Research Progress of the Structure Vibration-Attitude Coordinated Control of Spacecraft

논문상세정보
' Research Progress of the Structure Vibration-Attitude Coordinated Control of Spacecraft' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • overview
  • spacecraft
  • vibration-attitude coordinated control
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
16 0

0.0%

' Research Progress of the Structure Vibration-Attitude Coordinated Control of Spacecraft' 의 참고문헌

  • Use of nonlinear constitutive models in the absolute nodal coordinate formulation
    M. LG University of Illinois at Chicago [2008]
  • Two simple triangular plate elements based on the absolute nodal coordinate formulation
    M. A. J. Comput. Nonlinear Dyn. 3 (4) : 12 ~ 41 [2008]
  • Trends in large space structure control theory: fondest hopes, wildest dreams
    M. Balas Autom. Control. IEEE Trans. 27 (3) : 522 ~ 535 [1982]
  • Threedimensional beam element based on a cross-sectional coordinate system approach
    M. A. M. Nonlinear Dyn. 43 (4) : 311 ~ 327 [2006]
  • Thermally induced vibrations of flexible beams using Absolute Nodal Coordinate Formulation
    G. Zhenxing Shen Aerosp. Sci. Technol. 29 : 386 ~ 393 [2013]
  • Spacecraft attitude control via a combined state-dependent Riccati equation and adaptive neuro-fuzzy approach
    S.-Y. P. Mohammad Abdelrahman Aerosp. Sci. Technol. 26 : 16 ~ 28 [2013]
  • Spacecraft Attitude Stabilization Using Nonlinear Delayed Multiactuator Control and Inverse Dynamics
    M. N. A., Hanspete J. Guid. Dyn. 36 (5) : 1440 ~ 1452 [2013]
  • Spacecraft Attitude Dynamics and Control-A Personal Perspective on Early Developments
    L. P. W J. Guid. Control. Dyn. 19 : 129 ~ 134 [1986]
  • Spacecraft Attitude Dynamics
    P. C. Hughes Dover Publications [1986]
  • Sourcebook on the Space Sciences
  • Soft computing adaptive active vibration control of flexible structures
    I. Z. Mat Darus Elsevier [2005]
  • Simulation of planar flexible multibody systems with clearance and lubricated revolute joints
    J. Y. Q. Tian Nonlinear Dyn. 60 : 489 ~ 511 [2010]
  • Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods
    L. C. Yunqing Zhang Multibody Syst Dyn 21 : 281 ~ 303 [2009]
  • Selflearning active vibration control of a flexible plate structure with piezoelectric actuator
    A. Reza Simul. Model. Pract. Theory 18 (5) : 516 ~ 532 [2010]
  • Robust attitude control design for spacecraft under assigned velocity and control constraints
    Y. Z. Qinglei Hu ISA Trans. 52 : 480 ~ 493 [2013]
  • Robust adaptive relative position tracking and attitude synchronization for spacecraft rendezvous
    L. Sun Aerosp. Sci. Technol. 41 : 28 ~ 35 [2015]
  • Robust Nominal Model-Based Sliding Mode Robust Control for Vibration of Flexible Rectangular Plate
    Jingyu Yang Appl. Math 7 (2L) : 671 ~ 678 [2013]
  • Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
    J. Gerstmayr J. Comput. Nonlinear Dyn. 8 : 1 ~ 12 [2013]
  • Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams
    S. A. Maqueda LG Multibody Syst. Dyn. (18) : 375 ~ 396 [2007]
  • Panel flutter analysis of plate element based on the absolute nodal coordinate formulation
    P. M. Laith Multibody Syst Dyn 27 : 135 ~ 152 [2012]
  • PD control for vibration attenuation in Hoop truss structure based on a novel piezoelectric bending actuator
    Y. Luo J. Sound Vib. 339 : 11 ~ 24 [2015]
  • On the Use of Implicit Integration Methods and the Absolute Nodal Coordinate Formulation in the Analyssis of Elasto-Plastic Deformation Problems
    S. A. Sugiyama H Nonlinear Dyn. (37) : 245 ~ 270 [2004]
  • Observer-based self sensing actuation of piezoelastic structures for robust vibration control
    K. S. Automatica 48 : 1123 ~ 1131 [2012]
  • Numerical convergence of finite element solutions of nonrational B-spline element and absolute nodal coordinate formulation
    H. S. Hiroki Yamashita Nonlinear Dyn 67 : 177 ~ 189 [2012]
  • New spatial curved beam and cylindrical shell elements of gradient-deficient Absolute Nodal Coordinate Formulation
    H. H. Nonlinear Dyn 70 : 1903 ~ 1918 [2012]
  • Magnetic Attitude Control of a Flexible Satellite
    E. J. Findlay J. Guid. Dyn. 36 (5) : 1522 ~ 1526 [2013]
  • MIMO adaptive vibration control of smart structures with quickly varying parameters: Neural networks vs classical control approach
    R. Kumar J. Sound Vib. 307 : 639 ~ 661 [2007]
  • MBD applications in design
    W.-S. Int. J. Non. Linear. Mech. 53 : 55 ~ 62 [2013]
  • Large deflection analysis of a thin plate: computer simulations and experiments
    Yoo, W. Multibody Syst. Dyn. 11 (2) : 185 ~ 208 [2004]
  • L1 adaptive control of flexible spacecraft despite disturbances
    S. N. S. Keum Acta Astronaut. J. 80 : 24 ~ 35 [2012]
  • Integration of finite element and multibody system algorithms for the analysis of human body motion
    M. A. B. Ahmed Procedia IUTAM 2 : 233 ~ 240 [2011]
  • Independent modal variable structure fuzzy active vibration control of thin plates laminated with photostrictive actuators
    Sh. Z. Chinese J. Aeronaut 26 (2) : 350 ~ 356 [2013]
  • Implicit and Explicit Integration in the Solution of the Absolute Nodal Coordinate Differential/Algebraic Equations
    S. A. Hussein Nonlinear Dyn. (54) : 283 ~ 296 [2008]
  • INTEGRATION OF THE EQUATIONS OF MOTION OF MULTIBODY SYSTEMS USING ABSOLUTE NODAL COORDINATE FORMULATION
    J. F. Grzegorz ORZECHOWSKI Acta Mech. Autom. 6 (2) : 75 ~ 83 [2012]
  • Higher order representation of the beam cross section deformation in large displacement finite element analysis
    A. A. S. J. Sound Vib. 330 : 6495 ~ 6508 [2011]
  • Generalization of plate finite elements for absolute nodal coordinate formulation
    P. D. Y. Multibody Syst. Dyn. 10 (1) : 17 ~ 43 [2003]
  • Flexible Multibody Systems with Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates
    G. J. Kübler L Nonlinear Dyn. (34) : 31 ~ 52 [2003]
  • First order sensitivity analysis of flexible multibody systems using absolute nodal coordinate formulation
    L. C. Ting Pi Multibody Syst Dyn 27 : 153 ~ 171 [2012]
  • Finite elements using absolute nodal coordinates for large-deformation flexible multibody dynamics
    O. Dmitrochenko J. Comput. Appl. Math. 215 : 368 ~ 377 [2008]
  • Experimental study of delayed feedback control for a flexible plate
    C. Long-xiang J. Sound Vib. 322 : 629 ~ 651 [2009]
  • Experimental researches on sliding mode active vibration control of flexible piezoelectric cantilever plate integrated gyroscope
    Z. Qiu Thin-Walled Struct. 47 (8) : 836 ~ 846 [2009]
  • Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam
    L. W. Z. Lin J J. Sound Vib. 296 : 567 ~ 582 [2006]
  • Experimental Study on Sliding Mode Variable Structure Vibration Control for Piezoelectric Cantilever Plate
    J. Qiu, Z. Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on : 1864 ~ 1868 [2008]
  • ElastoHydroDynamic lubricated cylindrical joints for rigid-flexible multibody dynamics
    P. F. Qiang Tian Comput. Struct. 114–115 : 106 ~ 120 [2013]
  • Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation
    E. Garcia-Vallejo D Nonlinear Dyn. (35) : 313 ~ 329 [2004]
  • Dynamics of variable-length tethers with application to tethered satellite deployment
    H. R. J.L. Tang Commun Nonlinear Sci Numer Simulat 16 : 3411 ~ 3424 [2011]
  • Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints
    Q. Tian Comput. Struct. 87 (13–14) : 913 ~ 929 [2009]
  • Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints
    C. Liu Mech. Mach. Theory 52 : 106 ~ 129 [2012]
  • Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation
    G. R. Difeng Hong J. Fluids Struct. 27 : 1137 ~ 1148 [2011]
  • Dynamic and thermal analyses of flexible structures in orbit
    Chijie, L. University of Connecticut [2006]
  • Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF
    H. H. Cheng Liu Com put. Methods Appl.Mech.Engrg. 258 : 81 ~ 95 [2013]
  • Dynamic Neural Units for Adaptive Magnetic Attitude Control of Spacecraft
    Santanu Das J. Guid. Dyn. 35 (4) : 1280 ~ 1291 [2012]
  • Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures
    M. P. C. Zhang S.Q. J. Sound Vib. 333 : 1209 ~ 1223 [2014]
  • Development of simple models for the elastic forces in the absolute nodal coordinate formulation
    S. A. A. J. Sound Vib. 235 (4) : 539 ~ 565 [2000]
  • Decentralized slidingmode control for spacecraft attitude synchronization under actuator failures
    B. Wu Acta Astronaut. 105 (1) : 333 ~ 343 [2014]
  • Decentralized sliding mode quantized feedback control for a class of uncertain large-scale systems with dead-zone input
    B.-C. Y. Nonlinear Dyn 71 : 417 ~ 427 [2013]
  • Decentralized output-feedback control of large-scale nonlinear systems with sensor noise
    D. J. H. Tengfei Liu Automatica : 2560 ~ 2568 [2012]
  • Decentralized adaptive fuzzy control of large-scale nonaffine nonlinear systems by state and output feedback
    Y.-S. H. H.-L. Nonlinear Dyn 69 : 1665 ~ 1677 [2012]
  • Comparison of different formulations of 2D beam elements based on Bond Graph technique
    V. D. Majda Cohodar Simul. Model. Pract. Theory 17 : 107 ~ 124 [2009]
  • Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers
    Z. C. Binglong Cong Aerosp. Sci. Technol. 30 : 1 ~ 7 [2013]
  • Attitude Control Considering Variable Input Saturation Limit for a Spacecraft Equipped with Flywheels
    X. S. TIAN Lin Chinese J. Aeronaut. 25 : 437 ~ 445 [2012]
  • Application of the absolute nodal coordinate formulation to large rotation and large deformation problems
    E. J. L. Shabana J. Mech. Des. 120 (2) : 188 ~ 195 [1998]
  • An efficient decentralized robust adaptive controller for a class of large-scale non-affine nonlinear systems with strong interactions
    M. G. Neural Comput Applic 24 : 463 ~ 471 [2014]
  • An Internal Damping Model for the Absolute Nodal Coordinate Formulation
    J. D. Garcia-Vallejo D Nonlinear Dyn. (42) : 347 ~ 369 [2005]
  • Adaptive output feedback control for a class of large-scale nonlinear time-delay systems
    X. Zhang Automatica 52 : 87 ~ 94 [2015]
  • Adaptive fuzzy decentralized dynamics surface control for nonlinear large-scale systems based on high-gain observer
    X. J. Shaocheng Tong Inf. Sci 235 : 287 ~ 307 [2013]
  • Adaptive control of flexible active composite manipulators driven by piezoelectric patches and active struts with dead zones
    M. N. Ma, K. Control Syst. Technol. IEEE Trans. 16 (5) : 897 ~ 907 [2008]
  • Adaptive attitude tracking control for rigid spacecraft with finite-time convergence
    Y. X. Kunfeng Lu Automatica 49 : 3591 ~ 3599 [2013]
  • Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedbackv
    Y. C. Yajie Ma J. Franklin Inst. 351 : 296 ~ 314 [2014]
  • Active shape and vibration control for piezoelectric bonded composite structures using various geometric nonlinearities
    S.-Q. Zhang Compos. Struct. 122 : 239 ~ 249 [2015]
  • Absolute nodal coordinate plane beam formulation for multibody systems dynamics
    B. Souh Multibody Syst Dyn 12 : 156 ~ 166 [2012]
  • Absolute nodal coordinate formulation of large-deformation piezoelectric laminated plates
    A. M. E.-A. Nonlinear Dyn 67 : 2441 ~ 2454 [2012]
  • ANALYSIS OF BEAM ELEMENTS OF CIRCULAR CROSS SECTION USING THE ABSOLUTE NODAL COORDINATE FORMULATION
    G. ORZECHOWSKI Arch. Mech. Eng. 12 (3) : 283 ~ 296 [2012]
  • A twodimensional shear deformable beam element based on the absolute nodal coordinate formulation
    M. A. M. J. Sound Vib. 280 (3) : 719 ~ 738 [2005]
  • A two-dimensional shear deformable beam for large rotation and deformation problems
    S. A. A. J. Sound Vib. 243 (3) : 565 ~ 576 [2001]
  • A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications
    S. A. A. Multibody Syst. Dyn. 9 (3) : 283 ~ 309 [2003]
  • A new locking-free shear deformable finite element based on absolute nodal coordinates
    E. J. L. Nonlinear Dyn. 50 (1) : 249 ~ 264 [2007]
  • A linear beam finite element based on the absolute nodal coordinate formulation
    M. A. M. J. Mech. Des. 127 (4) : 621 ~ 630 [2005]
  • A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates
    S. Y. J. Multi-body Dyn. 221 (2) : 219 ~ 231 [2007]
  • A constrained optimal PID-like controller design for spacecraft attitude stabilization
    G. M. Chuanjiang Li Acta Astronaut. J. 74 : 131 ~ 140 [2012]