3 차원 Blended PCL (60 wt %)/β-TCP (40 wt %) 인공지지체의 제작 및 특성 평가

논문상세정보
' 3 차원 Blended PCL (60 wt %)/β-TCP (40 wt %) 인공지지체의 제작 및 특성 평가' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기계공학
  • biomaterial(생체재료)
  • multi-headscaffoldfabricationsystem(다축인공지지체제작시스템)
  • saos-2cells(골세포)
  • scaffold(인공지지체)
  • tissue engineering(조직 공학)
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
940 0

0.0%

' 3 차원 Blended PCL (60 wt %)/β-TCP (40 wt %) 인공지지체의 제작 및 특성 평가' 의 참고문헌

  • 자유 형상 제작 기술 기반의 세라믹 제작 시스템을 이용한 3차원 인공지지체 제작에 관한 연구
    사민우 조직공학과 재생의학 10 (4) : 56 ~ 61 [2013]
  • 스트론튬(Strontium)이 도핑된 다공성 BCP 뼈 이식제가 조골세포에 미치는 영향
    변인선 한국재료학회지 20 (3) : 155 ~ 160 [2010]
  • 생체조직공학용 지지체
    강길선 조직공학과 재생의학 3 (4) : 376 ~ 395 [2006]
  • 바이오플로팅장비를 이용한 다공성 PCL 인공지지체의 제작
    이수희 조직공학과 재생의학 7 (2) : 211 ~ 216 [2010]
  • Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs
    Leong, K. F Biomaterials 24 : 2363 ~ 2378 [2010]
  • Sintering and Robocasting of β-Tricalcium Phosphate Scaffolds for Orthopedic Applications
    Miranda, P. Acta Biomater 2 : 457 ~ 466 [2005]
  • Selective Laser Sintering of PCL/TCP Composites for Tissue Engineering Scaffolds
    Chung, H. S J. Mech. Sci. Technol 24 : 241 ~ 244 [2010]
  • Scaffolds with a Standardized Macro-architecture Fabricated from Several Calcium Phosphate Ceramics using an Indirect Rapid Prototyping Technique
    Wilson, C. E. J. Mater. Sci. Mater. Med 22 : 97 ~ 105 [2011]
  • Scaffolds Designed and Fabricated with Elastic Biomaterials Applying CAD-CAM Technique
    Hoque, M. E. Tissue Eng. Part A 14 (5) : 907 ~ [2008]
  • Polymer-bioceramic Composites for Tissue Engineering Scaffolds
    Yunos, D. M. J. Mater. Sci. 43 (13) : 4433 ~ 4442 [2008]
  • Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications
    Marco, D. Int. J. Biomater 2009 (239643) : 9 ~ [2009]
  • Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling
    Hutmacher, D. W J. Biomed. Mater. Res 55 (2) : 203 ~ 216 [2001]
  • Lateral Ridge Augmentation Using a PCL-TCP Scaffold in a Clinically Relevant but Challenging Micro Pig Model
    Yeo, A. Clin. Oral Implants Res 23 : 1322 ~ 1332 [2011]
  • Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications
    Zein, I. Biomaterials 23 : 1169 ~ 1185 [2002]
  • Fabrication of Solid Freeform Based 3D Scaffold and Its In-vitro Characteristic Evaluation for Bone Tissue Engineering
    Shim, J. H Tissue Eng. Regen. Med 11 (3) : 694 ~ 701 [2012]
  • Effects of Microwave Sintering on the Properties of Porous Hydroxyapatite Scaffolds
    Wu, Q Ceram. Int. 39 : 2389 ~ 2395 [2013]
  • Effect of Various Blending Ratios on the Cell Characteristics of PCL and PLGA Scaffolds Fabricated by Polymer Deposition System
    사민우 International Journal of Precision Engineering and Manufacturing 14 (4) : 649 ~ 655 [2013]
  • Effect of Thermal Degradation of SFF-based PLGA Scaffolds Fabricated Using a Multi-head Deposition System Followed by Change of Cell Growth Rate
    Shim, J. H J. Biomater. Sci. Polym. Ed 21 (8-9) : 1069 ~ 1080 [2010]
  • Effect of Pore Architecture and Stacking Direction on Mechanical Properties of Solid Freeform Fabrication-Based Scaffold for Bone Tissue Engineering
    Lee, J. S. J. Biomed. Mater. Res. Part A 100A : 1846 ~ 1853 [2012]
  • Direct Write Assembly of Calcium Phosphate Scaffolds Using a Water-Based Hydrogel
    Franco, J. Acta Biomater 6 : 218 ~ 228 [2010]
  • Comparison of Human Alveolar Osteoblasts Cultured on Polymer-ceramic Composite Scaffolds and Tissue Culture Plates
    Yefang, Z. Int. J. Oral Maxillofac. Surg 36 : 137 ~ 145 [2007]
  • Characterization of Polycaprolactone and Starch Blends for Potential Application within the Biomaterials Field
    Su, J. Afr. J. Biotechnol 11 (3) : 694 ~ 701 [2012]
  • Biodegradable and Bioactive Porous Polymer/inorganic Composite Scaffolds for Bone Tissue Engineering
    Rezwan, K. Biomaterials 27 : 4313 ~ 4331 [2006]
  • Biocompatibility and Biodegradation Studies of PCL/β-TCP Bone Tissue Scaffold Fabricated by Structural Porogen Method
    Lu, L. J. Mater. Sci. Mater. Med 23 : 2217 ~ 2226 [2012]
  • Bioceramics of Calcium Orthophosphates
    Dorozhkin, S. V. Biomaterials 31 : 1465 ~ 1485 [2010]
  • An Introduction to Bioceramics, Vol. 12.
    Hench, L. L. Academic Press : ~ [1993]
  • An Improvement in Sintering Property of β-Tricalcium Phosphate by Addition of Calcium Pyrophosphate
    Ryu, H. S. Biomaterials 23 : 909 ~ 914 [2002]
  • A Revised Replication Method for Bioceramic Scaffolds
    Bellucci, D. Bioceram. Dev. Appl 1 (D110401) : 8 ~ [2011]
  • A Porous Hydroxyapatite Scaffold for Bone Tissue Engineering:Physico-Mechanical and Biological Evaluations
    Tripathi, G Ceram. Int. 38 : 341 ~ 349 [2012]
  • A New Method of Fabricating Robust Freeform 3D Ceramic Scaffolds for Bone Tissue Regeneration
    Seol, Y. J. Biotechnol. Bioeng 110 (5) : 1444 ~ 1455 [2013]
  • A Biomimetic Three-dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage
    Moutos, F. T. Nat. Mater 6 : 162 ~ 167 [2007]
  • 3차원 인공지지체 패턴이 갖는 세포 평가 특성에 따른 이중 공극 인공지지체의 개발
    손유선 조직공학과 재생의학 8 (4) : 66 ~ 72 [2011]