Diversity of Arbuscular Mycorrhizal Fungi Associated with a Sb Accumulator Plant, Ramie (Boehmeria nivea), in an Active Sb Mining

논문상세정보
' Diversity of Arbuscular Mycorrhizal Fungi Associated with a Sb Accumulator Plant, Ramie (Boehmeria nivea), in an Active Sb Mining' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • antimony
  • arbuscular mycorrhizal fungi
  • phytoremediation
  • soil pollution
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
131 0

0.0%

' Diversity of Arbuscular Mycorrhizal Fungi Associated with a Sb Accumulator Plant, Ramie (Boehmeria nivea), in an Active Sb Mining' 의 참고문헌

  • Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia
    Vogel-Mikuš K Environ. Pollut 133 : 233 ~ 242 [2005]
  • Variation in community structure of arbuscular mycorrhizal fungi associated with a Cu tolerant plant - Elsholtzia splendens
    Yang RY Appl. Soil Ecol 44 : 191 ~ 197 [2010]
  • Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L .) growth
    Miransari M. Soil Biol. Biochem 40 : 1197 ~ 1206 [2008]
  • Trace Elements in Soils and Plants
    Kabata A CRC Press [2001]
  • Toxics release inventory
  • Tolerance to cadmium in ramie (Boehmeria nivea) genotypes and its evaluation indicators
    She W Acta Sci. Agro 37 : 348 ~ 354 [2011]
  • The zinc violet and its colonization by arbuscular mycorrhizal fungi
    Hildebrandt U J. Plant Physiol 154 : 709 ~ 717 [1999]
  • The uptake and detoxification of antimony by plants:a review
    Feng RW Environ. Exp. Bot 96 : 28 ~ 34 [2013]
  • The remediation of heavy metals contaminated sediment
    Peng JF J. Hazard. Mater 161 : 633 ~ 640 [2009]
  • The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions
    Boyd RS Plant Soil 293 : 153 ~ 176 [2007]
  • The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review
    Wilson SC Environ. Pollut 158 : 1169 ~ 1181 [2010]
  • The background values of soil elements in China
    MEMSC Meterological Press [1990]
  • Temporal temperature gradient gel electrophoresis (TTGE)as a tool for the characterization of arbuscular mycorrhizal fungi
    Cornejo P FEMS Microbiol. Lett 241 : 265 ~ 270 [2004]
  • Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments
    Sonjak S Plant Soil 314 : 25 ~ 34 [2009]
  • Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass Chrysopogon zizanioides ( L.)
    Punaminiya P J. Hazard. Mater 177 : 465 ~ 474 [2010]
  • Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings
    Leung HM Chemosphere 66 : 905 ~ 915 [2007]
  • Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud
    Wang X Environ. Exp. Bot 62 : 389 ~ 395 [2008]
  • Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting
    Gerdemann JW Trans. Br. Mycol. Soc 46 : 235 ~ 244 [1963]
  • Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots
    Simon L Appl. Environ. Microbiol 58 : 291 ~ 295 [1992]
  • Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation
    Khan A. J. Trace Elements Med. Biol 18 : 355 ~ 364 [2005]
  • Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils
    Amir H Plant Soil 293 : 23 ~ 35 [2007]
  • Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils
    Gaur A Curr. Sci : 528 ~ 534 [2004]
  • Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction genes coding for 16S rRNA
    Muyzer G Appl. Environ. Microbiol 59 : 695 ~ 700 [1993]
  • Ploughing up the wood-wide web?
    Helgason T Nature 394 : 431 ~ [1998]
  • Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment
    Reeves RD John Wiley & Sons Inc : 193 ~ 229 [2000]
  • Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia
    Perrier N Mycorrhiza 16 : 449 ~ 458 [2006]
  • Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.)
    Al Agely A J. Environ. Qual 34 : 2181 ~ 2186 [2005]
  • Mycorrhiza Structure, Function, Molecular Biology and Biotechnology
    Barea JM Springer-Verlag : 521 ~ 559 [1995]
  • Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops
    Daniell TJ FEMS Microbiol. Ecol 36 : 203 ~ 209 [2001]
  • Mobility of antimony in soil and its availability to plants
    Hammel W Chemosphere 41 : 1791 ~ 1798 [2000]
  • Method of soil chemistry analysis
    Lu RK Chinese Agricultural Science and Technology Publishing House : 146 ~ 149 [2000]
  • Metallophytes - a view from the rhizosphere
    Alford ÉR Plant Soil 337 : 33 ~ 50 [2010]
  • Metal accumulation and arbuscular mycorrhizal status in metallicolous and non metallicolous populations of Pteris vittata L. and Sedum alfredii Hance
    Wu FY Planta 226 : 1363 ~ 1378 [2007]
  • MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0
    Tamura K Mol. Biol. Evol 24 : 1596 ~ 1599 [2007]
  • Introduction to the wild resources of the genus Boehmeria Jacq. in China
    Liu FH Genet. Resour. Crop Evol 50 : 793 ~ 797 [2003]
  • Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L
    Wu FY Chemosphere 76 : 1258 ~ 1264 [2009]
  • Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator)in As-contaminated soils
    Leung HM Environ. Pollut 139 : 1 ~ 8 [2006]
  • Interactions between arbuscular mycorrhizal fungi and soil bacteria
    Miransari M. Appl. Microbiol. Biotechnol 89 : 917 ~ 930 [2011]
  • Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L
    Liu Y Mycorrhiza 15 : 187 ~ 192 [2005]
  • Heavy metal pollution in soils and characteristics of heavy metal accumulation of dominant plants in antimony mine area
    Ku WZ Chin. J. Environ. Eng 10 : 3774 ~ 3780 [2012]
  • Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic
    Schwarzott D Mol. Phylogenet. Evol 21 : 190 ~ 197 [2001]
  • Glomeromycota: a species list with new families and new genera
  • Gapped BLAST and PSI-BLAST:a new generation of protein database search programs
    Altschul SF Nucleic Acids Res 25 : 3389 ~ 3402 [1997]
  • Effects of lead and zinc in the soil on the distribution of arbuscular mycorrhizal fungi
    Niu ZC Acta Bot. Boreali Occidentalia Sin 27 : 1233 ~ 1238 [2007]
  • Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions
    Wang FY Appl. Soil Ecol 31 : 110 ~ 119 [2006]
  • Effects of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L.) and o at (Avena sativa L.) on a sewage-sludge treated soil
    Ricken B Z. Pflanz. Bodenk 159 : 189 ~ 194 [1996]
  • Effect of heavy metal pollution on mycorrhizal colonization and function:physiological, ecological and applied aspects
    Leyval C Mycorrhiza 7 : 139 ~ 153 [1997]
  • Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings
    Solís DFA Sci. Total Environ 409 : 1009 ~ 1016 [2011]
  • Ecology of Industrial Pollution
    Baker AJM Cambridge University Press : 7 ~ 40 [2010]
  • Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area
    Okkenhaug G Environ. Pollut 159 : 2427 ~ 2434 [2011]
  • Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China
    He MC Environ. Geochem. Health 29 : 209 ~ 219 [2007]
  • Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation
    Göhre V Planta 223 : 1115 ~ 1122 [2006]
  • Constitutional tolerance to heavy metals of a fiber crop, ramie (Boehmeria nivea), and its potential usage
    Yang B Environ. Pollut 158 : 551 ~ 558 [2010]
  • Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region
    Zarei M Environ. Pollut 156 : 1277 ~ 1283 [2008]
  • Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi
    Regvar M J. Plant Physiol 160 : 615 ~ 626 [2003]
  • Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake
    Vogel-Mikuš K Environ. Pollut 139 : 362 ~ 371 [2006]
  • Coevolution of roots and mycorrhizas of land plants
    Brundrett MC New Phytol 154 : 275 ~ 304 [2002]
  • Changes in elemental uptake and arbuscular mycorrhizal colonization during the life cycle of Thlaspi praecox Wulfen
    Pongrac P Chemosphere 69 : 1602 ~ 1609 [2007]
  • Assessment of the bacterial diversity in fenvalerate-treated soil
    Luo HF World J. Microbiol. Biotechnol 20 : 509 ~ 515 [2004]
  • Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy
    Vallino M Environ. Microbiol 8 : 971 ~ 983 [2006]
  • Arsenic and antimony: comparative approach on mechanistic toxicology
    Gebel T. Chem. Biol. Interact 107 : 131 ~ 144 [1997]
  • Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit
    Zarei M Eur. J. Soil Biol 44 : 381 ~ 391 [2008]
  • Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L
    Trotta A Chemosphere 65 : 74 ~ 81 [2006]
  • Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil
    Dong Y Environ. Pollut 155 : 174 ~ 181 [2008]
  • Antimony: world mine production, by country
  • Antimony pollution in China
    He MC Sci. Total Environ 421 (422) : 41 ~ 50 [2012]
  • Antimony in the soil–plant system – a review
    Tschan M Environ. Chem 6 : 106 ~ 115 [2009]
  • Antimony in the environment: a review focused on natural waters: I. Occurrence
    Filella M Earth Sci. Rev 57 : 125 ~ 176 [2002]
  • Antimony bioavailability in mine soils
    Flynn HC Environ. Pollut 124 : 93 ~ 100 [2003]
  • Antimony accumulation, growth performance, antioxidant defense system and photosynthesis of Zea mays in response to antimony pollution in soil
    Pan XL Water Air Soil Pollut 215 : 517 ~ 523 [2011]
  • Antimony accumulation and antioxidative responses in four fern plants
    Feng RW Plant Soil 317 : 93 ~ 101 [2009]
  • An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota)
    Redecker D Mycorrhiza 23 : 515 ~ 531 [2013]
  • Abiotic stress responses in plants. Metabolism, Productivity and Sustainability
    Fusconi A Springer : 197 ~ 214 [2012]
  • A simple and reliable method for SSU rRNA gene DNA extraction, amplification and cloning from single AM fungal spores
    Schwarzott D Mycorrhiza 10 : 203 ~ 207 [2001]
  • A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi
    McGonigle TP New Phytol 115 : 495 ~ 501 [1990]