한국산 흰줄숲모기 유전체·전사체의 생물정보학적 분석 및 뎅기바이러스 감염실험을 통한 매개능 평가 = Bioinformatics Analysis of Genome and Transcriptome, and Study for Vector Competency against Dengue Virus in Korean Aedes albopictus

박지은 2023년
논문상세정보
' 한국산 흰줄숲모기 유전체·전사체의 생물정보학적 분석 및 뎅기바이러스 감염실험을 통한 매개능 평가 = Bioinformatics Analysis of Genome and Transcriptome, and Study for Vector Competency against Dengue Virus in Korean Aedes albopictus' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 생활과학
  • DENV
  • aedes albopictus
  • 매개체 매개 질병
  • 유전체
  • 전사체
  • 질병매개능
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,622 0

0.0%

' 한국산 흰줄숲모기 유전체·전사체의 생물정보학적 분석 및 뎅기바이러스 감염실험을 통한 매개능 평가 = Bioinformatics Analysis of Genome and Transcriptome, and Study for Vector Competency against Dengue Virus in Korean Aedes albopictus' 의 참고문헌

  • Zinc finger proteins : new insights into structural and functional diversity
  • Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus
  • The sequence and de novo assembly of the giant panda genome
  • The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes : systematic review and meta-analysis
  • The effect of global change on mosquito-borne disease
  • The Native Wolbachia Symbionts Limit Transmission of Dengue Virus in Aedes albopictus
  • The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti
  • Short-read sequencing technologies for transcriptional analyses
  • Role of arthropod saliva in blood feeding : sialome and post-sialome perspectives
  • Regulatory hotspots in the malaria parasite genome dictate transcriptional variation .
  • Reflections on the Anopheles gambiae genome sequence , transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases
    Tabachnick , W.J 40 ( 5 ) , P. 597-606 [2003]
  • Rapid local adaptation to northern winters in the invasive Asian tiger mosquito Aedes albopictus : A moving target
  • RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome
  • Purification of RNA using TRIzol ( TRI reagent )
  • Prediction of complete gene structures in human genomic DNA .
    Burge , C. & Karlin , S. 268 ( 1 ) , P. 78-94 [1997]
  • Patchy DNA forms of the Zika virus RNA genome are generated following infection in mosquito cell cultures and in mosquitoes
    Nag , D.K . & Kramer , L.D 98 ( 11 ) , P. 2731-2737 [2017]
  • Mode of transmission and the evolution of arbovirus virulence in mosquito vectors
    Lambrechts , L. & Scott , T.W 276 ( 1660 ) , P. 1369-1378 [2009]
  • Mechanism and Complex Roles of HSC70 in Viral Infections .
  • KCDC_흰줄숲모기 사육 매뉴얼
    (질병관리본부 국립보건연구원 면역병 리센터 질병매개곤충과)
  • Innate immunity in the malaria vector Anopheles gambiae : comparative and functional genomics
  • HIV-1 : fifteen proteins and an RNA
  • Global warming and its health impact
    Rossati , A 8 ( 1 ) , P. 7 [2017]
  • Genetic and physical mapping in mosquitoes : molecular approaches
  • Full-length transcriptome assembly from RNA-Seq data without a reference genome
  • Encyclopedia of Genes and Genomes .
    Kanehisa , M. & Goto , S. KEGG Kyoto 82 ( 1 ) , P. 27-30 [2000]
  • Effect of dengue-2 virus infection on protein expression in the salivary glands of Aedes aegypti mosquitoes
  • Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito , Aedes albopictus
  • Critical review of the vector status of Aedes Albopictus
    Gratz , N.G 18 ( 3 ) , P. 215-227 [2004]
  • Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission
  • Comparison of Metabolic Capacities and Inference of Gene Content Evolution in Mosquito-Associated Spiroplasma diminutum and S. taiwanense
  • Combining the sterile insect technique with the incompatible insect technique : I-impact of Wolbachia infection on the fitness of triple-and double-infected strains of Aedes albopictus
  • Climate change and vector-borne diseases : a regional analysis
  • Characterization of an isopentenyl diphosphate isomerase involved in the juvenile hormone pathway in Aedes aegypti
  • Biological transmission of arboviruses : reexamination of and new insights into components , mechanisms , and unique traits as well as their evolutionary trends
    Kuno , G. & Chang , G.-J.J 18 ( 4 ) , P. 608-637 [2005]
  • BatchPrimer3 : a high throughput web application for PCR and sequencing primer design
  • Aedes albopictus ( Diptera : Culicidae ) and Mosquito-Borne Viruses in the United States
  • A germline-specific gap junction protein required for survival of differentiating early germ cells
  • 9. Simmons, C.P., Farrar, J.J., van Vinh Chau, N. & Wills, B. Dengue. New England Journal of Medicine 366(15), P. 1423-1432, (2012).
    [2012]
  • 9. Schuffenecker, I., Iteman, I., Michault, A., Murri, S., Frangeul, L., Vaney, M.-C., Lavenir, R., Pardigon, N., Reynes, J.-M. & Pettinelli, F. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS medicine 3(7), P. e263, (2006).
    [2006]
  • 9. Rai, K.S. & Black, W. Mosquito genomes: structure, organization, and evolution. Advances in genetics 41P. 1-33, (1999).
    [1999]
  • 9. Holt, R.A., Subramanian, G.M., Halpern, A., Sutton, G.G., Charlab, R., Nusskern, D.R., Wincker, P., Clark, A.G., Ribeiro, J.C. & Wides, R. The genome sequence of the malaria mosquito Anopheles gambiae. science 298(5591), P. 129-149, (2002).
    [2002]
  • 8. Zwiebel, L. & Takken, W. Olfactory regulation of mosquito–host interactions. Insect biochemistry and molecular biology 34(7), P. 645-652, (2004).
    [2004]
  • 8. Tsetsarkin, K.A., Chen, R., Yun, R., Rossi, S.L., Plante, K.S., Guerbois, M., Forrester, N., Perng, G.C., Sreekumar, E., Leal, G. et al. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nature Communications 5(1), P. 4084, (2014).
  • 8. Mbouna, A.D., Tamoffo, A.T., Asare, E.O., Lenouo, A. & Tchawoua, C. Malaria metrics distribution under global warming: assessment of the VECTRI malaria model over Cameroon. International Journal of BiometeorologyP. 1-13, (2022).
  • 8. Kumar, A. & Rai, K. Molecular organization and evolution of mosquito genomes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 106(3), P. 495-504, (1993).
    [1993]
  • 8. Burt, F.J., Rolph, M.S., Rulli, N.E., Mahalingam, S. & Heise, M.T. Chikungunya: a re-emerging virus. The Lancet 379(9816), P. 662-671, (2012).
    [2012]
  • 7. Tsetsarkin, K.A., Chen, R. & Weaver, S.C. Interspecies transmission and chikungunya virus emergence. Current Opinion in Virology 16P. 143-150, (2016).
    [2016]
  • 7. Rützler, M. & Zwiebel, L. Molecular biology of insect olfaction: recent progress and conceptual models. Journal of Comparative Physiology A 191(9), P. 777-790, (2005).
    [2005]
  • 7. Kilpatrick, A.M. Globalization, land use, and the invasion of West Nile virus. Science 334(6054), P. 323-327, (2011).
    [2011]
  • 6. Reiter, P. Climate change and mosquito-borne disease. Environmental health perspectives 109(suppl 1), P. 141-161, (2001).
    [2001]
  • 6. Powell, J.R., Gloria-Soria, A. & Kotsakiozi, P. Recent History of Aedes aegypti: Vector Genomics and Epidemiology Records. BioScience 68(11), P. 854-860, (2018).
    [2018]
  • 6. Franco, C., Hynes, N.A., Bouri, N. & Henderson, D. The dengue threat to the United States. Biosecurity and bioterrorism: biodefense strategy, practice, and science 8(3), P. 273-276, (2010).
    [2010]
  • 5. Ranson, H. & Hemingway, J. Mosquito glutathione transferases. Methods in enzymology 401P. 226-241, (2005).
    [2005]
  • 5. Powell, J.R. An Evolutionary Perspective on Vector-Borne Diseases. Frontiers in Genetics 10, (2019).
    [2019]
  • 5. La Ruche, G., Souarès, Y., Armengaud, A., Peloux-Petiot, F., Delaunay, P., Desprès, P., Lenglet, A., Jourdain, F., Leparc-Goffart, I. & Charlet, F. First two autochthonous dengue virus infections in metropolitan France, September 2010. Eurosurveillance 15(39), P. 19676, (2010).
  • 5. Goltsev, Y., Rezende, G.L., Vranizan, K., Lanzaro, G., Valle, D. & Levine, M. Developmental and evolutionary basis for drought tolerance of the Anopheles gambiae embryo. Developmental biology 330(2), P. 462-470, (2009).
    [2009]
  • 5. Armbruster, P.A. Photoperiodic Diapause and the Establishment of Aedes albopictus (Diptera: Culicidae) in North AmericAe. Journal of Medical Entomology 53(5), P. 1013-1023, (2016).
    [2016]
  • 45. Broehan, G., Zimoch, L., Wessels, A., Ertas, B. & Merzendorfer, H. A chymotrypsin-like serine protease interacts with the chitin synthase from the midgut of the tobacco hornworm. Journal of Experimental Biology 210(20), P. 3636-3643, (2007).
    [2007]
  • 44. Barón, O.L., Ursic-Bedoya, R.J., Lowenberger, C.A. & Ocampo, C.B. Differential gene expression from midguts of refractory and susceptible lines of the mosquito, Aedes aegypti, infected with Dengue-2 virus. Journal of Insect Science 10(1), (2010).
    [2010]
  • 43. Kanost, M.R. & Jiang, H. Clip-domain serine proteases as immune factors in insect hemolymph. Current Opinion in Insect Science 11P. 47-55, (2015).
    [2015]
  • 41. Barón, O.L., Ursic-Bedoya, R.J., Lowenberger, C.A. & Ocampo, C.B. Differential gene expression from midguts of refractory and susceptible lines of the mosquito, Aedes aegypti, infected with Dengue-2 virus. Journal of Insect Science 10(1), P. 41, (2010).
    [2010]
  • 40. Ghosh, A., Desai, A., Ravi, V., Narayanappa, G. & Tyagi, B.K. Chikungunya Virus Interacts with Heat Shock Cognate 70 Protein to Facilitate Its Entry into Mosquito Cell Line. IntervirologyP. 247-262, (2017).
    [2017]
  • 4. Meister, S., Koutsos, A. & Christophides, G. The Plasmodium parasite— a newchallenge for insect innate immunity. International journal for parasitology 34(13-14), P. 1473-1482, (2004).
    [2004]
  • 4. Kraemer, M.U.G., Sinka, M.E., Duda, K.A., Mylne, A.Q.N., Shearer, F.M., Barker, C.M., Moore, C.G., Carvalho, R.G., Coelho, G.E., Van Bortel, W. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4P. e08347, (2015).
    [2015]
  • 4. Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L. & Daszak, P. Global trends in emerging infectious diseases. Nature 451(7181), P. 990-993, (2008).
    [2008]
  • 4. Chivian, E. Biodiversity: its importance to human health. Center for Health and the Global Environment, Harvard Medical School, Cambridge, MA 23, (2002).
    [2002]
  • 39. Muñoz, M.d.L., Limón-Camacho, G., Tovar, R., Diaz-Badillo, A., Mendoza-Hernández, G. & Black, W.C. Proteomic Identification of Dengue Virus Binding Proteins in Aedes aegypti Mosquitoes and Aedes albopictus Cells. BioMed Research International 2013P. 875958, (2013).
    [2013]
  • 39. Filho, W.L., Scheday, S., Boenecke, J., Gogoi, A., Maharaj, A. & Korovou, S. Climate Change, Health and Mosquito-Borne Diseases: Trends and Implications to the Pacific Region. International Journal of Environmental Research and Public Health 16(24), P. 5114, (2019).
    [2019]
  • 38. Pitaluga, A.N., Beteille, V., Lobo, Ae.R., Ortigão-Farias, J.R., Dávila, Ae.M.R., Souza, A.A., Ramalho-Ortigão, J.M. & Traub-Cseko, Y.M. EST sequencing of blood-fed and Leishmania-infected midgut of Lutzomyia longipalpis, the principal visceral leishmaniasis vector in the Americas. Molecular Genetics and Genomics 282(3), P. 307-317, (2009).
  • 38. Battaglia, V., Agostini, V., Moroni, E., Colombo, G., Lombardo, G., Rambaldi Migliore, N., Gabrieli, P., Garofalo, M., Gagliardi, S., Gomulski, L.M. et al. The worldwide spread of Aedes albopictus: New insights from mitogenomes. Frontiers in Genetics 13, (2022).
  • 37. Ma, L., Gerenday, A., Coley, K.M. & Fallon, A.M. Co-immunoprecipitation of putative proteins that interact with mosquito proliferating cell nuclear antigen. Insect Mol Biol 15(2), P. 197-205, (2006).
    [2006]
  • 37. Liu, Z., Xu, Y., Li, Y., Xu, S., Li, Y., Xiao, L., Chen, X., He, C. & Zheng, K. Transcriptome analysis of Aedes albopictus midguts infected by dengue virus identifies a gene network module highly associated with temperature. Parasit Vectors 15(1), P. 173, (2022).
  • 37. Kim, C.E., Park, K.B., Ko, H.J., Keshavarz, M., Bae, Y.M., Kim, B., Patnaik, B.B., Jang, H.A., Lee, Y.S., Han, Y.S. et al. Aedes albopictus Autophagy-Related Gene 8 (AaAtg8) Is Required to Confer Anti-Bacterial Gut Immunity. International journal of molecular sciences 21(8), P. 2944, (2020).
  • 36. Xu, J., Su, X., Bonizzoni, M., Zhong, D., Li, Y., Zhou, G., Nguyen, H., Tong, S., Yan, G. & Chen, X.G. Comparative transcriptome analysis and RNA interference reveal CYP6A8 and SNPs related to pyrethroid resistance in Aedes albopictus. PLoS Negl Trop Dis 12(11), P. e0006828, (2018).
  • 36. Wang, W., Ma, Y., Yang, R.-R., Cheng, X., Huang, H.-J., Zhang, C.-X. & Bao, Y.-Y. An MD-2-related lipid-recognition protein is required for insect reproduction and integument development. Open Biology 11(12), P. 210170, (2021).
  • 36. Livak, K.J. & Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25(4), P. 402-408, (2001).
    [2001]
  • 35. Park, J.-H., Yun, J.-H., Shi, Y., Han, J., Li, X., Jin, Z., Kim, T., Park, J., Park, S. & Liu, H. Non-cryogenic structure and dynamics of HIV-1 integrase catalytic core domain by X-ray free-electron lasers. International journal of molecular sciences 20(8), P. 1943, (2019).
    [1943]
  • 35. Esquivel, C.J., Cassone, B.J. & Piermarini, P.M. A de novo transcriptome of the Malpighian tubules in non-blood-fed and blood-fed Asian tiger mosquitoes Aedes albopictus: insights into diuresis, detoxification, and blood meal processing. PeerJ 4P. e1784, (2016).
    [2016]
  • 35. Alm, E., Lindegren, G., Falk, K.I. & Lagerqvist, N. One-step real-time RT-PCR assays for serotyping dengue virus in clinical samples. BMC Infect Dis 15P. 493, (2015).
    [2015]
  • 34. Ortega-López, L.D., Pondeville, E., Kohl, A., León, R., Betancourth, M.P., Almire, F., Torres-Valencia, S., Saldarriaga, S., Mirzai, N. & Ferguson, H.M. The mosquito electrocuting trap as an exposure-free method for measuring human-biting rates by Aedes mosquito vectors. Parasites & Vectors 13(1), P. 31, (2020).
  • 34. Miller, J.R., Koren, S., Dilley, K.A., Puri, V., Brown, D.M., Harkins, D.M., Thibaud-Nissen, F., Rosen, B., Chen, X.-G., Tu, Z. et al. Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation. GigaScience 7(3), P. gix135, (2018).
  • 33. Boyle, J.H., Rastas, P.M.A., Huang, X., Garner, A.G., Vythilingam, I. & Armbruster, P.A. A Linkage-Based Genome Assembly for the Mosquito Aedes albopictus and Identification of Chromosomal Regions Affecting Diapause. Insects 12(2), P. 167, (2021).
  • 32. Troyer, J.M., Hanley, K.A., Whitehead, S.S., Strickman, D., Karron, R.A., Durbin, A.P. & Murphy, B.R. A live attenuated recombinant dengue-4 virus vaccine candidate with restricted capacity for dissemination in mosquitoes and lack of transmission from vaccinees to mosquitoes. Am J Trop Med Hyg 65(5), P. 414-419, (2001).
  • 32. Thiel, T., Michalek, W., Varshney, R.K. & Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106(3), P. 411-422, (2003).
    [2003]
  • 32. Miller, J.R., Koren, S., Dilley, K.A., Puri, V., Brown, D.M., Harkins, D.M., Thibaud-Nissen, F., Rosen, B., Chen, X.-G., Tu, Z. et al. Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation. GigaScience 7(3), (2018).
  • 32. Chen, X.-G., Jiang, X., Gu, J., Xu, M., Wu, Y., Deng, Y., Zhang, C., Bonizzoni, M., Dermauw, W., Vontas, J. et al. Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proceedings of the National Academy of Sciences 112(44), P. E5907-E5915, (2015).
  • 31. Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R. & Lopez, R. InterProScan: protein domains identifier. Nucleic Acids Research 33(Web Server), P. W116-W120, (2005).
    [2005]
  • 31. Dritsou, V., Topalis, P., Windbichler, N., Simoni, A., Hall, A., Lawson, D., Hinsley, M., Hughes, D., Napolioni, V., Crucianelli, F. et al. A draft genome sequence of an invasive mosquito: an Italian Aedes albopictus. Pathog Glob Health 109(5), P. 207-220, (2015).
  • 31. Das, S., Garver, L. & Dimopoulos, G. Protocol for mosquito rearing (Ae. gambiae). J Vis Exp (5), P. 221, (2007).
    [2007]
  • 31. Chen, X.-G., Jiang, X., Gu, J., Xu, M., Wu, Y., Deng, Y., Zhang, C., Bonizzoni, M., Dermauw, W., Vontas, J. et al. Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proceedings of the National Academy of Sciences 112(44), P. E5907-E5915, (2015).
  • 3. Organization, W.H. Vector Control for Malaria and Other Mosquito-Borne Diseases: report of a WHO study group. (World Health Organization, 1995).
    [1995]
  • 3. Enayati, A.A., Ranson, H. & Hemingway, J. Insect glutathione transferases and insecticide resistance. Insect molecular biology 14(1), P. 3-8, (2005).
    [2005]
  • 29. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1), P. 25-29, (2000).
  • 28. Xing, L. & Brendel, V. Multi-query sequence BLAST output examination with MuSeqBox. Bioinformatics 17(8), P. 744-745, (2001).
    [2001]
  • 28. Hao, Z., Lv, D., Ge, Y., Shi, J., Weijers, D., Yu, G. & Chen, J. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci 6P. e251, (2020).
    [2020]
  • 28. Cooper, E., Anbalagan, S., Klumper, P., Scherba, G., Simonson, R.R. & Hause, B.M. Mobuck virus genome sequence and phylogenetic analysis: identification of a novel Orbivirus isolated from a white-tailed deer in Missouri, USA. J Gen Virol 95(Pt 1), P. 110-116, (2014).
    [2014]
  • 28. Bonizzoni, M., Gasperi, G., Chen, X. & James, A.A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends in Parasitology 29(9), P. 460-468, (2013).
    [2013]
  • 27. UniProt, C. UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue), P. D204-212, (2015).
    [2015]
  • 27. Study on dispersal capability and activity range of Aedes albopictus (Diptera: Culicidae), Dengue fever vector. No, (2013).
    [2013]
  • 27. Auksornkitti, V., Pongsiri, P., Theamboonlers, A., Rianthavorn, P., Poovorawan, Y., Manujum, K. & Luplertlop, N. Whole-genome characterisation of Chikungunya virus from Aedes albopictus collected in Thailand. Ann Trop Med Parasitol 104(3), P. 265-269, (2010).
    [2010]
  • 26. Zhou, Y., Liu, Y., Yan, H., Li, Y., Zhang, H., Xu, J., Puthiyakunnon, S. & Chen, X. miR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication. Parasites & Vectors 7(1), P. 488, (2014).
    [2014]
  • 26. Tsetsarkin, K.A., Chen, R., Yun, R., Rossi, S.L., Plante, K.S., Guerbois, M., Forrester, N., Perng, G.C., Sreekumar, E., Leal, G. et al. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nature Communications 5(1), P. 4084, (2014).
  • 26. Koonin, E.V., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Krylov, D.M., Makarova, K.S., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S. et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5(2), P. R7, (2004).
  • 25. Whitehead, R.H., Yuill, T.M., Gould, D.J. & Simasathien, P. Experimental infection of Aedes aegypti and Aedes albopictus with dengue viruses. Transactions of the Royal Society of Tropical Medicine and Hygiene 65(5), P. 661-667, (1971).
    [1971]
  • 25. Tsetsarkin, K.A., Chen, R. & Weaver, S.C. Interspecies transmission and chikungunya virus emergence. Current Opinion in Virology 16P. 143-150, (2016).
    [2016]
  • 25. Sang, M.K., Park, J.E., Song, D.K., Jeong, J.Y., Hong, C.-E., Kim, Y.T., Hwang, H.J., Kang, S.W., Park, S.Y., Lee, J.S. et al. PANM DB ver 4.0 : An update of the bioinformatics database for annotation of large datasets from sequencing of species under Invertebrates. The Korean Journal of Malacology 37(1), P. 33-36, (2021).
  • 25. Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J., Cheung, F., Parvizi, B. et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19(5), P. 651-652, (2003).
  • 24. Zhang, D., Lees, R.S., Xi, Z., Gilles, J.R. & Bourtzis, K. Combining the sterile insect technique with Wolbachia-based approaches: II-a safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release. PloS one 10(8), P. e0135194, (2015).
    [2015]
  • 24. Kang, S.W., Park, S.Y., Hwang, H.J., Chung, J.M., Sang, M.K., Min, H.R., Park, J.E., Cho, H.C., Patnaik, B.B. & Lee, Y.S. PANM DB ver 3.0 : An update of the bioinformatics database for annotation of large datasets from sequencing of species under Protostomia clade. The Korean Journal of Malacology 35(1), P. 73-75, (2019).
  • 24. Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8), P. 1494-1512, (2013).
  • 23. Kang, S.W., Park, S.Y., Patnaik, B.B., Hwang, H.J., Chung, J.M., Song, D.K., Park, Y.-S., Lee, J.S., Han, Y.S., Park, H.S. et al. The Protostome database (PANM-DB): Version 2.0 release with updated sequences. The Korean Journal of Malacology 32(3), P. 185-188, (2016).
  • 23. Evangelistella, C., Valentini, A., Ludovisi, R., Firrincieli, A., Fabbrini, F., Scalabrin, S., Cattonaro, F., Morgante, M., Mugnozza, G.S., Keurentjes, J.J.B. et al. De novo assembly, functional annotation, and analysis of the giant reed (Arundo donax L.) leaf transcriptome provide tools for the development of a biofuel feedstock. Biotechnol Biofuels 10P. 138, (2017).
  • 23. Ayukawa, T., Matsumoto, K., Ishikawa, H.O., Ishio, A., Yamakawa, T., Aoyama, N., Suzuki, T. & Matsuno, K. Rescue of Notch signaling in cells incapable of GDP-L-fucose synthesis by gap junction transfer of GDP-L-fucose in Drosophila. Proc Natl Acad Sci U S A 109(38), P. 15318-15323, (2012).
  • 22. Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PloS one 7(6), P. e38544, (2012).
    [2012]
  • 22. Ostrowski, K., Bauer, R. & Hoch, M. The Drosophila innexin 7 gap junction protein is required for development of the embryonic nervous system. Cell Commun Adhes 15(1), P. 155-167, (2008).
    [2008]
  • 22. Kang, S.W., Park, S.Y., Patnaik, B.B., Hwang, H.J., Kim, C., Kim, S., Lee, J.S., Han, Y.S. & Lee, Y.S. Construction of PANM Database (Protostome DB) for rapid annotation of NGS data in Mollusks. The Korean Journal of Malacology 31(3), P. 243-247, (2015).
  • 22. Hegde, S., Rasgon, J.L. & Hughes, G.L. The microbiome modulates arbovirus transmission in mosquitoes. Current Opinion in Virology 15P. 97-102, (2015).
    [2015]
  • 21. Joshi, N.A. & Fass, J.N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software], "https://github.com/najoshi/sickle." (2011).
    [2011]
  • 21. Gubler, D.J. & Rosen, L. Variation among geographic strains of Aedes albopictus in susceptibility to infection with dengue viruses. Am J Trop Med Hyg 25(2), P. 318-325, (1976).
    [1976]
  • 21. Giuliani, F., Giuliani, G., Bauer, R. & Rabouille, C. Innexin 3, a new gene required for dorsal closure in Drosophila embryo. PLoS One 8(7), P. e69212, (2013).
    [2013]
  • 21. Benelli, G. Research in mosquito control: current challenges for a brighter future. Parasitology research 114(8), P. 2801-2805, (2015).
    [2015]
  • 20. Yakob, L. & Walker, T. Zika virus outbreak in the Americas: the need for novel mosquito control methods. The Lancet Global Health 4(3), P. e148-e149, (2016).
    [2016]
  • 20. Thiel, T., Michalek, W., Varshney, R.K. & Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106(3), P. 411-422, (2003).
    [2003]
  • 20. Martin, M. Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads. EMBnet.Journal 17(1), P. 10-12, (2011).
    [2011]
  • 20. Jupatanakul, N., Sim, S. & Dimopoulos, G. Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection. Developmental & Comparative Immunology 43(1), P. 1-9, (2014).
    [2014]
  • 20. Güiza, J., Barría, I., Sáez, J.C. & Vega, J.L. Innexins: Expression, Regulation, and Functions. Front Physiol 9P. 1414, (2018).
    [2018]
  • 2. Sharma, G., Lather, M. & Singh, O.P. Variations in palpal ornamentation of Anopheles fluviatilis species T and U (Diptera: Culicidae) and their taxonomic consequence. Indian Journal of Experimental Biology (IJEB) 58(01), P. 64-68, (2022).
  • 2. Ross, R. The role of the mosquito in the evolution of the malarial parasite. The Lancet 152(3912), P. 488-490, (1898).
    [1898]
  • 2. King, A.M., Adams, M.J., Carstens, E.B. & Lefkowitz, E.J. in Virus taxonomy: classification and nomenclature of viruses 1327-1327 (2012).
    [2012]
  • 2. Attardo, G.M., Hansen, I.A. & Raikhel, A.S. Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect biochemistry and molecular biology 35(7), P. 661-675, (2005).
    [2005]
  • 19. Smit, A.F.A., Hubley, R. & Green, P. RepeatMasker, "http://repeatmasker.org/" (2016).
    [2016]
  • 19. Smartt, C.T., Shin, D. & Alto, B.W. Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus. Mem Inst Oswaldo Cruz 112(12), P. 829-837, (2017).
    [2017]
  • 19. Pan, X., Zhou, G., Wu, J., Bian, G., Lu, P., Raikhel, A.S. & Xi, Z. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences 109(1), P. E23-E31, (2012).
  • 19. Naqqash, M.N., Gökçe, A., Bakhsh, A. & Salim, M. Insecticide resistance and its molecular basis in urban insect pests. Parasitology research 115(4), P. 1363-1373, (2016).
    [2016]
  • 18. Ryan, J.F. estimate_genome_size.pl (version 0.03) Bergen, Norway: Sars International Centre for Marine Molecular Biology,"http://josephryan.github.com/estimate_genome_size.pl/" (2013).
    [2013]
  • 18. Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annual review of entomology 45(1), P. 371-391, (2000).
    [2000]
  • 18. Estévez-Lao, T.Y. & Hillyer, J.F. Involvement of the Anopheles gambiae Nimrod gene family in mosquito immune responses. Insect Biochemistry and Molecular Biology 44P. 12-22, (2014).
    [2014]
  • 18. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara Islands) and Korea (Diptera: Culicidae). No, (ARMY MEDICAL LAB PACIFIC APO SAN FRANCISCO 96343, 1979).
    [1979]
  • 17. Moreira, L.A., Iturbe-Ormaetxe, I., Jeffery, J.A., Lu, G., Pyke, A.T., Hedges, L.M., Rocha, B.C., Hall-Mendelin, S., Day, A., Riegler, M. et al. A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell 139(7), P. 1268-1278, (2009).
  • 17. Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27(6), P. 764-770, (2011).
    [2011]
  • 17. Juhn, J. & James, A.A. oskar gene expression in the vector mosquitoes, Anopheles gambiae and Aedes aegypti. Insect Mol Biol 15(3), P. 363-372, (2006).
    [2006]
  • 16. Xi, Z., Ramirez, J.L. & Dimopoulos, G. The Aedes aegypti Toll Pathway Controls Dengue Virus Infection. PLOS Pathogens 4(7), P. e1000098, (2008).
    [2008]
  • 16. Wilhelm, B.T. & Landry, J.-R. RNA-Seq—quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48(3), P. 249-257, (2009).
    [2009]
  • 16. Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends in parasitology 32(3), P. 187-196, (2016).
    [2016]
  • 16. Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1), P. 18, (2012).
    [2012]
  • 16. Jeske, M., Bordi, M., Glatt, S., Müller, S., Rybin, V., Müller, C.W. & Ephrussi, A. The Crystal Structure of the Drosophila Germline Inducer Oskar Identifies Two Domains with Distinct Vasa Helicase- and RNA-Binding Activities. Cell Rep 12(4), P. 587-598, (2015).
    [2015]
  • 15. Sim, S., Ramirez, J.L. & Dimopoulos, G. Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior. PLOS Pathogens 8(3), P. e1002631, (2012).
    [2012]
  • 15. Liu, N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu Rev Entomol 60(1), P. 537-559, (2015).
    [2015]
  • 15. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara Islands) and Korea (Diptera: Culicidae). No, (ARMY MEDICAL LAB PACIFIC APO SAN FRANCISCO 96343, 1979).
    [1979]
  • 14. Powell, J.R. Genetic variation in insect vectors: death of typology? Insects 9(4), P. 139, (2018).
    [2018]
  • 14. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome research 18(9), P. 1509-1517, (2008).
    [2008]
  • 14. Guo, X.-X., Zhu, X.-J., Li, C.-X., Dong, Y.-D., Zhang, Y.-M., Xing, D., Xue, R.-D., Qin, C.-F. & Zhao, T.-Y. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus. Acta Tropica 128(3), P. 566-570, (2013).
  • 14. Benelli, G. Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitology research 114(9), P. 3201-3212, (2015).
    [2015]
  • 13. Semmler, M., Abdel-Ghaffar, F., Al-Rasheid, K. & Mehlhorn, H. Nature helps: from research to products against blood-sucking arthropods. Parasitology Research 105(6), P. 1483-1487, (2009).
    [2009]
  • 13. Kumar, A. & Rai, K. Intraspecific variation in nuclear DNA content among world populations of a mosquito, Aedes albopictus (Skuse). Theoretical and applied genetics 79(6), P. 748-752, (1990).
    [1990]
  • 13. Kim, W., Koo, H., Richman, A.M., Seeley, D., Vizioli, J., Klocko, A.D. & O'brochta, D.A. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium. Journal of medical entomology 41(3), P. 447-455, (2004).
  • 13. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara Islands) and Korea (Diptera: Culicidae). No, (ARMY MEDICAL LAB PACIFIC APO SAN FRANCISCO 96343, 1979).
    [1979]
  • 12. Severson, D.W., Knudson, D.L., Soares, M.B. & Loftus, B.J. Aedes aegypti genomics. Insect biochemistry and molecular biology 34(7), P. 715-721, (2004).
    [2004]
  • 12. McCracken, M.K., Christofferson, R.C., Grasperge, B.J., Calvo, E., Chisenhall, D.M. & Mores, C.N. Aedes aegypti salivary protein aegyptin co-inoculation modulates dengue virus infection in the vertebrate host. Virology 468-470P. 133-139, (2014).
    [2014]
  • 12. Kokoza, V.A., Martin, D., Mienaltowski, M.J., Ahmed, A., Morton, C.M. & Raikhel, A.S. Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade. Gene 274(1-2), P. 47-65, (2001).
    [2001]
  • 12. Amer, A. & Mehlhorn, H. Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitology Research 99(4), P. 473-477, (2006).
    [2006]
  • 11. Waterhouse, R., Wyder, S. & Zdobnov, E. The Aedes aegypti genome: a comparative perspective. Insect Molecular Biology 17(1), P. 1-8, (2008).
    [2008]
  • 11. Mongin, E., Louis, C., Holt, R.A., Birney, E. & Collins, F.H. The Anopheles gambiae genome: an update. Trends in parasitology 20(2), P. 49-52, (2004).
    [2004]
  • 11. Faraji, A. & Unlu, I. The Eye of the Tiger, the Thrill of the Fight: Effective Larval and Adult Control Measures Against the Asian Tiger Mosquito, Aedes albopictus (Diptera: Culicidae), in North AmericAe. Journal of Medical Entomology 53(5), P. 1029-1047, (2016).
    [2016]
  • 11. Amer, A. & Mehlhorn, H. Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitology Research 99(4), P. 466-472, (2006).
    [2006]
  • 10. Simmons, C.P., Farrar, J.J., van Vinh Chau, N. & Wills, B. Dengue. New England Journal of Medicine 366(15), P. 1423-1432, (2012).
    [2012]
  • 10. Rao, P.N. & Rai, K. Inter and intraspecific variation in nuclear DNA content in Aedes mosquitoes. Heredity 59(2), P. 253-258, (1987).
    [1987]
  • 10. Nene, V., Wortman, J.R., Lawson, D., Haas, B., Kodira, C., Tu, Z., Loftus, B., Xi, Z., Megy, K. & Grabherr, M. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316(5832), P. 1718-1723, (2007).
    [2007]
  • 10. Mustafa, M.S., Rasotgi, V., Jain, S. & Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Medical Journal Armed Forces India 71(1), P. 67-70, (2015).
    [2015]
  • 1. Lounibos, L.P. Invasions by insect vectors of human disease. Annual review of entomology 47P. 233, (2002).
    [2002]
  • 1. Knols, B.G., Bossin, H.C., Mukabana, W.R. & Robinson, A.S. Transgenic mosquitoes and the fight against malaria: managing technology push in a turbulent GMO world. (2007).
    [2007]
  • 1. Chapman, A.D. Numbers of living species in Australia and the world. (2009).
    [2009]
  • 1. Bonizzoni, M., Gasperi, G., Chen, X. & James, A.A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends in Parasitology 29(9), P. 460-468, (2013).
    [2013]