논문상세정보
' Revie : Biocatalytic Conversion of Methane to Methanol as a Key Step for Development of Methane-Based Biorefineries' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • methane
  • methanemonooxygenase
  • methanol
  • methanotrophs
  • natural gas
  • shale gas
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
259 0

0.0%

' Revie : Biocatalytic Conversion of Methane to Methanol as a Key Step for Development of Methane-Based Biorefineries' 의 참고문헌

  • Worldwide look at reserves and production
    Marilyn R. Oil Gas J 109 : 26 ~ 29 [2011]
  • The quinoprotein dehydrogenases for methanol and glucose
    Anthony C. Arch. Biochem. Biophys 428 : 2 ~ 9 [2004]
  • The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus ( Bath )
    Prior SD J. Gen. Microbiol 131 : 155 ~ 163 [1985]
  • The direct conversion of methane to methanol by controlled oxidation
    Gesser HD Chem. Rev 85 : 235 ~ 244 [1985]
  • The biochemistry of methane oxidation
    Hakemian S Annu. Rev. Biochem 76 : 223 ~ 241 [2007]
  • The Prokaryotes
    Chistoserdova L Springer : 267 ~ 285 [2013]
  • Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States : 1 ~ 730
    Kuuskraa VA [2013]
  • Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase
    Balasubramanian R Acc. Chem. Res 40 : 573 ~ 580 [2007]
  • Spectroscopic studies of the coupled binuclear non-heme iron active site in the fully reduced hydroxylase component of methane monooxygenase: comparison to deoxy and deoxy-azide hemerythrin
    Pulver S J. Am. Chem. Soc 115 : 12409 ~ 12422 [1993]
  • Simultaneously mitigating near-term climate change and improving human health and food security
    Shindell D Science 335 : 183 ~ 189 [2012]
  • Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b
    Furuto T J. Mol. Catal. A Chem 144 : 257 ~ 261 [1999]
  • Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b
    Takeguchi M Catal. Surv. Jap 4 : 51 ~ 63 [2000]
  • Respiration in Archaea and Bacteria: Diversity of Procaryotic Respiratory Systems
    DiSpirito AA Springer : 149 ~ 168 [2004]
  • Regulation of expression of methane monooxygenases by copper ions
    Murrell JC Trends Microbiol 8 : 221 ~ 225 [2000]
  • Regulation of bacterial methane oxidation: transcription of the soluble methane mono-oxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions
    Nielsen AK Soc. Gen. Microbiol 142 : 1289 ~ 1296 [1996]
  • Purification and properties of an NAD (P)+-linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath)
    Stirling DI J. Gen. Appl. Microbiol 107 : 19 ~ 29 [1978]
  • Purification and Characterization of a MethanolDehydrogenase Derived from Methylomicrobium sp. HG-1 Cultivated Using a Compulsory Circulation Diffusion System
    김시욱 Biotechnology and Bioprocess Engineering 11 (2) : 134 ~ 139 [2006]
  • Production of methanol from methane by methanotrophic bacteria
    Xin JY Biocatal. Biotransform 22 : 225 ~ 229 [2004]
  • Particulate methane monooxygenase from Methylosinus trichosporium is a copper-containing enzyme
    Xin JY Biochem. Biophys. Res. Commun 295 : 182 ~ 186 [2002]
  • Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b
    Lee SG Biotechnol. Lett 26 : 947 ~ 950 [2004]
  • Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation
    Takeguchi M Appl. Biochem. Biotechnol 68 : 143 ~ 152 [1997]
  • Optimization of Lab Scale Methanol Production by Methylosinus trichosporium OB3b
    김희곤 Biotechnology and Bioprocess Engineering 15 (3) : 476 ~ 480 [2010]
  • New catalyst systems for the catalytic conversion of methane into methanol
    Muehlhofer M Angew. Chem. Int. Ed 41 : 1745 ~ 1747 [2002]
  • Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea
    Arp DJ Arch. Microbiol 178 : 250 ~ 255 [2002]
  • Methanotrophy below pH 1 by a new Verrucomicrobia species
    Pol A Nature 450 : 874 ~ 878 [2007]
  • Methanotrophs and copper
    Semrau JD FE Microbiol. Rev 34 : 496 ~ 531 [2010]
  • Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria
    Schrader J Trends Biotechnol 27 : 107 ~ 115 [2008]
  • Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia
    Dunfield PF Nature 450 : 879 ~ 882 [2007]
  • Metabolic aspects of aerobic obligate methanotrophy
    Trotsenko YA Adv. Appl. Microbiol 63 : 183 ~ 229 [2008]
  • Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath
    Zahn JA J. Bacteriol 183 : 6832 ~ 6840 [2001]
  • Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes
    Hyman MR Appl. Environ. Microbiol 54 : 3187 ~ 3190 [1988]
  • High-rate, high-yield production of methanol by ammonia-oxidizing bacteria
    Taher E Environ. Sci. Technol 47 : 3167 ~ 3173 [2013]
  • High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b
    Duan C Bioresour. Technol 102 : 7349 ~ 7353 [2011]
  • Handbook of Hydrocarbon and Lipid Microbiology
    Murrell JC Springer-Verlag : 1046 ~ 1055 [2010]
  • Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study
    Matsen JB Front. Microbiol 4 : 1 ~ 16 [2013]
  • Getting the metal right
    Bollinger Jr JM Nature 465 : 40 ~ 41 [2010]
  • Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath)
    Ward N Plos Biol 2 : 1616 ~ 1628 [2004]
  • Gas-to-liquids (GTL): a review of an industry offering several routes for monetizing natural gas
    Wood DA J. Nat. Gas Sci. Eng 9 : 196 ~ 208 [2012]
  • Fundamental and Engineering Aspects
    Reinhold VN. Van Nostrand Reinhold [1992]
  • Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related
    Holmes AJ FE Microbiol. Lett 132 : 203 ~ 208 [1995]
  • Envisioning the bioconversion of methane to liquid fuels
    Conrado RJ Science 343 : 621 ~ 623 [2014]
  • Economic analysis of a combined energy–methanol production plant
    Pellegrini LA Appl. Energ 88 : 4891 ~ 4897 [2011]
  • Direct oxidation of methane to oxygenates over heteropolyanions
    Benlounes O J. Nat. Gas Chem 17 : 309 ~ 312 [2008]
  • Direct methane conversion routes to chemicals and fuels
    Alvarez-Galvan MC Catal. Today 171 : 15 ~ 23 [2011]
  • Direct conversion of methane to methanol over nano-[Au/SiO2] in [Bmim]Cl ionic liquid
    Li T Appl. Catal. A Gen 398 : 150 ~ 154 [2011]
  • Direct catalytic conversion of methane to methanol in an aqueous medium by using Copper-Promoted Fe-ZSM-5
    Hammond C Angew. Chem. Int. Ed 51 : 5129 ~ 5133 [2012]
  • Development and operation of a trickling biofilter system for continuous treatment of gas-phase trichloroethylene
    Lee EY Biotechnol. Lett 25 : 1757 ~ 1761 [2003]
  • Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b
    Hwang JW Biodegradation 18 : 91 ~ 101 [2007]
  • Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes
    Friedle S Chem. Soc. Rev 39 : 2768 ~ 2779 [2010]
  • Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions
    Rosenzweig AC Protein Struct. Funct. Genet 29 : 141 ~ 152 [1997]
  • Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study
    Yoshizawa K J. Am. Chem. Soc 128 : 9873 ~ 9881 [2006]
  • Control of substrate access to the active site in methane monooxygenase
    Lee SJ Nature 494 : 380 ~ 384 [2013]
  • Co-metabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations of methane or methanol
    Kang J Biotechnol. Lett 23 : 1877 ~ 1882 [2001]
  • Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase
    Lieberman RL Crit. Rev. Biochem. Mol. Biol 39 : 147 ~ 164 [2004]
  • Biological conversion of methane to methanol
    Jeewon Lee The Korean Journal of Chemical Engineering 30 (5) : 977 ~ 987 [2013]
  • Biochemistry of the soluble methane monooxygenase
    Lipscomb JD. Annu. Rev. Microbiol 48 : 371 ~ 399 [1994]
  • Beyond oil and gas: the methanol economy
    Olah GA. Angew. Chem 44 : 2636 ~ 2639 [2005]
  • Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin–Benson–Bassham cycle for carbon dioxide fixation
    Khadem AF J. Bacteriol 193 : 4438 ~ 4446 [2011]
  • Architecture and active site of particulate methane monooxygenase
    Culpepper MA Crit. Rev. Biochem. Mol. Biol 47 : 483 ~ 492 [2012]
  • Anaerobic digestion of biomass for methane production: a review
    Gunaseelan VN. Biomass Bioenerg 13 : 83 ~ 114 [1997]
  • Activation of CH bonds by metal complexes
    Shilov AE Chem. Rev 97 : 2879 ~ 2932 [1997]
  • A mercury-catalyzed, high-yield system for the oxidation of methane to methanol
    Periana RA Science 259 : 340 ~ 343 [1993]