Analysis of the static yield stress for giant electrorheological fluids

논문상세정보
    • 저자 Youngwook P. Seo 최형진 서용석
    • 제어번호 105115992
    • 학술지명 Korea-Australia rheology journal
    • 권호사항 Vol. 29 No. 3 [ 2017 ]
    • 발행처 한국유변학회
    • 자료유형 학술저널
    • 수록면 215-218 ( 4쪽)
    • 언어 English
    • 출판년도 2017
    • 등재정보 KCI등재
    • 소장기관 영남대학교 과학도서관
    • 판매처
    유사주제 논문( 0)

' Analysis of the static yield stress for giant electrorheological fluids' 의 참고문헌

  • Yield stress analysis of electrorheological suspensions containing core-shell structured anisotropic poly(methyl methacrylate) microparticles
    Seo, Y.P. Polym. Adv. Technol 26 117-120 [2015]
  • Yield stress analysis of 1D calcium and titanium precipitate-based giant electrorheological fluids
    Liu, Y.D. Colloid Polym. Sci 291 1267-1270 [2013]
  • Time-dependent and nonlinear effects in electrorheological fluids
    Davis, L.C. J. Appl. Phys 81 1985-1991 [1997]
  • The giant electrorheological effect in suspensions of nanoparticles
    Wen, W. Nat. Mater 2 727-730 [2003]
  • Progress in Electrorheology
    Davis, L.C. 107-114 [1995]
  • New analysis of yield stress on giant electrorheological fluids
    Vemuri, S.H. Colloid Polym. Sci 290 189-192 [2012]
  • Modeling and analysis of electrorheological suspensions in shear flow
    Seo, Y.P. Langmuir 28 3077-3084 [2012]
  • Modeling and analysis of an electrorheological flow behavior containing semiconducting graphene oxide/polyaniline composite particles
    Seo, Y.P. Colloid Surf. A-Physicochem. Eng. Asp 457 363-367 [2014]
  • Mechanisms of giant electrorheological effect
    Huang, X. Sol. Stat. Commun 139 581-588 [2006]
  • Magnetorheology of core-shell structured carbonyl iron/polystyrene foam microparticles suspension with enhanced stability
    Chuah, W.H. Macromolecules 48 7311-7319 [2015]
  • Magnetorheological fluids : A review
    de Vicente, J. Soft Matter 7 3701-3710 [2011]
  • Influence of liquid phase on nanoparticle-based giant electrorheological fluid
    Gong, X. Nanotechnology 19 165602- [2008]
  • Giant electrorheological effect: A microscopic mechanism
    Chen, S. Phys. Rev. Lett 105 046001- [2010]
  • Facile approach to large-scale synthesis of 1D calcium and titanium precipitate (CTP) with high electrorheological activity
    Cheng, Y. ACS Appl. Mater. Interfaces 2 621-625 [2010]
  • Fabrication of uniform core-shell structural calcium and titanium precipitation particles and enhanced electrorheological activities
    Cheng, Y. Nanotechnology 20 055604- [2009]
  • Electrorheology:Mechanisms and models
    Parathasarathy, M. Mater. Sci. Eng. R-Rep 17 57-103 [1996]
  • Electrorheological fluids:Structures and mechanisms
    Wen, W. Soft Matter 4 200-210 [2008]
  • Electrorheological activity generation by graphene oxide coating on low-dielectric silica particles
    Kim, S.D. RSC Adv 4 62644-62650 [2014]
  • Core-shell structured electro- and magneto-responsive materials: Fabrication and characteristics
    Choi, H.J. Materials 7 7460-7471 [2014]
  • Comment on ‘Fabrication of uniform core-shell structural calcium and titanium precipitation particles and enhanced electrorheological activities’
    Zhang, K. Nanotechnology 21 378001- [2010]
  • Chain model of electrorheology
    Martin, J.E. J. Chem. Phys 104 4814-4827 [1996]
  • Analysis of the flow behavior of electrorheological fluids with the aligned structure reformation
    Seo, Y.P. Polymer 52 5695-5698 [2011]
  • Analysis of giant electrorheological fluids
    Seo, Y.P. J. Colloid Interface Sci 402 90-93 [2013]
  • A yield stress scaling function for electrorheological fluids
    Choi, H.J. Appl. Phys. Lett 78 3806-3808 [2001]
  • A simplified model for analyzing the flow behavior of electrorheological fluids containing silica nanoparticle-decorated polyaniline nanofibers
    Seo, Y.P. Soft Matter 8 4659-4663 [2012]
  • A new yield stress scaling function for electrorheological fluids
    Seo, Y J. Non-Newton. Fluid Mech 166 241-243 [2011]