Biofilm dispersion in Pseudomonas aeruginosa

논문상세정보
    • 저자 김수경 이준희
    • 제어번호 103418650
    • 학술지명 The journal of microbiology
    • 권호사항 Vol. 54 No. 2 [ 2016 ]
    • 발행처 한국미생물학회
    • 자료유형 학술저널
    • 수록면 71-85
    • 언어 English
    • 출판년도 2016
    • 등재정보 KCI등재
    • 소장기관 영남대학교 과학도서관
    • 판매처
    유사주제 논문( 0)

' Biofilm dispersion in Pseudomonas aeruginosa' 의 참고문헌

  • Tryptophan inhibits biofilm formation by Pseudomonas aeruginosa
    Brandenburg, K. S. Antimicrob. Agents Chemother 57 1921-1925 [2013]
  • Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein
    Hinsa, S. M. Mol. Microbiol 49 905-918 [2003]
  • Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms
    Lequette, Y. J. Bacteriol 187 37-44 [2005]
  • The release of alginate lyase from growing Pseudomonas syringae pathovar phaseolicola
    Ott, C. M. Curr. Microbiol 42 78-81 [2001]
  • The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion
    Roy, A.B. J. Bacteriol 194 2904-2915 [2012]
  • The involvement of cell-to-cell signals in the development of a bacterial biofilm
    Davies, D. G. Science 280 295-298 [1998]
  • The influence of phosphate-metabolism on biosurfactant production by Pseudomonas aeruginosa
    Mulligan, C. N. J. Biotechnol 12 199-210 [1989]
  • The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa
    O’Toole, G. A. J. Bacteriol 182 425-431 [2000]
  • The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow
    Stoodley, P. Environ. Microbiol 1 447-455 [1999]
  • The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA
    Petrova, O. E. J. Bacteriol 197 174-187 [2015]
  • The contribution of cell-cell signaling and motility to bacterial biofilm formation
    Shrout, J. D. MRS Bull 36 367-373 [2011]
  • The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR
    Diggle, S. P. Mol. Microbiol 50 29-43 [2003]
  • The Pseudomonas aeruginosa diguanylate cyclase GcbA, a homolog of P. fluorescens GcbA, promotes initial attachment to surfaces, but not biofilm formation, via regulation of motility
    Petrova, O. E. J. Bacteriol 196 2827-2841 [2014]
  • The Crc protein participates in down-regulation of the Lon gene to promote rhamnolipid production and rhl quorum sensing in Pseudomonas aeruginosa
    Yang, N. Mol. Microbiol 96 526-547 [2015]
  • Swarming of Pseudomonas aeruginosa is dependent on cellto-cell signaling and requires flagella and pili
    Kohler, T. J. Bacteriol 182 5990-5996 [2000]
  • Statistical quantification of detachment rates and size distributions of cell clumps from wild-type (PAO1) and cell signaling mutant (JP1) Pseudomonas aeruginosa biofilms
    Wilson, S. Appl. Environ. Microbiol 70 5847-5852 [2004]
  • Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal
    McDougald, D. Nat. Rev. Microbiol 10 39-50 [2012]
  • Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa
    Jain, S. Infect. Immun 73 6429-6436 [2005]
  • Role of alginate lyase in cell detachment of Pseudomonas aeruginosa
    Boyd, A. Appl. Environ. Microbiol 60 2355-2359 [1994]
  • Riboswitches in eubacteria sense the second messenger cyclic di-GMP
    Sudarsan, N. Science 321 411-413 [2008]
  • Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms
    Boles, B. R. Mol. Microbiol 57 1210-1223 [2005]
  • Rhamnolipids : Diversity of structures, microbial origins and roles
    Abdel-Mawgoud, A. M. Appl. Microbiol. Biotechnol 86 1323-1336 [2010]
  • Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1
    Davey, M. E. J. Bacteriol 185 1027-1036 [2003]
  • Rhamnolipid but not motility is associated with the initiation of biofilm seeding dispersal of Pseudomonas aeruginosa strain PA17
    Wang, J. J. Biosci 38 149-156 [2013]
  • Rhamnolipid biosurfactants-past, present, and future scenario of global market
    Sekhon Randhawa, K.K. Front. Microbiol 5 454- [2014]
  • Regulation of bacterial virulence by Csr (Rsm) systems
    Vakulskas, C. A. Microbiol. Mol. Biol. Rev 79 193-224 [2015]
  • Quorum-sensing-negative (lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death
    Heurlier, K. J. Bacteriol 187 4875-4883 [2005]
  • Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms
    Irie, Y. FEMS Microbiol. Lett 250 237-243 [2005]
  • Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm
    Sauer, K. J. Bacteriol 184 1140-1154 [2002]
  • Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis
    Yoon, S. S. Dev. Cell 3 593-603 [2002]
  • Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation
    Schleheck, D. PLoS One 4 e5513- [2009]
  • Production of rhamnolipids by Pseudomonas aeruginosa
    Soberon-Chavez, G. Appl. Microbiol. Biotechnol 68 718-725 [2005]
  • Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms
    Purevdorj-Gage, B. Microbiology 151 1569-1576 [2005]
  • PAS domains: internal sensors of oxygen, redox potential, and light
    Taylor, B.L. Microbiol. Mol. Biol. Rev 63 479-506 [1999]
  • PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms
    Petrova, O.E. J. Bacteriol 194 5817-5828 [2012]
  • Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms
    Borriello, G. Antimicrob. Agents Chemother 48 2659-2664 [2004]
  • Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover
    Orr, M. W. Proc. Natl. Acad. Sci. USA 112 E5048-E5057 [2015]
  • Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa
    Cohen, D. Proc. Natl. Acad. Sci. USA 112 11359-11364 [2015]
  • Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal
    Barraud, N. J. Bacteriol 191 7333-7342 [2009]
  • Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family
    Zumft, W. G J. Mol. Microbiol. Biotechnol 4 277-286 [2002]
  • NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase
    Li, Y. J. Bacteriol 195 3531-3542 [2013]
  • Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa
    Pamp, S.J. J. Bacteriol 189 2531-2539 [2007]
  • Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal
    Landini, P. Appl. Microbiol. Biotechnol 86 813-823 [2010]
  • Molecular control of bacterial death and lysis
    Rice, K.C. Microbiol. Mol. Biol. Rev 72 85-109 [2008]
  • Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling
    Bernier, S. P. Res. Microbiol 162 680-688 [2011]
  • Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-Di-GMP phosphodiesterase with a putative hypoxia-sensing domain
    An, S. Appl. Environ. Microbiol 76 8160-8173 [2010]
  • Metabolism of nitric-oxide in denitrifying Pseudomonas aeruginosa and nitrate-respiring Bacillus cereus
    Kalkowski, I. FEMS Microbiol. Lett 66 107-111 [1991]
  • Membrane vesicles traffic signals and facilitate group activities in a prokaryote
    Mashburn, L.M. Nature 437 422-425 [2005]
  • MHYT, a new integral membrane sensor domain
    Galperin, M. Y. FEMS Microbiol. Lett 205 17-23 [2001]
  • Listening in on bacteria: acylhomoserine lactone signalling
    Fuqua, C. Nat. Rev. Mol. Cell. Biol. 3 685-695 [2002]
  • LapG, required for modulating biofilm formation by Pseudomonas fluorescens Pf0-1, is a calcium-dependent protease
    Boyd, C. D. J. Bacteriol 194 4406-4414 [2012]
  • LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1
    Newell, P. D. Proc. Natl. Acad. Sci. USA 106 3461-3466 [2009]
  • Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa
    Mikkelsen, H. Environ. Microbiol 13 1666-1681 [2011]
  • Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa
    Barraud, N. J. Bacteriol 188 7344-7353 [2006]
  • Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms
    Klausen, M. Mol. Microbiol 50 61-68 [2003]
  • Influence of a calcium-specific chelant on biofilm removal
    Turakhia, M. H. Appl. Environ. Microbiol 46 1236-1238 [1983]
  • Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms
    Thormann, K. M. J. Bacteriol 187 1014-1021 [2005]
  • Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration?
    김지선 The Journal of Microbiology 53 7 421-428 [2015]
  • Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor
    Hickman, J.W. Mol. Microbiol 69 376-389 [2008]
  • Hypothesis for the role of nutrient starvation in biofilm detachment
    Hunt, S. M. Appl. Environ. Microbiol 70 7418-7425 [2004]
  • Growth Phase-Differential Quorum Sensing Regulation of Anthranilate Metabolism in Pseudomonas aeruginosa
    최유상 Molecules and Cells 32 1 57-65 [2011]
  • Gene regulation of rhamnolipid production in Pseudomonas aeruginosa-a review
    Reis, R. S. Bioresour. Technol 102 6377-6384 [2011]
  • Functional characterization of AlgL, an alginate lyase from Pseudomonas aeruginosa
    Farrell, E.K. Biochemistry 51 10259-10266 [2012]
  • Flagellar motility is critical for Listeria monocytogenes biofilm formation
    Lemon, K. P. J. Bacteriol 189 4418-4424 [2007]
  • Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms
    Allison, D. G. FEMS Microbiol. Lett 167 179-184 [1998]
  • Extracellular DNA required for bacterial biofilm formation
    Whitchurch, C. B. Science 295 1487- [2002]
  • Evidence for the involvement of the anthranilate degradation pathway in Pseudomonas aeruginosa biofilm formation
    Costaglioli, P. Microbiologyopen 1 326-339 [2012]
  • Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa
    Sotirova, A. Microbiol. Res 164 297-303 [2009]
  • Effects of carbon and oxygen limitations and calcium concentrations on biofilm removal processes
    Applegate, D.H. Biotechnol. Bioeng 37 17-25 [1991]
  • Effects of biofilm structures on oxygen distribution and mass transport
    de Beer, D. Biotechnol. Bioeng 43 1131-1138 [1994]
  • Effect of antibacterial agents on the autoplaque phenomenon of Pseudomonas aeruginosa
    Berk, R.S. Can. J. Microbiol 11 213-219 [1965]
  • Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms
    Klausen, M. FEMS Microbiol. Lett 261 1-11 [2006]
  • Division of labor in biofilms: the ecology of cell differentiation
    van Gestel, J. Microbiol. Spectr 3 - [2015]
  • Divergence and convertgence in enzyme evolution
    Galperin, M.Y. J. Biol. Chem 287 21-28 [2012]
  • Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA
    Petrova, O.E. Proc. Natl. Acad. Sci. USA 109 16690-16695 [2012]
  • Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa
    Basu Roy, A. Mol. Microbiol 94 771-793 [2014]
  • Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms
    Haagensen, J. A. J. Bacteriol 189 28-37 [2007]
  • Development and dynamics of Pseudomonas sp. biofilms
    Tolker-Nielsen, T. J. Bacteriol 182 6482-6489 [2000]
  • Dependence of Pseudomonas-aeruginosa continuous culture biosurfactant production on nutritional and environmental-factors
    Guerrasantos, L. H. Appl. Microbiol. Biotechnol 24 443-448 [1986]
  • DNAcontaining membrane vesicles of Pseudomonas aeruginosa PAO1and their genetic transformation potential
    Renelli, M. Microbiology 150 2161-2169 [2004]
  • D-amino acids trigger biofilm disassembly
    Kolodkin-Gal, I. Science 328 627-629 [2010]
  • Cyclic di-GMP: the first 25 years of a universal bacterial second messenger
    Romling, U. Microbiol. Mol. Biol. Rev 77 1-52 [2013]
  • Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin
    Walters, M.C. 3rd Antimicrob. Agents Chemother 47 317-323 [2003]
  • Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885)
    Ueda, A. PLoS Pathog 5 e1000483- [2009]
  • Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm
    Banin, E. Appl. Environ. Microbiol 72 2064-2069 [2006]
  • Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms
    Gjermansen, M. Mol. Microbiol 75 815-826 [2010]
  • Characterization of starvation-induced dispersion in Pseudomonas putida biofilms
    Gjermansen, M. Environ. Microbiol 7 894-906 [2005]
  • Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm
    Sauer, K. J. Bacteriol 186 7312-7326 [2004]
  • Cell death in Pseudomonas aeruginosa biofilm development
    Webb, J. S. J. Bacteriol 185 4585-4592 [2003]
  • C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG
    Stelitano, V. PLoS One 8 e74920- [2013]
  • Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl
    Franklin, M. J. Front. Microbiol 2 167- [2011]
  • Biofilm, city of microbes
    Watnick P J. Bacteriol 182 2675-2679 [2000]
  • Biofilm removal caused by chemical treatments
    Chen, X. Water Res 34 4229-4233 [2000]
  • Biofilm matrix and its regulation in Pseudomonas aeruginosa
    Wei, Q. Int. J. Mol. Sci 14 20983-21005 [2013]
  • Biofilm growth and detachment of Actinobacillus actinomycetemcomitans
    Kaplan, J. B. J. Bacteriol 185 1399-1404 [2003]
  • Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants
    Klausen, M. Mol. Microbiol 48 1511-1524 [2003]
  • Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli
    Jackson, D. W. J. Bacteriol 184 290-301 [2002]
  • Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses
    Kaplan, J.B. J. Dent. Res 89 205-218 [2010]
  • Biofilm dispersal: deciding when it is better to travel
    Wood, T.K. Mol. Microbiol 94 747-750 [2014]
  • Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants
    Dow, J. M. Proc. Natl. Acad. Sci. USA 100 10995-11000 [2003]
  • BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa
    Morgan, R. J. Bacteriol 188 7335-7343 [2006]
  • BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa
    Li, Y. PLoS Pathog 10 e1004168- [2014]
  • Bacterial programmed cell death: making sense of a paradox
    Bayles, K.W. Nat. Rev. Microbiol 12 63-69 [2014]
  • Bacterial programmed cell death and multicellular behavior in bacteria
    Engelberg-Kulka, H. PLoS Genet 2 e135- [2006]
  • Bacterial biofilms in nature and disease
    Costerton, J. W. Ann. Rev. Microbiol 41 435-464 [1987]
  • Bacterial biofilms : A common cause of persistent infections
    Costerton, J. W. Science 284 1318-1322 [1999]
  • Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants
    D’Argenio, D. A. J. Bacteriol 184 6481-6489 [2002]
  • Assembly and development of the Pseudomonas aeruginosa biofilm matrix
    Ma, L. PLoS Pathog 5 e1000354- [2009]
  • Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment
    Hancock, R.E. Drug Resist. Updat 3 247-255 [2000]
  • Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect
    Kim, S. K. Appl. Environ. Microbiol 81 2328-2338 [2015]
  • AntR-mediated bidirectional activation of antA and antR, anthranilate degradative genes in Pseudomonas aeruginosa
    Kim, S. K. Gene 505 146-152 [2012]
  • An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal
    Harmsen, M. FEMS Immunol. Med. Microbiol 59 253-268 [2010]
  • Alginate-modifying enzymes - a proposed unified mechanism of action for the lyases and epimerases
    Gacesa, P FEBS Lett 212 199-202 [1987]
  • Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces
    Kirov, S. M. Infect. Immun 72 1939-1945 [2004]
  • Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor
    Lee, J. H. Mol. Microbiol 59 602-609 [2006]
  • A review of the scientific evidence for biofilms in wounds
    Percival, S. L. Wound Repair Regen 20 647-657 [2012]
  • A novel two-component system BqsS-BqsR modulates quorum sensing-dependent biofilm decay in Pseudomonas aeruginosa
    Dong, Y. H. Commun. Integr. Biol 1 88-96 [2008]
  • A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule
    Barber, C. E. Mol. Microbiol 24 555-566 [1997]
  • A fatty acid messenger is responsible for inducing dispersion in microbial biofilms
    Davies, D. G. J. Bacteriol 191 1393-1403 [2009]
  • A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms
    Allesen-Holm, M. Mol. Microbiol 59 1114-1128 [2006]
  • A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage
    Newell, P. D. PLoS Biol 9 e1000587- [2011]