Simulation and Mitigation of Screening Current in High-Temperature Superconductor Magnet for Magnetic Resonance Application = 자기 공명 응용기기를 위한 고온 초전도 자석의 차폐 전류 해석 및 완화

방제석 2022년
논문상세정보
' Simulation and Mitigation of Screening Current in High-Temperature Superconductor Magnet for Magnetic Resonance Application = 자기 공명 응용기기를 위한 고온 초전도 자석의 차폐 전류 해석 및 완화' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 응용 물리
  • Finite element method
  • MR application
  • hts magnet
  • numerical simulation
  • optimal temperature control
  • screening current
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
4,956 0

0.0%

' Simulation and Mitigation of Screening Current in High-Temperature Superconductor Magnet for Magnetic Resonance Application = 자기 공명 응용기기를 위한 고온 초전도 자석의 차폐 전류 해석 및 완화' 의 참고문헌

  • [9] S. Hahn et al., 45.5-tesla direct-current magnetic field generated with a hightemperature superconducting magnet, Nature, vol. 570, no. 7762, pp. 496–499, 2019.
    [2019]
  • [99] I. Boˇzovi´c, A. Bollinger, J. Wu, and X. He, Can high-Tc superconductivity in cuprates be explained by the conventional BCS theory? Low Temp. Phys., vol. 44, no. 6, pp. 519–527, 2018.
    [2018]
  • [98] J. G. Bednorz and K. A. M¨uller, Possible highT c superconductivity in the Ba- La- Cu- O system, Z. Phys. B, vol. 64, no. 2, pp. 189–193, 1986.
    [1986]
  • [97] G. Grissonnanche et al., Direct measurement of the upper critical field in cuprate superconductors, Nat. Comm., vol. 5, no. 1, pp. 1–8, 2014.
    [2014]
  • [94] A. Pippard, The coherence concept in superconductivity, Physica, vol. 19, no. 1-12, pp. 765–774, 1953.
    [1953]
  • [93] L. P. Gor’kov, Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity, Sov. Phys. JETP, vol. 9, no. 6, pp. 1364–1367, 1959.
    [1959]
  • [92] A. B. Pippard, Elements of classical thermodynamics: for advanced students of physics. Cambridge University Press, 1964.
    [1964]
  • [91] B. M¨uhlschlegel, Die thermodynamischen funktionen des supraleiters, Zeitschrift f¨ur Physik, vol. 155, no. 3, pp. 313–327, 1959.
    [1959]
  • [8] H. Maeda and Y. Yanagisawa, Future prospects for NMR magnets: A perspective, J. Magnetic Reson., vol. 306, pp. 80–85, 2019.
    [2019]
  • [88] C. J. Gorter and H. Casimir, On supraconductivity I, Physica, vol. 1, no. 1-6, pp. 306–320, 1934.
    [1934]
  • [87] F. London and H. London, The electromagnetic equations of the supraconductor, Proc. R. Soc. A: Math. Phys. Eng. Sci., vol. 149, no. 866, pp. 71–88, 1935.
    [1935]
  • [86] M. Tinkham, Introduction to superconductivity. Courier Corporation, 2004.
    [2004]
  • [85] C. Kittel, Introduction to solid state physics. Wiley, 2021.
  • [84] A. R. Innes and E. Rhoderick, Introduction to superconductivity. Pergamon Press, 1980.
    [1980]
  • [83] Y. J. Hwang et al., A study on mitigation of screening current induced field with a 3-T 100-mm conduction-cooled metallic cladding REBCO magnet, IEEE Trans. Appl. Supercond., vol. 27, no. 4, pp. 1–5, 2016.
    [2016]
  • [82] Y.-G. Kim et al., Study for reducing the screening current-induced field in a 10- MHz no-insulation magnet using current sweep reversal method, IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 1–5, 2014.
    [2014]
  • [80] Y. Yanagisawa, Y. Xu, X. Jin, H. Nakagome, and H. Maeda, Reduction of screening current-induced magnetic field of REBCO coils by the use of multifilamentary tapes, IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 1–5, 2014.
    [2014]
  • [7] J. Schwartz et al., Status of high temperature superconductor based magnets and the conductors they depend upon, arXiv preprint arXiv:1108.1634, 2011.
    [2011]
  • [79] Y. Yanagisawa et al., Effect of coil current sweep cycle and temperature change cycle on the screening current-induced magnetic field for Ybco-coated conductor coils, Adv. Cryogenic Eng., vol. 57, pp. 1372–1380, 2011.
    [2011]
  • [78] D. Kolb-Bond et al., Screening current rotation effects: SCIF and strain in REBCO magnets, Supercond. Sci. Technol., vol. 34, no. 9, p. 095004, 2021.
  • [77] D. J. Kolb-Bond et al., Computing strains due to screening currents in REBCO magnets, IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 1–5, 2020.
    [2020]
  • [76] H. Miyazaki et al., Screening-current-induced magnetic field of conductioncooled HTS magnets wound with REBCO-coated conductors, IEEE Trans. Appl. Supercond., vol. 27, no. 4, pp. 1–5, 2017.
    [2017]
  • [74] Y. Yan, Y. Li, and T. Qu, Screening current induced magnetic field and stress in ultra-high-field magnets using REBCO coated conductors, Supercond. Sci. Technol., vol. 35, no. 1, p. 014003, 2021.
  • [73] H. Ueda, H. Maeda, Y. Suetomi, and Y. Yanagisawa, Experiment and numerical simulation of the combined effect of winding, cool-down, and screening current induced stresses in REBCO coils, Supercond. Sci. Technol., vol. 35, no. 5, p. 054001, 2022.
  • [72] H. Ueda, Y. Awazu, K. Tokunaga, and S. Kim, Numerical evaluation of the deformation of REBCO pancake coil, considering winding tension, thermal stress, and screening-current-induced stress, Supercond. Sci. Technol., vol. 34, no. 2, p. 024003, 2021.
  • [71] H. Ueda et al., Numerical simulation on magnetic field generated by screening current in 10-T-class REBCO coil, IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 1–5, 2016.
    [2016]
  • [70] L. Wang, Q. Wang, J. Liu, H. Wang, X. Hu, and P. Chen, Screening currentinduced magnetic field in a noninsulated GdBCO HTS coil for a 24 T allsuperconducting magnet, IEEE Trans. Appl. Supercond., vol. 27, no. 4, pp. 1–6, 2016.
    [2016]
  • [6] K. Lord, New MRI machine in Victoria may help unravel mysteries of stroke, accessed 2014-10-17. [Online]. Available: https://www.abc.net.au/news/ 2014-10-17/new-mri-machine-to-help-unravel-mysteries-of-stroke/5816738
  • [69] Y. Yanagisawa et al., Magnitude of the screening field for YBCO coils, IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 1640–1643, 2010.
    [2010]
  • [68] G. Dilasser, P. Fazilleau, and P. Tixador, Experimental measurement and numerical simulation of the screening current-induced field decay in a small Re- BCO coil, IEEE Trans. Appl. Supercond., vol. 27, no. 4, pp. 1–4, 2016.
    [2016]
  • [66] Y. Koyama et al., Towards beyond 1 GHz NMR: Mechanism of the long-term drift of screening current-induced magnetic field in a Bi-2223 coil, Physica C: Superconductivity, vol. 469, no. 13, pp. 694–701, 2009.
    [2009]
  • [65] Y. Yanagisawa et al., Effect of YBCO-coil shape on the screening currentinduced magnetic field intensity, IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 744–747, 2010.
    [2010]
  • [61] V. M. Rodriguez-Zermeno et al., Towards faster FEM simulation of thin film superconductors: a multiscale approach, IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 3273–3276, 2010.
    [2010]
  • [60] A. Arsenault, F. Sirois, and F. Grilli, Efficient Modeling of High-Temperature Superconductors Surrounded by Magnetic Components Using a Reduced H– Formulation, IEEE Trans. Appl. Supercond., vol. 31, no. 4, pp. 1–9, 2021.
  • [5] P. Wikus, W. Frantz, R. K¨ummerle, and P. Vonlanthen, Commercial gigahertzclass NMR magnets, Supercond. Sci. Technol., vol. 35, no. 3, p. 033001, 2022.
  • [59] S. Mykola and G. Fedor, A–V formulation for numerical modelling of superconductor magnetization in true 3D geometry, Supercond. Sci. Technol., vol. 32, no. 11, p. 115001, 2019.
    [2019]
  • [58] L. Bortot et al., A coupled A–H formulation for magneto-thermal transients in high-temperature superconducting magnets, IEEE Trans. Appl. Supercond., vol. 30, no. 5, pp. 1–11, 2020.
    [2020]
  • [57] A. Arsenault, F. Sirois, and F. Grilli, Implementation of the H-formulation in COMSOL Multiphysics for simulating the magnetization of bulk superconduc- tors and comparison with the H-formulation, IEEE Trans. Appl. Supercond., vol. 31, no. 2, pp. 1–11, 2020.
    [2020]
  • [56] K. Zhang, S. Hellmann, M. Calvi, and T. Schmidt, Magnetization simulation of ReBCO tape stack with a large number of layers using the ANSYS A-V-A formulation, IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 1–5, 2020.
    [2020]
  • [55] E. Berrospe-Juarez, V. M. Zerme˜no, F. Trillaud, and F. Grilli, Real-time simulation of large-scale HTS systems: Multi-scale and homogeneous models using the T–A formulation, Supercond. Sci. Technol., vol. 32, no. 6, p. 065003, 2019.
    [2019]
  • [53] R. Brambilla, F. Grilli, L. Martini, M. Bocchi, and G. Angeli, A finite-element method framework for modeling rotating machines with superconducting windings, IEEE Trans. Appl. Supercond., vol. 28, no. 5, pp. 1–11, 2018.
    [2018]
  • [51] V. M. Zerme˜no and F. Grilli, 3D modeling and simulation of 2G HTS stacks and coils, Supercond. Sci. Technol., vol. 27, no. 4, p. 044025, 2014.
    [2014]
  • [50] R. Brambilla, F. Grilli, and L. Martini, Integral equations for computing AC losses of radially and polygonally arranged HTS thin tapes, IEEE Trans. Appl. Supercond., vol. 22, no. 4, pp. 8 401 006–8 401 006, 2012.
    [2012]
  • [4] M. D. Sauzade and S. K. Kan, High resolution nuclear magnetic resonance spectroscopy in high magnetic fields, Adv. Electronics and Electron Phys., vol. 34, pp. 1–93, 1973.
    [1973]
  • [47] Y. Li et al., Screening-current-induced strain gradient on REBCO conductor: an experimental and analytical study with small coils wound with monofilament and striated multifilament REBCO tapes, IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 1–5, 2020.
    [2020]
  • [46] S. Takahashi et al., Hoop stress modification, stress hysteresis and degradation of a REBCO coil due to the screening current under external magnetic field cycling, IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 1–7, 2020.
    [2020]
  • [45] M. C. Ahn, T. Yagai, S. Hahn, R. Ando, J. Bascunan, and Y. Iwasa, Spatial and temporal variations of a screening current induced magnetic field in a doublepancake HTS insert of an LTS/HTS NMR magnet, IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 2269–2272, 2009.
    [2009]
  • [44] S. Hahn, J. Bascu˜n´an, W.-S. Kim, E. S. Bobrov, H. Lee, and Y. Iwasa, Field mapping, NMR lineshape, and screening currents induced field analyses for homogeneity improvement in LTS/HTS NMR magnets, IEEE Trans. Appl. Supercond., vol. 18, no. 2, pp. 856–859, 2008.
    [2008]
  • [3] J. A. Pople, W. G. Schneider, W. Schneider, H. Bernstein, and H. J. Bernstein, High-resolution nuclear magnetic resonance. McGraw-Hill, 1959.
    [1959]
  • [37] F. Dong, Z. Huang, D. Qiu, L. Hao, W. Wu, and Z. Jin, Design and analysis of a small-scale linear propulsion system for maglev applications (2)–the HTS noinsulation magnets, IEEE Trans. Appl. Supercond., vol. 29, no. 2, p. 5201005, 2019.
    [2019]
  • [35] F. Dong, Z. Huang, D. Qiu, L. Hao, W. Wu, and Z. Jin, Design and analysis of a small-scale linear propulsion system for maglev applications (1)—the overall design process, IEEE Trans. Appl. Supercond., vol. 29, no. 2, p. 5201005, 2019.
    [2019]
  • [2] D. G. Nishimura, Principles of magnetic resonance imaging. Standford Univ., 2010.
    [2010]
  • [24] Y. Wang, Q. Wang, J. Liu, J. Cheng, and F. Liu, Insert magnet and shim coils design for a 27 T nuclear magnetic resonance spectrometer with hybrid high and low temperature superconductors, Supercond. Sci. Technol., vol. 33, no. 6, p. 064004, may 2020.
    [2020]
  • [22] Y. Li, L. Wang, and Q. Wang, Electromagnetic Design of HTS Insert for Ultrahigh Field NMR Magnet, IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1–5, 2017.
    [2017]
  • [21] R. Piao et al., High resolution NMR measurements using a 400 MHz NMR with an (RE) Ba2Cu3O7−x high-temperature superconducting inner coil: Towards a compact super-high-field NMR, J. Magnetic Reson., vol. 263, pp. 164– 171, 2016.
    [2016]
  • [20] J. Liu, Y. Dai, and L. Li, Progress in the development of a 25 T all superconducting NMR magnet, Cryogenics, vol. 79, pp. 79–84, 2016.
    [2016]
  • [1] E. Moser, E. Laistler, F. Schmitt, and G. Kontaxis, Ultra-high field NMR and MRI—the role of magnet technology to increase sensitivity and specificity, Frontiers Phys., vol. 5, p. 33, 2017.
    [2017]
  • [19] L. Rossi and C. Senatore, HTS Accelerator Magnet and Conductor Development in Europe, Instruments, vol. 5, no. 1, p. 8, 2021.
  • [13] B. Sorbom et al., Arc: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets, Fusion Eng. Des., vol. 100, pp. 378 – 405, 2015.
    [2015]
  • [138] S. Hahn, D. K. Park, J. Bascu˜n´an, and Y. Iwasa, HTS pancake coils without turn-to-turn insulation, IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 1592– 1595, 2010.
    [2010]
  • [137] S. Wimbush and N. Strickland, Critical current characterisation of SuNAM SAN04200 2G HTS superconducting wire, accessed 2017-07-07. [Online]. Available: https://doi.org/10.6084/m9.figshare.5182354.v1
  • [136] J. Rhyner, Magnetic properties and AC-losses of superconductors with powerlaw current-voltage characteristics, Phys. C: Supercond. Appl., vol. 212, pp. 292–300, 1993.
    [1993]
  • [133] A. S. Conference, CONTINUUM, accessed 2018-11-05. [Online]. Available: https://appliedsuperconductivity.org/asc2018/wp-content/uploads/2018/ 11/ASC18ContinuumMagazine.pdf
  • [130] S. G. Lee et al., Development Progress of Metal-Clad No-Isulation All- REBCO Magnet for 400 MHz High Resolution NMR. Andong, Korea: MEM18, 2018.
    [2018]
  • [12] P. Fazilleau, X. Chaud, F. Debray, T. L´ecrevisse, and J.-B. Song, 38 mm diameter cold bore metal-as-insulation HTS insert reached 32.5 T in a background magnetic field generated by resistive magnet, Cryogenics, vol. 106, p. 103053, 2020.
    [2020]
  • [124] B. J. Parkinson, R. Slade, M. J. Mallett, and V. Chamritski, Development of a cryogen free 1.5 T YBCO HTS magnet for MRI, IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 4 400 405–4 400 405, 2012.
    [2012]
  • [123] H. Kitaguchi et al., Development of a Bi-2223 HTS magnet for 3T MRI system for human brains, IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 710–713, 2010.
    [2010]
  • [121] J. Bascu˜n´an, S. Hahn, Y. Kim, J. Song, and Y. Iwasa, 90-mm/18.8-T all-HTS insert magnet for 1.3 GHz LTS/HTS NMR application: Magnet design and double-pancake coil fabrication, IEEE Trans. Appl. Supercond., vol. 24, no. 3, p. 4300904, 2013.
    [2013]
  • [120] J. Bascu˜n´an, W. Kim, S. Hahn, E. S. Bobrov, H. Lee, and Y. Iwasa, An LTS/HTS NMR magnet operated in the range 600–700 MHz, IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 1446–1449, 2007.
    [2007]
  • [119] M. W. Garrett, Thick cylindrical coil systems for strong magnetic fields with field or gradient homogeneities of the 6th to 20th order, J. Appl. Phys., vol. 38, no. 6, pp. 2563–2586, 1967.
    [1967]
  • [118] M. Gyimesi and D. Ostergaard, Inductance computation by incremental finite element analysis, IEEE Trans. Magn., vol. 35, no. 3, pp. 1119–1122, 1999.
    [1999]
  • [117] C. Hoer and Y. Love, Exact inductance equations for rectangular conductors with applications to more complicated geometries, J. Res. Nat. Bureau Standards-C. Eng. Instrum, vol. 69, no. 2, pp. 127–137, 1965.
    [1965]
  • [116] M. W. Garrett, Calculation of fields, forces, and mutual inductances of current systems by elliptic integrals, J. Appl. Phys., vol. 34, no. 9, pp. 2567–2573, 1963.
    [1963]
  • [115] E. B. Rosa and F. W. Grover, Formulas and tables for the calculation of mutual and self-inductance. US Government Printing Office, 1948, no. 169.
    [1948]
  • [114] G. Kim et al, Fast Current Distribution Simulation Method for No-insulation HTS Coil with Defects, IEEE Trans. Appl. Supercond., 2022.
  • [113] G. Kim et al., A numerical method for spatially-distributed transient simulation to replicate nonlinear ‘defect-irrelevant’behaviors of no-insulation HTS coil, Supercond. Sci. Technol., vol. 34, no. 11, p. 115004, 2021.
  • [112] T. Wang et al., Analyses of transient behaviors of no-insulation REBCO pancake coils during sudden discharging and overcurrent, IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 1–9, 2015.
    [2015]
  • [110] S. Stavrev et al., Comparison of numerical methods for modeling of superconductors, IEEE Trans. Magn., vol. 38, no. 2, pp. 849–852, 2002.
    [2002]
  • [109] R. Brambilla, F. Grilli, and L. Martini, Development of an edge-element model for AC loss computation of high-temperature superconductors, Supercond. Sci. Technol., vol. 20, no. 1, pp. 16–24, 2007.
    [2007]
  • [108] Y. Iwasa, Case studies in superconducting magnets: design and operational issues. Springer Science & Business Media, 2009.
    [2009]
  • [107] D. A. Huse, M. Fisher, and D. S. Fisher, Are superconductors really superconducting? Nature, vol. 358, no. 6387, pp. 553–559, 1992.
    [1992]
  • [104] K. Tsuchiya et al., Superconducting properties of commercial REBCO-coated conductors with artificial pinning centers, Supercond. Sci. Technol., vol. 34, no. 10, p. 105005, 2021.
  • [102] W. Kwok, U. Welp, V. Vinokur, S. Fleshler, J. Downey, and G. Crabtree, Direct observation of intrinsic pinning by layered structure in single-crystal YBa2Cu3O7−δ, Phys. Rev. Lett., vol. 67, no. 3, p. 390, 1991.
    [1991]
  • [100] S. J. Chapman, Q. Du, and M. D. Gunzburger, On the Lawrence–Doniach and anisotropic Ginzburg–Landau models for layered superconductors, SIAM J. Appl. Math., vol. 55, no. 1, pp. 156–174, 1995.
    [1995]
  • World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet ,
    J. Liu . , vol . 33 , no . 3 , p. 03LT01 , [2020]
  • Vortex confinement by columnar defects in YBa2Cu3O7 crystals : Enhanced pinning at high fields and temperatures
    L. Civale . , vol . 67 , no . 5 , p. 648 , [1991]
  • Thermal fluctuations , quenched disorder , phase transitions , and transport in type-II superconductors
    D. S. Fisher , M. P. Fisher , and D. A. Huse vol . 43 , no . 1 , p. 130 [1991]
  • Theory of the superconducting state . I . The ground state at the absolute zero of temperature
    H. Fr¨ohlich vol . 79 , no . 5 , p. 845 , [1950]
  • The effect of fast neutron irradiation on the superconducting properties of REBCO coated conductors with and without artificial pinning centers
  • The EuCARD-2 future magnets European collaboration for accelerator-quality HTS magnets
    L. Rossi . vol . 25 , no . 3 , p. 4001007 [2014]
  • The 40 T Superconducting Magnet Project at the National High Magnetic Field Laboratory
    H. Bai . vol . 30 , no . 4 , p. 4300405 , [2020]
  • Study on elimination of screening-current-induced field in pancake-type non-insulated HTS coil
    K. Kim . vol . 29 , no . 3 , p. 035009 [2016]
  • Screening currentinduced field in non-insulated GdBCO pancake coil
    D. Yang , K. Kim , Y. Choi , O. Kwon , Y . Park , and H. Lee vol . 26 , no . 10 , p. 105025 , [2013]
  • Screening current effect on the stress and strain distribution in REBCO high-field magnets : experimental verification and numerical analysis
    Y. Yan , C. Xin , M. Guan , H. Liu , Y. Tan , and T. Qu , vol . 33 , no . 5 , p. 05LT02 , [2020]
  • Scaling between superconducting critical temperature and structural coherence length in YBa2Cu3O6 . 9 films
  • Reproducibility of the field homogeneity of a metal-clad noinsulation all-REBCO magnet with a multi-layer ferromagnetic shim ,
    J. Y. Jang . vol . 33 , no . 2 , p. 025005 , [2020]
  • Record fastcycling accelerator magnet based on HTS conductor
  • R & D project on HTS magnets for ultrahigh-field MRI systems ,
    T. Tosaka . , vol . 26 , no . 4 , p. 4402505 [2016]
  • Progress in the development and construction of a 32- T superconducting magnet
    H. W. Weijers . , vol . 26 , no . 4 , p. 4300807 [2016]
  • Practical fit functions for transport critical current versus field magnitude and angle data from ( RE ) BCO coated conductors at fixed low temperatures and in high magnetic fields ,
  • Numerical solution of critical state in superconductivity by finite element software
    Z. Hong , A. Campbell , and T. Coombs , vol . 19 , no . 12 , p. 1246 [2006]
  • No-insulation multi-width winding technique for high temperature superconducting magnet ,
    S. Hahn . , vol . 103 , no . 17 , p. 173511 [2013]
  • Microscopic theory of superconductivity
    J. Bardeen , L. N. Cooper , and J. R. Schrieffer vol . 106 , no . 1 , p. 162 [1957]
  • Manufacture and Performance Test of 3.5 T High Temperature Superconducting Coils for the Magnetic Separation ,
    L. Guo . vol . 30 , no . 4 , p. 3700605 , [2020]
  • Magnet design of 10MJ multiple solenoids SMES
  • Integral equations for the current density in thin conductors and their solution by the finite-element method
    R. Brambilla , F. Grilli , L. Martini , and F. Sirois , vol . 21 , no . 10 , p. 105008 , [2008]
  • High temperature superconductors for fusion magnets ,
    P. Bruzzone . vol . 58 , no . 10 , p. 103001 [2018]
  • High temperature superconducting devices and renewable energy resources in future power grids : A case study
    O. Rahman , K.M . Muttaqi , and D. Sutanto , vol . 29 , no . 2 , p. 3800404 [2019]
  • Field angular dependence of hysteresis losses of coated conductor for high field magnets
    J. Lu . vol . 23 , no . 3 , p. 8200804 , [2013]
  • Field and temperature scaling of the critical current density in commercial REBCO coated conductors
  • Feasibility Study of a DC Linear Motor Based on the Magnet Track of High-Temperature Superconducting Maglev
    Y . Du . vol . 30 , no . 3 , p. 3600605 , [2020]
  • Electromechanical Design of an MW Class Wave Energy Converter With an HTS Tubular Linear Generator
    H. Jing , N. Maki , T. Ida , and M. Izumi , vol . 28 , no . 4 , p. 4902504 [2018]
  • Electromagnetic design of 1.5 T no-insulation REBCO coil system charged by multiflux pumps for dedicated MRI ,
    X. Wang . , vol . 29 , no . 5 , p. 4601805 [2019]
  • Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K , selffield and 4.2 K , 19 T
    C. Barth , G. Mondonico , and C. Senatore vol . 28 , no . 4 , p. 045011 , [2015]
  • Development of an edge-element model for AC loss computation of high-temperature superconductors ,
    R. Brambilla , F. Grilli , and L. Martini , vol . 20 , no . 1 , p. 16 , [2006]
  • Development of an HTS Magnet for Ultra-Compact MRI System : Optimization Using Genetic Algorithm ( GA ) Method
    B. Shen . , vol . 30 , no . 4 , p. 4601805 , [2020]
  • Design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems ,
    H. Miyazaki . vol . 29 , no . 10 , p. 104001 [2016]
  • Design of a 30-T Superconducting Magnet for Quantum Oscillation Application ,
    J. Liu , L. Wang , Y. Wang , Q. Wang , and Y. Dai , vol . 29 , no . 5 , p. 4301205 [2019]
  • Design considerations and experimental results for MRI systems using HTS magnets ,
    B. Parkinson , vol . 30 , no . 1 , p. 014009 , [2016]
  • Design and manufacture of half-size 3-T high-temperature superconducting magnet for MRI ,
    M. Oya . , vol . 28 , no . 3 , p. 4401205 [2018]
  • Design , construction and 13 K conduction-cooled operation of a 3 T 100 mm stainless steel cladding all-REBCO magnet
    J. Y. Jang . vol . 30 , no . 10 , p. 105012 [2017]
  • Design , construction , and operation of an 18 T 70 mm noinsulation ( RE ) Ba2Cu3O7- x magnet for an axion haloscope experiment
    J. Kim . vol . 91 , no . 2 , p. 023314 , [2020]
  • Conduction cooled magnet design for 1.5 T , 3.0 T and 7.0 T MRI systems ,
    T. Baig , Z. Yao , D. Doll , M. Tomsic , and M. Martens , vol . 27 , no . 12 , p. 125012 , [2014]
  • Conceptual Design of a Bitter-Like Superconducting Magnet Stacked by REBCO Annular Plates and Magnetized by Flux Pump
  • Comparative Study of 1- MW PM and HTS Synchronous Generators for Marine Current Turbine
    Z. Li , N. Maki , T. Ida , M. Miki , and M. Izumi vol . 28 , no . 4 , p. 5206605 [2018]
  • Compact fusion energy based on the spherical tokamak ,
    A. Sykes . , vol . 58 , no . 1 , p. 016039 [2017]
  • Commercial Design and Operating Characteristics of a 300 kW Superconducting Induction Heater ( SIH ) Based on HTS Magnets
    J. Choi . vol . 29 , no . 5 , p. 3700105 [2019]
  • Calculation of alternating current losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications
  • Calculation of AC losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications
  • Absolute values of the London penetration depth in YBa 2 Cu 3 O 6+ y measured by zero field ESR spectroscopy on Gd doped single crystals
    T. Pereg-Barnea . , vol . 69 , no . 18 , p. 184513 [2004]
  • AC losses in thin superconductors : the integral equation method applied to stacks and windings
  • A new HTS dual stator linear permanent magnet Vernier machine with Halbach array for wave energy conversion
    M. Ardestani , N. Arish , and H. Yaghobi , vol . 569 , p. 1353593 , [2020]
  • A high-resolution 1.3-GHz/54-mm LTS/HTS NMR magnet ,
    Y. Iwasa . vol . 25 , no . 3 , p. 4301205 [2014]
  • A full 3D time-dependent electromagnetic model for Roebel cables
    V. M. Zermeno , F. Grilli , and F. Sirois , vol . 26 , no . 5 , p. 052001 , [2013]
  • A finite element model for simulating second generation high temperature superconducting coils/stacks with large number of turns
    F. Liang . vol . 122 , no . 4 , p. 043903 [2017]
  • A compact 3 T all HTS cryogenfree MRI system ,
    B. Parkinson , K. Bouloukakis , and R. Slade , vol . 30 , no . 12 , p. 125009 [2017]
  • A Design Study on 40 MW Synchronous Motor With No- Insulation HTS Field Winding
    U. Bong . vol . 29 , no . 5 , p. 5203706 [2019]
  • 400-MHz/60-mm all-REBCO nuclear magnetic resonance magnet : Magnet design ,