Robust Hierarchical Motion Planning and Control for Automated Bus = 자율주행 버스를 위한 강건한 계층적 거동 계획 및 제어

조아라 2022년
논문상세정보
' Robust Hierarchical Motion Planning and Control for Automated Bus = 자율주행 버스를 위한 강건한 계층적 거동 계획 및 제어' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 응용 물리
  • Automated bus
  • Deep reinforcement learning
  • Dynamic programming
  • Offset-free model predictive control
  • adaptive sliding-mode control
  • model predictive control
  • moving horizon estimation
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
934 0

0.0%

' Robust Hierarchical Motion Planning and Control for Automated Bus = 자율주행 버스를 위한 강건한 계층적 거동 계획 및 제어' 의 참고문헌

  • [9] F. Acciani, P. Frasca, G. Heijenk, and A. A. Stoorvogel, Stochastic String Stability of Vehicle Platoons via Cooperative Adaptive Cruise Control with Lossy Communication, IEEE Trans. Intell. Transp. Syst., pp. 1–11, 2021.
  • [8] Q. Xin, R. Fu, W. Yuan, Q. Liu, and S. Yu, Predictive Intelligent Driver Model for Eco-driving using Upcoming Traffic Signal Information, Phys. A Stat. Mech. its Appl., vol. 508, pp. 806–823, 2018.
    [2018]
  • [7] S. Wei, Y. Zou, X. Zhang, T. Zhang, and X. Li, An Integrated Longitudinal and Lateral Vehicle Following Control System with Radar and Vehicle-to-vehicle Communication, IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1116–1127, 2019.
    [2019]
  • [78] Mechanical Simulation – Trucksim. [Online]. Available: https://www.carsim.com/products/trucksim/
  • [77] T. Z. Shuzhi S. Ge, Chang C. Hang, Tong H. Lee, Stable Adaptive Neural Network Control. Springer, Berlin, 2002.
    [2002]
  • [76] S. K. S. Christopher Edwards, Sliding Mode Control: Theory and Applications. CRC Press, 1998.
    [1998]
  • [75] V. Stepanyan and K. Krishnakumar, Adaptive Control with Reference Model Modification, J. Guid. Control. Dyn., vol. 35, no. 4, pp. 1370–1374, 2012.
    [2012]
  • [74] K. Yi, J. Hong, and Y. D. Kwon, A Vehicle Control Algorithm for Stop-and-go Cruise Control, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 215, no. 10, pp. 1099–1115, 2001.
    [2001]
  • [73] J. C. Gerdes and J. K. Hedrick, Vehicle Speed and Spacing Control via Coordinated Throttle and Brake Actuation, Control Eng. Pract., vol. 5, no. 11, pp. 1607–1614, 1997.
    [1997]
  • [72] A. Jo, H. Lee, D. Seo, and K. Yi, Model-reference Adaptive Sliding Mode Control of Longitudinal Speed Tracking for Autonomous Vehicles, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 2022.
  • [71] Willy Klier, Gerd Reimann and Wolfgang Reinelt, Concept and Functionality of the Active Front Steering System, SAE 2004-21-0073.
  • [70] G. Pannocchia, Offset-free Tracking MPC: A Tutorial Review and Comparison of Different Formulations, 2015 Eur. Control Conf. ECC 2015, vol. 527, no. 3, pp. 527–532, 2015.
  • [6] D. Paddeu, G. Parkhurst, and I. Shergold, Passenger Comfort and Trust on Firsttime Use of a Shared Autonomous Shuttle Vehicle, Transp. Res. Part C Emerg. Technol., vol. 115, no. March, p. 102604, 2020.
    [2020]
  • [69] U. Maeder and M. Morari, Offset-free Reference Tracking with Model Predictive Control, Automatica, vol. 46, no. 9, pp. 1469–1476, 2010.
    [2010]
  • [68] U. Maeder, F. Borrelli, and M. Morari, Linear offset-free Model Predictive Control, Automatica, vol. 45, no. 10, pp. 2214–2222, 2009.
    [2009]
  • [67] H. Liu, P. Wang, J. Lin, H. Ding, H. Chen, and F. Xu, Real-Time Longitudinal and Lateral State Estimation of Preceding Vehicle Based on Moving Horizon Estimation, IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 8755–8768, 2021.
  • [66] W. Zhang, Z. Wang, C. Zou, L. Drugge, and M. Nybacka, Advanced Vehicle State Monitoring: Evaluating Moving Horizon Estimators and Unscented Kalman Filter, IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5430–5442, 2019.
    [2019]
  • [65] C. V. Rao, J. B. Rawlings, and D. Q. Mayne, Constrained State Estimation for Nonlinear Discrete-time Systems: Stability and Moving Horizon Approximations, IEEE Trans. Automat. Contr., vol. 48, no. 2, pp. 246–258, 2003.
    [2003]
  • [64] M. D. James Blake Rawlings, David Q. Mayne, Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, 2017.
    [2017]
  • [63] U. Maeder, F. Borrelli, and M. Morari, Linear Offset-free Model Predictive Control, Automatica, vol. 45, no. 10, pp. 2214–2222, 2009.
    [2009]
  • [62] U. Maeder and M. Morari, Offset-free Reference Tracking with Model Predictive Control, Automatica, vol. 46, no. 9, pp. 1469–1476, 2010.
    [2010]
  • [61] G. Pannocchia and J. B. Rawlings, Disturbance Models for Offset-free Model- Predictive Control, AIChE J., vol. 49, no. 2, pp. 426–437, 2003.
    [2003]
  • [60] Rajamani, R., 2012, Vehicle Dynamics and Control. 2nd edition, Springer, pp.87-111.
    [2012]
  • [5] K. Hilgarter and P. Granig, Public Perception of Autonomous Vehicles: A Qualitative Study based on Interviews after Riding an Autonomous Shuttle, Transp. Res. Part F Traffic Psychol. Behav., vol. 72, pp. 226–243, 2020.
    [2020]
  • [59] J. Al Hage, P. Xu, P. Bonnifait, and J. Ibanez-Guzman, Localization Integrity for Intelligent Vehicles Through Fault Detection and Position Error Characterization, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 4, pp. 2978–2990, 2020.
    [2020]
  • [58] N. Akai, Y. Akagi, T. Hirayama, T. Morikawa, and H. Murase, Detection of Localization Failures Using Markov Random Fields With Fully Connected Latent Variables for Safe LiDAR-Based Automated Driving, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 4, pp. 1–13, 2022.
  • [57] Y. Jeong, Self-Adaptive Motion Prediction-Based Proactive Motion Planning for Autonomous Driving in Urban Environments, IEEE Access, vol. 9, no. Cv, pp. 105612–105626, 2021.
  • [56] T. P. Lillicrap et al., Continuous Control with Deep Reinforcement Learning, 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., 2016.
    [2016]
  • [55] A. Artunedo, J. Villagra, and J. Godoy, Jerk-Limited Time-Optimal Speed Planning for Arbitrary Paths, IEEE Trans. Intell. Transp. Syst., pp. 1–15, 2021.
  • [54] M. C. Campi, S. Garatti, and M. Prandini, The Scenario Approach for Systems and Control Design, Annu. Rev. Control, vol. 33, no. 2, pp. 149–157, 2009.
    [2009]
  • [53] M. Farina, L. Giulioni, and R. Scattolini, Stochastic linear Model Predictive Control with chance constraints - A review, J. Process Control, vol. 44, pp. 53–67, 2016.
    [2016]
  • [52] H. Zhou, C. Yuan, N. Dong, S. C. Wong, and P. Xu, Severity of Passenger Injuries on Public Buses: a Comparative Analysis of Collision Injuries and Noncollision Injuries, J. Safety Res., vol. 74, pp. 55–69, 2020.
    [2020]
  • [51] S. Cheng, L. Li, M. M. Mei, Y. L. Nie, and L. Zhao, Multiple-Objective Adaptive Cruise Control System Integrated with DYC, IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4550–4559, 2019.
    [2019]
  • [50] H. Chu, L. Guo, Y. Yan, B. Gao, and H. Chen, Self-Learning Optimal Cruise Control Based on Individual Car-Following Style, IEEE Trans. Intell. Transp. Syst., vol. 22, no. 10, pp. 6622–6633, 2021.
  • [4] R. Oliveira, P. Lima, M. Cirillo, and B. Wahlberg, Autonomous Bus Driving: A Novel Motion-Planning Approach, IEEE Veh. Technol. Mag., vol. 16, no. 3, pp. 29– 37, 2021.
  • [49] B. Samani and A. H. Shamekhi, Multi-objective Adaptive Cruise Controller Design using Nonlinear Predictive Controller with the Objective Function with Variable Weights determined by Fuzzy Logic Controller, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 236, no. 1, pp. 142–154, 2022.
  • [48] J. So, J. Hwangbo, S. H. Kim, and I. Yun, Analysis on Autonomous Vehicle Detection Performance according to Various Road Geometry Settings, J. Intell. Transp. Syst. Technol. Planning, Oper., vol. 0, no. 0, pp. 1–12, 2022.
  • [47] H. Lee, H. Lee, D. Shin, and K. Yi, Moving Objects Tracking Based on Geometric Model-Free Approach With Particle Filter Using Automotive LiDAR, IEEE Trans. Intell. Transp. Syst., pp. 1–10, 2022.
  • [46] Van Der Horst, Richard, and Jeroen Hogema. "Time-to-collision and Collision Avoidance Systems." (1993): 129-143.
    [1993]
  • [45] S. Moon and K. Yi, Human Driving Data-based Design of a Vehicle Adaptive Cruise Control Algorithm, Veh. Syst. Dyn., vol. 46, no. 8, pp. 661–690, 2008.
    [2008]
  • [44] J. Kim and S.-C. Kee, A Research on the ODD and OEDR Guidelines Based on the Demonstration Case of Autonomous Driving in Sejong City, Trans. Korean Soc. Automot. Eng., vol. 28, no. 10, pp. 659–668, Oct. 2020.
    [2020]
  • [43] M. A. D. Alves et al., A Modified Algorithm for Training and Optimize RBF Neural networks applied to Sensor Measurements Validation, IEEE Sens. J., vol. 21, no. 17, pp. 18990–18999, 2021.
  • [42] Wang, Y. Hui, X. Sun, and D. Shi, Neural Network Sliding Mode Control of Intelligent Vehicle Longitudinal Dynamics, IEEE Access, vol. 7, pp. 162333– 162342, 2019.
    [2019]
  • [41] H. Du, L. Wang, J. Chen, H. Huang, and Y. Wang, Adaptive Fuzzy Radial Basis Function Neural Network Integral Sliding Mode Tracking Control for Heavy Vehicle Electro-hydraulic Power Steering Systems, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 234, no. 2–3, pp. 872–886, 2020.
  • [40] J. Fei and H. Ding, Adaptive Sliding Mode Control of Dynamic System using RBF Neural Network, Nonlinear Dyn., vol. 70, no. 2, pp. 1563–1573, 2012.
    [2012]
  • [3] W. Gao, J. Gao, K. Ozbay, and Z. P. Jiang, Reinforcement-Learning-Based Cooperative Adaptive Cruise Control of Buses in the Lincoln Tunnel Corridor with Time-Varying Topology, IEEE Trans. Intell. Transp. Syst., vol. 20, no. 10, pp. 3796– 3805, 2019.
    [2019]
  • [39] A. Amirkhani, M. Shirzadeh, N. Tork, and S. B. Shokouhi, Path Tracking of an Autonomous Vehicle by Means of an Indirect Adaptive Neural Controller, ICRoM 2019 - 7th Int. Conf. Robot. Mechatronics, no. ICRoM, pp. 398–403, 2019.
    [2019]
  • [38] R. Wai, Fuzzy Sliding-mode Control using Adaptive Tuning Technique, IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 586–594, 2007.
    [2007]
  • [37] K. D. Young, V. I. Utkin, and Ü. Özgüner, A Control Engineer’s Guide to Sliding Mode Control, IEEE Trans. Control Syst. Technol., vol. 7, no. 3, pp. 328– 342, 1999.
    [1999]
  • [36] A. Raffin, M. Taragna, and M. Giorelli, Adaptive Longitudinal Control of an Autonomous Vehicle with an Approximate Knowledge of its Parameters, 11th Int. Work. Robot Motion Control. RoMoCo 2017 - Work. Proc., pp. 1–6, 2017.
    [2017]
  • [35] H. Kim, D. Kim, I. Shu, and K. Yi, Time-varying Parameter Adaptive Vehicle Speed Control, IEEE Trans. Veh. Technol., vol. 65, no. 2, pp. 581–588, 2016.
    [2016]
  • [34] P. Polack, B. D’Andréa-Novel, M. Fliess, A. de La Fortelle, and L. Menhour, Finite-time Stabilization of Longitudinal Control for Autonomous Vehicles via a Model-free Approach, IFAC-PapersOnLine, vol. 50, no. 1, pp. 12533–12538, 2017.
    [2017]
  • [33] J. Liu, M. Zhao, G. Li, and J. Chen, Multiple Linear Regression Prediction and Wavelet Neural Network based Intelligent Online Tuning Control Method, IEEE Access, vol. 8, no. 2, pp. 160684–160696, 2020.
    [2020]
  • [32] L. Menhour, B. D’Andréa-Novel, M. Fliess, D. Gruyer, and H. Mounier, An Efficient Model-free Setting for Longitudinal and Lateral Vehicle Control: Validation through the Interconnected pro-SiVIC/RTMaps Prototyping platform, IEEE Trans. Intell. Transp. Syst., vol. 19, no. 2, pp. 461–475, 2018.
    [2018]
  • [31] M. Fliess and C. Join, Model-free control, Int. J. Control, vol. 86, no. 12, pp. 2228–2252, 2013.
    [2013]
  • [30] J. Guo, Y. Luo, and K. Li, Adaptive Neural-network Sliding Mode Cascade Architecture of Longitudinal Tracking Control for Unmanned Vehicles, Nonlinear Dyn., vol. 87, no. 4, pp. 2497–2510, 2017.
    [2017]
  • [2] T. Ando, W. Kugimiya, T. Hashimoto, F. Momiyama, K. Aoki, and K. Nakano, Lateral Control in Precision Docking Using RTK-GNSS/INS and LiDAR for Localization, IEEE Trans. Intell. Veh., vol. 6, no. 1, pp. 78–87, 2021.
  • [29] Y. Chen and J. Wang, Adaptive Vehicle Speed Control with Input Injections for Longitudinal Motion Independent Road Frictional Condition Estimation, IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 839–848, 2011.
    [2011]
  • [28] J. Marzbanrad and I. Tahbaz-zadeh Moghaddam, Self-tuning Control Algorithm Design for Vehicle Adaptive Cruise Control system through Real-time Estimation of Vehicle Parameters and Road Grade, Veh. Syst. Dyn., vol. 54, no. 9, pp. 1291–1316, 2016.
    [2016]
  • [27] L. Ge, Y. Zhao, F. Ma, and K. Guo, Towards Longitudinal and Lateral Coupling Control of Autonomous Vehicles using Offset Free MPC, Control Eng. Pract., vol. 121, no. January, p. 105074, 2022.
  • [26] A. Artunedo, J. Villagra, J. Godoy, and M. D. Del Castillo, Motion Planning Approach considering Localization Uncertainty, IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 5983–5994, 2020.
    [2020]
  • [25] J. M. Yoo, Y. Jeong, and K. Yi, Virtual Target-Based Longitudinal Motion Planning of Autonomous Vehicles at Urban Intersections: Determining Control Inputs of Acceleration with Human Driving Characteristic-Based Constraints, IEEE Veh. Technol. Mag., vol. 16, no. 3, pp. 38–46, 2021.
  • [24] S. Xu et al., System and Experiments of Model-Driven Motion Planning and Control for Autonomous Vehicles, IEEE Trans. Syst. Man, Cybern. Syst., pp. 1–14, 2021.
  • [23] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, A Survey of Autonomous Driving: Common Practices and Emerging Technologies, IEEE Access, vol. 8, pp. 58443–58469, 2020.
    [2020]
  • [22] D. Fan, A. Agha, and E. Theodorou, Deep Learning Tubes for Tube MPC, in Robotics Science Systems, 2020.
    [2020]
  • [21] J. Suh, H. Chae, and K. Yi, Stochastic Model-predictive Control for Lane Change Decision of Automated Driving Vehicles, IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 4771–4782, 2018.
    [2018]
  • [20] Lin, J. McPhee, and N. L. Azad, Comparison of Deep Reinforcement Learning and Model Predictive Control for Adaptive Cruise Control, IEEE Trans. Intell. Veh., vol. 6, no. 2, pp. 221–231, 2021.
  • [1] M. Azad, N. Hoseinzadeh, C. Brakewood, C. R. Cherry, and L. D. Han, Fully Autonomous Buses: A Literature Review and Future Research Directions, J. Adv. Transp., vol. 2019, no. Figure 1, 2019.
  • [19] H. Dong, W. Zhuang, B. Chen, G. Yin, and Y. Wang, Enhanced Eco-Approach Control of Connected Electric Vehicles at Signalized Intersection with Queue Discharge Prediction, IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 5457–5469, 2021.
  • [17] Z. Gao, X. Yan, F. Gao, and L. He, Driver-like Decision-making Method for Vehicle Longitudinal Autonomous Driving based on Deep Reinforcement Learning, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., no. 5988, pp. 1–11, 2021.
  • [16] L. Chen, X. Hu, B. Tang, and Y. Cheng, Conditional DQN-based Motion Planning with Fuzzy Logic for Autonomous Driving, IEEE Trans. Intell. Transp. Syst., pp. 1–12, 2020.
    [2020]
  • [15] L. Li, Y. Miao, A. H. Qureshi, and M. C. Yip, MPC-MPNet: Model-predictive Motion Planning Networks for Fast, Near-optimal Planning under Kinodynamic Constraints, IEEE Robot. Autom. Lett., vol. 6, no. 3, pp. 4496–4503, 2021.
  • [14] S. Yoon, H. Jeon, and D. Kum, Predictive Cruise Control using Radial Basis Function Network-based Vehicle Motion Prediction and Chance Constrained Model Predictive Control, IEEE Trans. Intell. Transp. Syst., vol. 20, no. 10, pp. 3832–3843, 2019.
    [2019]
  • [12] J. M. Yoo, Y. Jeong, and K. Yi, Virtual Target-based Longitudinal Motion Planning of Autonomous Vehicles at Urban Intersections: Determining Control Inputs of Acceleration with Human Driving Characteristic-based Constraints, IEEE Veh. Technol. Mag., vol. 16, no. 3, pp. 38–46, 2021.
  • [11] H. Chae and K. Yi, Virtual Target-based Overtaking Decision, Motion Planning, and Control of Autonomous Vehicles, IEEE Access, vol. 8, pp. 51363–51376, 2020.
    [2020]
  • [10] S. Tak, J. Yoon, S. Woo, and H. Yeo, Sectional Information-based Collision Warning System using Roadside Unit Aggregated Connected-vehicle Information for a cooperative Intelligent Transport System, J. Adv. Transp., vol. 2020, 2020.
  • Safe , Efficient , and Comfortable Velocity Control based on Reinforcement Learning for Autonomous Driving
    M. Zhu , Y. Wang , Z. Pu , J. Hu , X. Wang , and R. Ke , vol . 117 , no . April , p. 102662 , [2020]
  • Analyzing the Suitability of Cost Functions for Explaining and Imitating Human Driving Behavior based on Inverse Reinforcement Learning