Modeling of a Methanol Synthesis Process Utilizing CO2 and Multi-objective Optimization for CO2 Reduction and Economics = 이산화탄소를 활용한 메탄올 합성 공정 모델링 및 다목적 최적화를 통한 이산화탄소 저감과 경제성 최적화

정재훈 2022년
' Modeling of a Methanol Synthesis Process Utilizing CO2 and Multi-objective Optimization for CO2 Reduction and Economics = 이산화탄소를 활용한 메탄올 합성 공정 모델링 및 다목적 최적화를 통한 이산화탄소 저감과 경제성 최적화' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 화학공학과 관련공학
  • C1 리포밍
  • Multi-objective optimization
  • Techno-economic analysis
  • co2 reduction
  • gasoline synthesis
  • methanolsynthesis
  • reforming
  • 가솔린 합성 공정
  • 경제성 평가
  • 다중목적최적화
  • 메탄올 합성 공정
  • 배기가스
  • 엔진 플랜트
  • 이산화탄소저감
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,681 0

0.0%

' Modeling of a Methanol Synthesis Process Utilizing CO2 and Multi-objective Optimization for CO2 Reduction and Economics = 이산화탄소를 활용한 메탄올 합성 공정 모델링 및 다목적 최적화를 통한 이산화탄소 저감과 경제성 최적화' 의 참고문헌

  • Øi, L. E. Aspen HYSYS Simulation of CO 2 Removal by Amine Absorption from a Gas Based Power Plant. SIMS2007 Conference 2007, 73–81.
    [2007]
  • Zhang, C. , Jun, K. W. , Gao, R. , Kwak, G. , and Park, H. G. Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steam-mixed reforming: Techno-economic analysis. Fuel 2017, 190, 303–311.
    [2017]
  • Xiang, X. , Guo, L. , Wu, X. , Ma, X. , and Xia, Y. Urea formation from carbon dioxide and ammonia at atmospheric pressure. Environmental Chemistry Letters 2012, 10, 295–300.
    [2012]
  • Walas, S. M. Chemical process equipment: Selection and design. 2013.
    [2013]
  • Van-Dal, É. S. and Bouallou, C. Design and simulation of a methanol production plant from CO2 hydrogenation. Journal of Cleaner Production 2013, 57, 38–45.
    [2013]
  • Son, M. , Park, M. J. , Kwak, G. , Park, H. G. , and Jun, K. W. Maximum production of methanol in a pilot-scale process. Korean Journal of Chemical Engineering 2018, 35, 355–363.
    [2018]
  • Sinnott, R. K. and Towler, G. Chemical Engineering Design. 2013.
    [2013]
  • Shahrokhi, M. and Baghmisheh, G. R. Modeling, simulation and control of a methanol synthesis fixed-bed reactor. Chemical Engineering Science 2005, 60, 4275–4286.
    [2005]
  • Seider, W.D., Seader, J.D., and Lewin, D.R. Product and Process Design Principles: Synthesis, Analysis and Design. Product and Process Design Principles: Synthesis, Analysis and Design. . (2018).
    [2018]
  • Schaub, T. and Paciello, R. A. A process for the synthesis of formic acid by CO2 hydrogenation: Thermodynamic aspects and the role of CO. Angewandte Chemie - International Edition 2011, 50, 7278–7282.
    [2011]
  • Rownaghi, A. A. , Rezaei, F. , Stante, M. , and Hedlund, J. Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Applied Catalysis B: Environmental 2012, 119–120, 56–61.
  • Property impacts on Carbon Capture and Storage ( CCS ) processes : A review
  • Polasek, J. and Bullin, J. Selecting Amines for Sweetening Units. Energy progress 1984, 4, 146–150.
    [1984]
  • Peters, M. S. and Peters, J. I. Plant design and economics for chemical engineers. Engineering Economist 1959
  • Park, N. , Park, M. J. , Ha, K. S. , Lee, Y. J. , and Jun, K. W. Modeling and analysis of a methanol synthesis process using a mixed reforming reactor: Perspective on methanol production and CO2 utilization. Fuel 2014, 129, 163–172.
    [2014]
  • Park, N. , Park, M. J. , Baek, S. C. , Ha, K. S. , Lee, Y. J. , Kwak, G. , Park, H. G. , and Jun, K. W. Modeling and optimization of the mixed reforming of methane: Maximizing CO2 utilization for non-equilibrated reaction. Fuel 2014, 115, 357–365.
    [2014]
  • Otto, A. , Grube, T. , Schiebahn, S. , and Stolten, D. Closing the loop: Captured CO2 as a feedstock in the chemical industry. Energy and Environmental Science 2015, 8, 3283–3297.
    [2015]
  • Nikolaidis, P. and Poullikkas, A. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews 2017, 67, 597–611.
    [2017]
  • Ng, K. L. , Chadwick, D. , and Toseland, B. A. Kinetics and modelling of dimethyl ether synthesis from synthesis gas. Chemical Engineering Science 1999, 54, 3587–3592.
    [1999]
  • Nelson, D. A., Kirkwood, R. L., and Douglas, J. M. In Conceptual design of chemical processes, 1989.
    [1989]
  • Meylan, F. D. , Moreau, V. , and Erkman, S. CO2 utilization in the perspective of industrial ecology, an overview. Journal of CO2 Utilization 2015, 12, 101–108.
    [2015]
  • Mar Perez-Fortes., Jan C. Schoneberger., Aikaterini Boulamanti., and Evangelos Tzimas. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Applied Energy 2016, 161, 718–732.
    [2016]
  • Manenti, F. , Cieri, S. , Restelli, M. , and Bozzano, G. Dynamic modeling of the methanol synthesis fixed-bed reactor. Computers and Chemical Engineering 2013, 48, 325–334.
    [2013]
  • Ma, J. , Sun, N. , Zhang, X. , Zhao, N. , Xiao, F. , Wei, W. , and Sun, Y. A short review of catalysis for CO2 conversion. Catalysis Today 2009, 148, 221–231.
    [2009]
  • Liu, D. , Yao, C. , Zhang, J. , Fang, D. , and Chen, D. Catalytic dehydration of methanol to dimethyl ether over modified γ-Al2O3 catalyst. Fuel 2011, 90, 1738–1742.
    [2011]
  • Kordabadi, H. and Jahanmiri, A. Optimization of methanol synthesis reactor using genetic algorithms. Chemical Engineering Journal 2005, 108, 249–255.
    [2005]
  • Kianfar, E. , Hajimirzaee, S. , mousavian, S. , and Mehr, A. S. Zeolite-based catalysts for methanol to gasoline process: A review. Microchemical Journal 2020, 156, 104822.
    [2020]
  • Jeong, J. H. , Kim, Y. , Oh, S. , Park, M. , and Lee, W. B. Modeling of a Methanol Synthesis Process to Utilize CO2 in the Exhaust Gas from the Engine Plant. Korean Journal of Chemical Engineering 2022.
  • Jeong, J. H. , Kim, S. , Park, M. , and Lee, W. B. Multi-objective optimization of a methanol synthesis process : CO2 emission vs . economics. Korean Journal of Chemical Engineering 2022.
  • Huang, C. H. and Tan, C. S. A review: CO2 utilization. Aerosol and Air Quality Research 2014, 14, 480–499.
    [2014]
  • Homepage - U.S. Energy Information Administration (EIA). https://www.eia.gov/ (accessed Apr. 30, 2021).
  • Home - Methanol Market Services Asia. https://www.methanolmsa.com/ (accessed Apr. 30, 2021).
  • Graaf, G. H. , Stamhuis, E. J. , and Beenackers, A. A. C. M. Kinetics of low-pressure methanol synthesis. Chemical Engineering Science 1988, 43, 3185–3195.
    [1988]
  • GitHub - edgarsmdn/Aspen_HYSYS_Python: Aspen HYSYS - Python connection. https://github.com/edgarsmdn/Aspen_HYSYS_Python (accessed Nov. 10, 2021).
  • Gibbins, J. and Chalmers, H. Carbon capture and storage. Energy Policy 2008, 36, 4317–4322.
    [2008]
  • Development and techno-economic study of methanol production from coke-oven gas blended with Linz Donawitz gas .
  • Deb, K. , Member, A. , Pratap, A. , Agarwal, S. , and Meyarivan, T. A fast and elitist multi-objective genetic algorithm:NSGAII. 2002, 6, 182–197.
    [2002]
  • Coteron, A. and Hayhurst, A. N. Kinetics of the synthesis of methanol from CO + H2 and CO + CO2 + H2 over copper-based amorphous catalysts. Chemical Engineering Science 1994, 49, 209–221.
    [1994]
  • Commodity Markets. https://www.worldbank.org/en/research/commodity-markets (accessed Nov. 9, 2021).
  • CAMEO Chemicals | NOAA. https://cameochemicals.noaa.gov/ (accessed Nov. 9, 2021).
  • Brunetti, A. , Scura, F. , Barbieri, G. , and Drioli, E. Membrane technologies for CO2 separation. Journal of Membrane Science 2010, 359, 115–125.
    [2010]
  • Blank, J. and Deb, K. Pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509.
  • Bao, C. , Xu, L. , Goodman, E. D. , and Cao, L. A novel non-dominated sorting algorithm for evolutionary multi-objective optimization. Journal of Computational Science 2017, 23, 31–43.
    [2017]
  • Azizi, Z. , Rezaeimanesh, M. , Tohidian, T. , and Rahimpour, M. R. Dimethyl ether: A review of technologies and production challenges. Chemical Engineering and Processing: Process Intensification 2014, 82, 150–172.
    [2014]
  • Atsonios, K. , Panopoulos, K. D. , and Kakaras, E. Investigation of technical and economic aspects for methanol production through CO2 hydrogenation. International Journal of Hydrogen Energy 2016, 41, 2202–2214.
    [2016]
  • Alizadeh, A. , Mostoufi, N. , and Jalali-Farahani, F. Multiobjective dynamic optimization of an industrial steam reformer with genetic algorithms. International Journal of Chemical Reactor Engineering 2007, 5
    [2007]