci 5 : 8007 ~ 8013 [2012]
  • LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density
    K. Mizushima Mater. Res. Bull 15 : 783 ~ 789 [1980]
  • Lithiumaluminumelectrode
    B. M. L. Rao J. Electrochem. Soc 124 : 1490 ~ 1492 [1977]
  • Lithium-ion (de)insertion reaction of germanium thin-film electrodes: An electrochemical and in situ XRD study
    L. Baggetto J. Electrochem. Soc 156 : A169 ~ A175 [2009]
  • Lithium storage capability of CuGeO3 nanorods
    J. Feng Mater. Res. Bull 47 : 1693 ~ 1696 [2012]
  • Lithium insertion into manganese spinels
    M. M. Thackeray Mater. Res. Bull 18 : 461 ~ 472 [1983]
  • Lithium fiber growth on the anode in a nanowire lithium ion battery during charging
    X. H. Liu Appl. Phys. Lett 98 : 183107 ~ [2011]
  • Issues and challenges facing the rechargeablelithium batteries
    J.-M. Tarascon Nature 414 : 359 ~ 367 [2001]
  • Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries
    N. G. Rudawski J. Power Sources 223 : 336 ~ 340 [2013]
  • Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes
    H. Nakai J. Electrochem. Soc 158 : A798 ~ A801 [2011]
  • In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties
    C. Wang J. Mater. Chem. A 1 : 8897 ~ 8902 [2013]
  • In situ X-ray absorption spectroscopy of germanium evaporated thin film electrodes
    L. Baggetto Electrochim. Acta 55 : 7074 ~ 7079 [2010]
  • In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures
    X. H. Liu Adv. Energy Mater 2 : 722 ~ 741 [2012]
  • In situ TEM electrochemistry of anode materials in lithium ion batteries
    X. H. Liu Energy Environ. Sci 4 : 3844 ~ 3860 [2011]
  • In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon
    T. D. Hatchard J. Electrochem. Soc 151 : A838 ~ A842 [2004]
  • Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks
    D.-J. Xue J. Am. Chem. Soc 134 : 2512 ~ 2515 [2012]
  • Hybrid germanium nanoparticle-single-wall carbon nanotube free-standing anodes for lithium ion batteries
    R. A. DiLeo J. Phys. Chem. C 115 : 22609 ~ 22614 [2011]
  • Highyield gas-phase photolysis synthesis of germanium nanocrystals for high-performance photodetectors and lithium ion batteries
    C. H. Kim J. Phys. Chem. C 116 : 26190 ~ 26196 [2012]
  • Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes
    W. Li Chem. -Eur. J 19 : 8650 ~ 8656 [2013]
  • Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability
    C. Yan Adv. Mater 25 : 539 ~ 544 [2013]
  • High-capacity anode materials for lithiumion batteries: Choice of elements and structures for active particles
    N. Nitta Part. Part. Syst. Charact
  • High capacity lithium ion battery anodes of silicon and germanium
    T. D. Bogard Curr. Opin. Chem. Eng 2 : 286 ~ 293 [2013]
  • High capacity Li ion battery anodes using Ge nanowires
    C. K. Chan NanoLett 8 : 307 ~ 309 [2011]
  • Hierarchically porous germanium- modified carbon materials with enhanced lithium storage performance
    Y. Xiao Nanoscale 4 : 7469 ~ 7474 [2012]
  • Growth of the vertically aligned graphene@amorphousGeOx sandwich nanoflakes and excellent Li storage properties
    S. Jin Nano Energy 2 : 1128 ~ 1136 [2013]
  • Giant intrinsic carrier mobilities in graphene and its bilayer
    S. V. Morozov Phys. Rev. Lett 100 : 016602 ~ [2008]
  • Germaniumtin alloy nanocrystals for high-performance lithium ion batteries
    Y. J. Cho Phys. Chem. Chem. Phys 15 : 11691 ~ 11695 [2013]
  • Germanium-single-wall carbon nanotube anodes for lithium ion batteries
    R. A. DiLeo J. Mater. Res 25 : 1441 ~ 1446 [2010]
  • Germanium-graphene composite anode for high-energy lithium batteries with long cycle life
    J.-G. Ren J. Mater. Chem. A 1 : 1821 ~ 1826 [2013]
  • Germanium sulfide (II and IV) nanoparticles for enhanced performance of lithium ion batteries
    Y. J. Cho Chem. Commun 49 : 4661 ~ 4663 [2013]
  • Germanium nanowires-based carbon composite as anodes for lithium-ion batteries
    L. P. Tan J. Power Sources 206 : 253 ~ 258 [2012]
  • Germanium nanotubes prepared by using the Kirkendall Effect as anodes for high-rate lithium batteries
    M.-H. Park Angew. Chem. Int. Ed 50 : 9647 ~ 9650 [2011]
  • GeOx/reduced graphene oxide composite as an anode for Li-ion batteries: Enhanced capacity via reversible utilization for Li2O along with improved rate performance
    D. Lv Adv. Funct. Mater
  • Ge-Cu nanoparticles produced by inert gas condensation and their application as anode material for lithium ion batteries
    X. Zhao Electrochem. Commun 35 : 116 ~ 119 [2013]
  • Flexible dimensional control of high-capacity Li-ion-battery anodes: From 0D hollow to 3D porous germanium nanoparticle assemblies
    M.-H. Park Adv. Mater 22 : 415 ~ 418 [2010]
  • Fast ion transport in solids
    B. C. H. Steele North-Holland Aterdam [1973]
  • Facile synthesis of germanium-graphenenano composites and their application as anode materials for lithium ion batteries
    J. Cheng Crys. Eng. Comm 14 : 397 ~ 400 [2012]
  • Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation
    V. Etacheri Langmuir 28 : 6175 ~ 6184 [2012]
  • Entangled Germanium Nanowires and Graphite Nanofibers for the Anode of Lithium-Ion Batteries
    S.-H. Woo JOURNAL OF THE ELECTROCHEMICAL SOCIETY 160 (1) : A112 ~ A116 [2013]
  • Electrochemical reactions of lithium with Li2ZnGe and Li2ZnSi
    R. Alcantara Electrochim. Acta 47 : 1115 ~ 1120 [2002]
  • Electrochemical properties of Si-Ge- Mo anode composite materials prepared by magnetron sputtering for lithium ion batteries
    C.-M. Hwang Electrochim. Acta 56 : 6737 ~ 6747 [2011]
  • Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries
    A. M. Chockla J. Phys. Chem. C 116 : 11917 ~ 11923 [2012]
  • Electrochemical characterizations of multi-layer and composite silicon-germanium anodes for Li-ion batteries using magnetron sputtering
    C.-M. Hwang J. Power Sources 196 : 6772 ~ 6780 [2011]
  • Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries
    S. Yoon Electrochem. Solid State Lett 11 : A42 ~ A45 [2008]
  • Electrochemical characterization of a Ge-based composite film fabricated as an anode material using magnetron sputtering for lithium ion batteries
    C.-M. Hwang Thin Solid Fil 518 : 6590 ~ 6597 [2010]
  • Electrochemical cell and method of making ion conductors for said cell, EP0017400B1
  • Electrochemical behavior of Ge and GeX2 (X = O, S) glasses: Improved reversibility of the reaction of Li with Ge in a sulfide medium
    Y. Kim Electrochim. Acta 53 : 5058 ~ 5064 [2008]
  • Electrochemical Characteristics of a Si/Ge Multilayer Anode for Lithium-Ion Batteries
    Myung-Hoon Kim Journal of the Korean Physical Society 49 (3) : 1107 ~ 1110 [2006]
  • Electrical energy storage for the grid: A battery of choices
    B. Dunn Science 334 : 928 ~ 935 [2011]
  • Cu-Si1-xGex coreshell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries
    J. Wang J. Power Sources 208 : 434 ~ 439 [2012]
  • Cu-Ge core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries
    J. Wang J. Mater. Chem 22 : 1511 ~ 1515 [2012]
  • Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries
    Z. Chen J. Mater. Chem. A 1 : 11404 ~ 11409 [2013]
  • Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries
    S. Li Solid State Ion 254 : 17 ~ 26 [2014]
  • Climate change impacts on the biophysics and economics of world fisheries
    U. R. Sumaila Nat. Clim. Chang 1 : 449 ~ 456 [2011]
  • Challenges facing lithium batteries and electrical double-layer capacitors
    N.-S. Choi Angew. Chem. Int. Ed 51 : 9994 ~ 10024 [2012]
  • Chalcogenide battery, US Patent 4009052
  • Catalytic role of Ge in highly reversible GeO2/Ge/C nanocompositeanode material for lithium batteries
    K. H. Seng NanoLett 13 : 1230 ~ 1236 [2013]
  • Carbon nanotubes for lithium ion batteries
    B. J. Landi Energy Environ. Sci 2 : 638 ~ 654 [2009]
  • Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes
    J. Jiang Nanoscale 3 : 45 ~ 58 [2011]
  • Binder-free Ge nanoparticles- carbon hybrids for anode materials of advanced lithium batteries with high capacity and rate capability
    G. Jo Chem. Commun 48 : 3987 ~ 3989 [2012]
  • Balanced approach to safety of high capacity silicon-germanium-carbon nanotube free-standing lithium ion battery anodes
    R. A. DiLeo Nano Energy 2 : 268 ~ 275 [2013]
  • Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles and their electrical property testing
    H. Yin Nanoscale Res. Lett 8 : 422 ~ [2013]
  • Anisotrophic swelling and fracture of silicon nanowires during lithiation
    X. H. Liu NanoLett 11 : 3312 ~ 3318 [2011]
  • Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life
    X.-L. Wang J. Am. Chem. Soc 133 : 20692 ~ 20695 [2011]
  • Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization
    F.-W. Yuan ACS Nano 6 : 9932 ~ 9942 [2012]
  • Advances in Lithium-ion batteries
    W. van Schalkwijk Kluwer Academic/Plenum [2004]
  • Accumulation of fossil CO2 in the atmosphere and the sea
    A. W. Fairhall Nature 245 : 20 ~ 23 [1973]
  • A unique sandwich-structured C/Ge/graphenenanocomposite as an anode material for high power lithium ion batteries
    D. Li J. Mater. Chem. A 1 : 14115 ~ 14121 [2013]
  • A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life
    K. C. Klavetter J. Power Sources 238 : 123 ~ 136 [2013]
  • A cyclable lithium organic electrolyte cell based on two intercalation electrodes
    M. Lazzari J. Electrochem. Soc 127 : 773 ~ 774 [1980]
  • A Ge inverse opal with porous walls as an anode for lithium ion batteries
    T. Song Energy Environ. Sci 5 : 9028 ~ 9033 [2012]
  • 3D ordered macro porous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties
    X. Liu J. Mater. Chem. A 1 : 1507615081 ~ [2013]