공극 규모에서의 초임계상 이산화탄소 거동 가시화를 위한 마이크로모델의 개발과 적용

논문상세정보
' 공극 규모에서의 초임계상 이산화탄소 거동 가시화를 위한 마이크로모델의 개발과 적용' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • contact angle
  • micromodel
  • residual phase
  • supercritical $co_2$
  • visualization
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
498 0

0.0%

' 공극 규모에서의 초임계상 이산화탄소 거동 가시화를 위한 마이크로모델의 개발과 적용' 의 참고문헌

  • 한국 경상분지 하산동층의 이산화탄소 지중 저장 용량에 대한 확률론적 예비 평가
    김중휘 지질학회지 49 (3) : 373 ~ 388 [2013]
  • Wettability of common rock-forming minerals in a CO2-brine system at reservoir conditions
    Mills, J. Proceedings of the International Symposium of the Society of Core Analysts : 1 ~ 12 [2011]
  • Wettability determination of the reservoir brine-reservoir rock system with dissolution of CO2 at high pressures and elevated temperatures
    Yang, D. Energy Fuels 22 : 504 ~ 509 [2008]
  • Wettability alteration of caprock minerals by carbon dioxide
    Chiquet, P. Geofluids 7 (2) : 112 ~ 122 [2007]
  • Visualisation of mechanisms involved in CO2 injection and storage in hydrocarbon reservoirs and water-bearing aquifers
    Riazi, M. Chem. Eng. Res. Des 89 : 1827 ~ 1840 [2011]
  • Supercritical CO2 and ionic strength effects on wettability of silica surfaces: equilibrium contact angle measurements
    Jung, J.W. Energy Fuels 26 (9) : 6053 ~ 6059 [2012]
  • Porous Media-Fluid Transport and Pore Structure
    Dullien, F.A.L. Academic Press : 574 ~ [1992]
  • Pore-scale investigation of the matrixfracture interaction during CO2 injection in naturally fractured oil reservoirs
    Er, V. Energy Fuel 24 : 1421 ~ 1430 [2010]
  • Monitoring of CO2 injected at Sleipner using time-lapse seismic data
    Arts, R. Energy 29 : 1383 ~ 1392 [2004]
  • Liquid CO2 displacement of water in a dual-permeability pore network micromodel
    Zhang, C. Environ. Sci. Technol 45 (17) : 7581 ~ 7588 [2011]
  • Large-scale column experiment: study of CO2, porewater, rock reactions and model test case
    Bateman, K. Oil Gas Sci. Technol 60 : 161 ~ 175 [2005]
  • Interfacial tension of (brines+CO2): (0.864 NaCl+0.136 KCl) at temperatures between (298 and 448) K, pressures between (2 and 50) MPa, and total molalities of (1 to 5) molkg-1
    Li, X. J. Chem. Eng. Data 57 : 1078 ~ 1088 [2012]
  • Interfacial tension measurements and wettability evaluation for geological CO2 storage
    Chalbaud, C. Adv. Wat. Resour 32 : 98 ~ 109 [2009]
  • Interfacial tension between CO2, freshwater, and brine in the range of pressure from (2 to 27) MPa, temperature from (20 to 125) °C, and water salinity from (0 to 334000) mg·L−1
    Bachu, S. J. Chem. Eng. Data 54 (3) : 765 ~ 775 [2008]
  • Interaction of interfacial convection and mass transfer effects in the system CO2-water
    Arendt, B. Int. J. Heat Mass Transfer 47 : 3649 ~ 3657 [2004]
  • Impact of relative permeability hysteresis on geological CO2 storage
    Juanes, R. Water Resour. Res 42 : W12418 ~ [2006]
  • Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network
    Wang, Y. Environ. Sci. Technol 47 : 212 ~ 218 [2013]
  • Effect of pressure on the surface tension of aqueous solutions. Adsorption of hydrocarbon gases, carbon dioxide, and nitrous oxide on aqueous solutions of sodium chloride and tetrabutylammonium bromide at 25oC
    Massoudi, R. J. Phys. Chem 79 (16) : 1670 ~ 1675 [1975]
  • Direct measurements of pH in H2O-CO2 brine mixtures to supercritical conditions
    Schaeff, H.T. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies(GHGT-7) [2004]
  • Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels
    Kim, Y. Environ. Sci. Technol 46 (7) : 4228 ~ 4235 [2012]
  • Carbon Dioxide Capture and Storage
    IPCC Cambridge University Press : 431 ~ [2005]
  • Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions
    Samuel C. M. Krevor Geophysical Research Letters 38 (15) : L15401 ~ [2011]
  • CO2 storage in geological media: Role, means, status and barriers to deployment
    Bachu, S. Prog. Energ. Combust 34 : 254 ~ 273 [2008]