Design of Metal Phosphate Based Electrodes for High-Performance Li-Ion & Li-S Battery = 금속인산화물 기반의 고성능 리튬이온 및 리튬황전지 전극 개발

박기민 2022년
논문상세정보
' Design of Metal Phosphate Based Electrodes for High-Performance Li-Ion & Li-S Battery = 금속인산화물 기반의 고성능 리튬이온 및 리튬황전지 전극 개발' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
  • Carbon/metal oxide heterostructure
  • Cathode materials
  • Electrocatalyst
  • Electronic/ionic conduction
  • Graphene aerogel
  • Lithium-sulfur batteries
  • Materials synthesis
  • lithium-ion batteries
  • metalphosphate
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
708 0

0.0%

' Design of Metal Phosphate Based Electrodes for High-Performance Li-Ion & Li-S Battery = 금속인산화물 기반의 고성능 리튬이온 및 리튬황전지 전극 개발' 의 참고문헌

  • Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts, Nano Lett. 16 (2016) 519
    [2016]
  • Z. Yuan, H. Peng, T. Hou, J. Huang, C. Chen, D. Wang, X. Cheng, F. Wei, and Q. Zhang, Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts, Nano Lett. 16 (2016) 519-527
    [2016]
  • Z. Peng, W. Fang, H. Zhao, J. Fang, H. Cheng, T.N.L. Doan, Graphene-based ultrathin microporous carbon with smaller sulfur molecules for excellent rate performance of lithium–sulfur cathode, J. Power Sources, 282 (2015), 70-78
    [2015]
  • Z. Li, Z. Peng, H. Zhang, T. Hu, M. Hu, K. Zhu, and X. Wang, [100]-Oriented LiFePO4 Nanoflakes toward High Rate Li-Ion Battery Cathode, Nano Lett. 2016, 16, 795-799.
    [2016]
  • Z. Li, Y. Huang, L. Yuan, Z. Hao, Y. Huang, Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries, Carbon 92, (2015) 41-63
    [2015]
  • Z. Li, H. B. Wu, X. W. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries, Energy Environ. Sci. 9 (2016) 3061
    [2016]
  • Y.-S. Su, A. Manthiram, Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer, Nat. Commun. 3 (2012) 1166
    [2012]
  • Y. Zhong, L. Yin, P. He, W. Liu, Z. Wu, H. Wang, Surface chemistry in cobalt phosphide-stabilized lithium–sulfur batteries, J. Am. Chem. Soc. 140 4 (2018) 1455-1459.
    [2018]
  • Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu, K. Wang, H. Li, C. J. Harris, K. Xi, R. V. Kumar, S. Ding, Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering, Adv. Energy Mater. 9 (2019) 1900953
    [2019]
  • Y. Tang, Y Huang, L. Luo, D. Fan, Y. Lu, A. Manthiram, Self-supported MoO2/MoS2 nano-sheets embedded in a carbon cloth as a binder-free substrate for high-energy lithium–sulfur batteries, Electrochim. Acta 367 (2021) 137482
  • Y. Park, B. Lee, C. Kim, J. Kim, S. Nam, Y. Oh, B. Park, Modification of gold catalysis with aluminum phosphate for oxygen-reduction reaction, J. Phys. Chem. C 114, 3688 (2010).
    [2010]
  • Y. Pang , Y. Wen , W. Li , Y. Sun , T. Zhu , Y. Wang, Y. Xia, A Sulfur–FePO4–C nanocomposite cathode for stable and anti-self-discharge lithium–sulfur batteries, J. Mater. Chem. A 5 (2017) 17926
    [2017]
  • Y. Li, J. Wu, B. Zhang, W. Wang, G. Zhang, Z. W. Seh, N. Zhang, J. Sun, L. Huang, J. Jiang, J Zhou, Y. Sun, Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms, Energy Storage Mater. 30 (2020) 250-259
  • Y. Hwa, H. K. Seo, J.-M. Yuk, E. J. Carins, Freeze-dried sulfur–graphene oxide–carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells, Nano Lett. 17 (2017) 7086
    [2017]
  • Y. Han, B. Liu, Z. Xiao, W. Zhang, X Wang, G. Pan, Y. Xia, X Xia, J. Tu, Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives, InfoMat. 3 (2021) 155-174
  • X. Tao, J. Wang, C. Liu, H. Wang, H. Yao, G. Zheng, Z. W. Seh, Q. Cai, W. Li, G. Zhou, C. Zu, and Y. Cui, Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design, Nat. Commun. 7, (2016) 11203
    [2016]
  • X. Tao, J. Wang, C. Liu, H. Wang, H. Yao, G. Zheng, Z. W. Seh, Q. Cai, W. Li, G. Zhou, C. Zu, Y. Cui, Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design, Nat. Commun. 7, (2016) 11203
    [2016]
  • X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries, Nat. Commun. 6 (2015) 5682
    [2015]
  • X. Ji, K. T. Lee, L. F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nat. Mater. 8 (2009) 500-506
    [2009]
  • Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes ,
  • W. Liu, C. Luo, S. Zhang, B. Zhang, J. Ma, X. Wang, W. Liu, Z. Li, Q.-H. Yang, W. Lv, Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium–sulfur batteries, ACS Nano 15 4 (2021) 7491-7499
  • Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries
  • V. Aravindan, J. Gnanaraj, Y.-S. Lee and S. Madhavi, LiMnPO4 – A next generation cathode material for lithium-ion batteries, J. Mater. Chem. A 1, (2013) 3518-3539
    [2013]
  • Ultrafine Co3Se4 nanoparticles in nitrogen-doped 3d carbon matrix for high-stable and long-cycle-life lithium sulfur batteries
  • The effect of AlPO4-coating layer on the electrochemical properties in LiCoO2 thin films
  • The Electronic Structure and Bandgap of LiFePO4 and LiMnPO4 ,
  • The Defect Chemistry of LiFePO4 Prepared by Hydrothermal Method at Different pH Values ,
  • Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium-sulfur batteries
  • T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao, S. Fan, B. Liu, B. Li, F. Kang, Q.-H. Yang, Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries, Energy Environ. Sci. 10 (2017) 1694-1703
    [2017]
  • T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao, S. Fan, B. Liu, B. Li, F. Kang, Q.-H. Yang, Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries, Energy Environ. Sci. 10 (2017) 1694
    [2017]
  • T. Wang, M. Antonietti, and H. Cölfen, Calcite Mesocrystals: Morphing Crystals by a Polyelectrolyte, Chem. Eur. J. 2006, 12, 5722-5730.
    [2006]
  • T. Drezen, N.–H. Kwon, P. Bowen, I. Teerlinck, M. Isono, and I. Exnar, Effect of Particle Size on LiMnPO4 Cathodes, J. Power Sources 2007, 6, 949-953.
    [2007]
  • Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates
  • Synthesis of LiMn0.8Fe0.2PO4 Mesocrystals for High-Performance Li-Ion Cathode Materials
  • Synthesis , Growth Mechanism , and Morphology Control of LiFe1/3Mn1/3Co1/3PO4 via a Microwave-Assisted Hydrothermal Method
  • Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries
  • Study of the Surface Properties and Nanoscale Effects on LiMnPO4
  • Structural properties of iron-phosphate glasses : spectroscopic studies and ab-initio simulations
  • Solvothermal Synthesis of Fe-Doping LiMnPO4 Nanomaterials for Li-Ion Batteries
  • Single-layer graphene-wrapped Li4Ti5O12 anode with superior lithium storage capability
  • Shape Control of Inorganic Nanoparticles from Solution
    Z. Wu , S. Yang , and W. Wu 8 , 1237-1259 . [2016]
  • S. Xin, L Gu, N.-H Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G Guo, L.-J. Wan, Smaller sulfur molecules promise better lithium−sulfur batteries, J. Am. Chem. Soc. 134 (2012) 18510
    [2012]
  • S. W. Oh, S.–T. Myung, S.–M. Oh, K. H. Oh, K. Amine, B. Scrosati, and Y. –K. Sun, Double Carbon Coating of LiFePO4 as High Rate Electrode for Rechargeable Lithium Batteries, Adv. Mater. 2010, 22, 4842-4845.
    [2010]
  • S. Dörfler, H. Althues, P. Härtel, T. Abendroth, B. Schumm, S. Kaskel, Challenges and key parameters of lithium-sulfur batteries on pouch cell level, Joule 4 (2020) 539-554
    [2020]
  • S. D. Seo, C. Choi, D Park, D. Y. Lee, S. Park, D. W. Kim, metal-organic-framework-derived 3d crumpled carbon nanosheets with self-assembled CoxSy nanocatalysts as an interlayer for lithium-sulfur batteries, Chem. Eng. J. 400 (2020) 125959
    [2020]
  • Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery
  • Reduction and reoxidation of iron phosphate and its catalytic activity for oxidative dehydrogenation of isobutyric acid
  • Redox effect of Fe2+/Fe3+ in iron phosphates for enhanced electrocatalytic activity in Li-O2 batteries
  • Raman and FTIR spectra of iron phosphate glasses containing cerium
  • R.–Q. Song and H. Cölfen, Mesocrystals – Ordered Nanoparticle Superstructures, Adv. Mater. 2010, 22, 1301-1330.
    [2010]
  • R. Sun, Y. Bai, M. Luo, M. Qu, Z. Wang, W. Sun, K. Sun, Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium–sulfur batteries, ACS Nano 15 (2021) 739-750
  • R. Sun, Y. Bai, M. Luo, M. Qu, Z. Wang, W. Sun, K. Sun, Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium–sulfur batteries, ACS Nano 15 (2021) 739
  • R. Li, D. Rao, J. Zhou, G. Wu, G. Wang, Z. Zhu, X. Han, R. Sun, H. Li, C. Wang, W. Yan, X. Zheng, P. Cui, Y. Wu, G. Wang, X. Hong, Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries, Nat. Commun. 12 (2021) 3102
  • Quantitative Voltammetry in Weakly Supported Media : Effects of the Applied Overpotential and Supporting Electrolyte Concentration on the One Electron Oxidation of Ferrocene in Acetonitrile
  • Prospect and reality of Ni-rich cathode for commercialization .
  • Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries
    Y . Sun , N. Liu , and Y. Cui , 1 , 16071-16082 . [2016]
  • Polysulfide immobilization and conversion on a conductive polar MoC @ MoOx material for lithium-sulfur batteries ,
  • Polysulfide Shuttle Study in the Li/S Battery System
  • Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries ,
  • Performance Improvement of Lithium Manganese Phosphate by Controllable Morphology Tailoring with Acid-Engaged Nano Engineering
  • P. Zuo, G. Cheng, L. Wang, Y. Ma, C. Du, X. Cheng, Z. Wang, and G. Yin, Ascorbic Acid –Assisted Solvothermal Synthesis of LiMn0.9Fe0.1PO4/C Nanoplatelets with Enhanced Electrochemical Performance for Lithium Ion Batteries, J. Power Sources 2013, 243, 872-879.
    [2013]
  • P. Peijo, and H. H. Girault, Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception, Energy & Environmental Sci. 11, (2018) 2306
    [2018]
  • P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra, J. Phys. Chem. Lett. 9 (2018) 6814
    [2018]
  • P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage, Nat. Mater. 11 (2012) 19-29.
    [2012]
  • P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage, Nat. Mater. 11 (2012) 19
    [2012]
  • Oriented Aggregation : Formation and Transformation of Mesocrystal Intermediates Revealed
  • Optimized LiMnyFe1-yPO4 as the Cathode for Lithium Batteries ,
    G. Li , H. Azuma , and M. Tohda , 149 , A743-A747 . [2002]
  • One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO4 Powders
  • Non-oxidative and oxidative dehydrogenation of n-octane using FePO4 : effect of different FePO4 phases on the product selectivity
  • Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries ,
  • Nickel-rich layered cathode materials for automotive lithium-ion batteries : achievements and perspectives .
  • New Electrolyte Compositions Stable Over the 0 to 5 V Voltage Range and Compatible with the Li1+xMn2O4/Carbon Li-Ion Cells
    J. M Tarascon , and D. Guyomard , 69 , 293-305 . [1994]
  • Nanoscale Interface Control for High- Performance Li-Ion Batteries
  • N-Doped carbon shelled bimetallic phosphates for efficient electrochemical overall water splitting
  • Morphology-Controlled Two-Step Synthesis and Electrochemical Studies on Hierarchically Structured LiCoPO4
  • Morphology Regulation of Nano LiMn0.9Fe0.1PO4 by Solvothermal Synthesis for Lithium Ion Batteries ,
  • Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors
  • Metal Complexes of Organophosphate Esters and Open-Framework Metal Phosphates : Synthesis , Structure , Transformations , and Applications
  • Mesoscale Phase Distribution in Single Particles of LiFePO4 following Lithium Deintercalation ,
  • Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries
  • Mesocystals as a Class of Multifunctional Materials
  • Mesocrystals as Electrode Materials for Lithium Ion Batteries ,
    E. Uchaker and G. Cao , 9 , 499-524 . [2014]
  • Mesocrystal MnO Cubes as Anode for Li-Ion Capacitors
  • Mechanism of the Fe3+ Reduction at Low Temperature for LiFePO4 Synthesis from a Polymeric Additive
  • Mechanism for Hydrothermal Synthesis of LiFePO4 Platelets as Cathode Material of Lithium-Ion Batteries ,
  • M.–Y. Cho, K.–B. Kim, J.–W. Lee, H. Kim, H. Kim, K. Kang, and K. C. Roh, Defect-Free Solvothermally Assisted Synthesis of Microspherical Mesoporous LiFePO4/C, J. Mater. Chem. A 2012, 3, 3421-3427.
    [2012]
  • M.–S. Kim, J.–P. Jegal, K. C. Roh, and K. –B. Kim, Synthesis of LiMn0.75Fe0.25PO4/C Microspheres Using a Microwave-Assisted Process with a Complexing Agent for High-Rate Lithium Ion Batteries, J. Mater. Chem. A 2014, 2, 10607-10613.
    [2014]
  • M. S. Whittingham, Lithium Batteries and Cathode Materials, Chem. Rev. 2004, 104, 4271-4302.
    [2004]
  • M. Niederberger and H. Cölfen, Oriented Attachment and Mesocrystals: Non-Classical Crystallization Mechanisms Based on Nanoparticle Assembly, Phys. Chem. Chem. Phys. 2006, 8, 3271-3287.
    [2006]
  • M. Armand and J.–M. Tarascon, Building Better Batteries, Nature 2008, 451, 652-657.
    [2008]
  • Lithium-sulfur battery cable made from ultralight , flexible graphene/carbon nanotube/sulfur composite fibers
  • Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries
  • L.-P. Hou, X. Q. Zhang, B.-Q. Li, and Q. Zhang, Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries, Materials Today (2021) 45, 62-76
  • K.–Y. Park, I. Park, H. Kim, H.–D. Lim, J. Hong, J. Kim, and K. Kang, Anti-Site Reordering in LiFePO4: Defect Annihilation on Charge Carrier Injection, Chem. Mater. 2014, 26, 5345-5351.
    [2014]
  • J. Xu, L. Zhang, Y. Wang, T. Chen, M. Al-Shroofy, and Y.-T. Cheng, Unveiling the Critical Role of Polymeric Binders for Silicon Negative Electrodes in Lithium-Ion Full Cells, ACS Appl. Mater. Interfaces 2017, 9, 3562−3569.
    [2017]
  • J. Wang, Y. Zhao, G. Li, D. Luo, J. Liu, Y. Zhang, X. Wang, L. Shui, and Z. Chen, Aligned sulfur-deficient ZnS1-x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries, Nano Energy 84 (2021) 105891
  • J. Popovic, R. Demir-Cakan, J. Tornow, M. Morcrette, D. S. Su, R. Schlögl, M. Antonietti, and M.–M. Titirici, LiFePO4 Mesocrystals for Lithium Ion Batteries, Small 2011, 7, 1127-1135.
    [2011]
  • J. Park, S.-H. Yu, Y.–E. Sung, Design of structural and functional nanomaterials for lithium-sulfur batteries, Nano Today 18 (2018) 35-64
    [2018]
  • J. Park, S.-H. Yu, Y.–E. Sung, Design of structural and functional nanomaterials for lithium-sulfur batteries, Nano Today 18 (2018) 35
    [2018]
  • J. Park, B.-C. Yu, J. S. Park, J. W. Choi, C. Kim, Y.-E Sung, J. B. Goodenough, Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery, Adv. Energy Mater. 7 (2017) 1602567
    [2017]
  • J. Kim, A. J. Yun, K. Y. Sheem, B. Park, Identifying the association between surface heterogeneity and electrochemical properties in graphite, Nanomaterials 11 (2021) 1813
  • J. Kang, J. Kim, S. Lee, S. Wi, C. Kim, S. Hyun, S. Nam, Y. Park, B. Park, Breathable carbon-free electrode: Black TiO2 with hierarchically ordered porous structure for stable Li–O2 battery, Adv. Energy Mater. 7 (2017) 1700814
    [2017]
  • Iron-Phosphate/Pt nanostructured electrodes for high-efficiency fuel cells ,
  • Integrated 3D electrodes based on metal-nitrogen-doped graphitic ordered mesoporous carbon and carbon paper for high-loading lithium-sulfur batteries
  • Insights on the Delithiation/Lithiation Reactions of LixMn0.8Fe0.2PO4 Mesocrystals in Li+ Batteries by in situ Techniques
  • Insights into Transition Metal Phosphate Materials for Efficient Electrocatalysis
  • Influence of Size on the Rate of Mesoporous Electrodes for Lithium Batteries
  • Hydrothermally Synthesized LiFePO4 Crystals with Enhanced Electrochemical Properties : Simultaneous Suppression of Crystal Growth Along [ 010 ] and Antisite Defect Formation
  • Hollow cobalt sulfide polyhedra-enabled long-life , high areal-capacity lithium-sulfur batteries
    H. Xu , A. Manthiram , 33 , 124 ( [2017]
  • High-nickel layered oxide cathodes for lithium-based automotive batteries
  • Hierarchical LiMnPO4 Assembled from Nanosheets Via a Solvothermal Method as a High Performance Cathode Material
  • H. Yang, X.–L. Wu, M.–H. Cao, and Y.–G. Guo, Solvothermal Synthesis of LiFePO4 Hierarchically Dumbbell-Like Microstructures by Nanoplate Self-Assembly and Their Application as a Cathode Material in Lithium-Ion Batteries, J. Phys. Chem. C 2009, 113, 3345-3351.
    [2009]
  • H. Wang, Y. Yang, Y. Liang, L. F. Cui, H. S. Casalongue, Y. Li, G. Hong, Y. Cui, and H. Dai, LiMn1−xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh‐Rate‐ Performance Lithium Ion Batteries, Angew. Chem. Int. Ed. 2011, 123, 7502-7506.
    [2011]
  • H. H. Park, R. Heasley, L. Sun, V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, P. Sinsermsuksakul, D. Chua, T. Buonassisi, and R. G. Gordon, Co-Optimization of SnS Absorber and Zn(O,S) Buffer Materials for Improved Solar Cells, Prog. Photovoltaics: Res. Appl. 2015, 23, 901-908.
  • H, Lin, S, Zhang, T. Zhang, H. Ye, Q. Yao, G. W. Zheng, d J. Y. Lee, Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium–sulfur batteries, Adv. Energy Mater. 8 (2018) 1801868
    [2018]
  • Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability ,
  • Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability ,
  • G. Xu, Y. Yang, L. Li, F. Li, J. Wang, L. Bao, X. Li, G. Shen, and G. Han, Ethylene Glycol (EG) Solvothermal Synthesis of Flower-Like LiMnPO4 Nanostructures Self-Assembled with (010) Nanobelts for Li-Ion Battery Positive Cathodes, CrystEngComm 2016, 18, 3282-3288.
    [2016]
  • Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries Adv
  • Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries
  • First Principles Study of Jahn-Teller Effects in LixMnPO4
  • F. Liu, G. Sun, H. B. Wu, G. Chen, D. Xu, R. Mo, L. Shen, X. Li, S. Ma, R. Tao, X. Li, X. Tan, B. Xu, G. Wang, B. S. Dunn, P. Sautet, Y. Lu, Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries, Nat. Commun. 11 (2020) 5215
  • F. Jin, B. Wang, Y. Ning, Z. Zhang, J. Yang, H. Zhang, D. Wang, Y. Zhou, Graphene-modified mesoporous iron phosphate as superior binary sulfur host for lithium–sulfur batteries, Energy Technol. 8 (2020) 1901462
    [2020]
  • F. Grandjean, G. J. Long, R. Evrard, U. C. Chung, E. S. Larrea, I. Ruiz De Larramendi, M. I. Arriortua, T. Rojo, Impact of lithium and potassium cations on the mössbauer spectral and electrical properties of two mixed-valence iron(II/III) phosphites, Chem. Mater. 32 (2020) 5534
    [2020]
  • Experimental visualization of lithium diffusion in LixFePO4
  • Evaluation of graphene-wrapped LiFePO4 as novel cathode materials for li-ion batteries
  • Enhanced electrochemical properties of SnO2 anode by AlPO4 coating
  • Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries
  • Effects of valence states of iron in iron phosphates on the catalytic activity in oxidative dehydrogenation of isobutyric acid
  • Effective Wrapping of Graphene on Individual Li4Ti5O12 Grains for High-Rate Li-Ion Batteries ,
  • Dipole-Dipole Interaction Model for Oriented Attachment of BaTiO3 Nanocrystals : A Route to Mesocrystal Formation
    K. Yasui , and K. Kato , 116 , 319-324 . [2012]
  • Development of Carbon-Based Cathodes for Li-Air Batteries : Present and Future ,
  • Development and Crystal Growth in Nanocrystalline Aggregates under Hydrothermal Conditions : Insights from Titania ,
  • Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry
  • D. Wang, D. Luo, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, Z. Chen, X. Wang, Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior, Nano Energy 81 (2021) 105602
  • D. Son, E. Kim, T.-G. Kim, M.G. Kim, J. Cho, B. Park, nanoparticle iron-phosphate anode material for li-ion battery, Appl. Phys. Lett. 84 (2004) 5875
    [2004]
  • D. Fang, G. Wang, S. Huang, T. C. Li, J. Yu, D. Xiong, D. Yan, X. L. Li, J. Zhang. Y. V. Lim, S. A. Yang, H. Y. Yang, Combination of heterostructure with oxygen vacancies in Co@CoO1-x nanosheets array for high-performance lithium sulfur batteries, Chem. Eng. J. 411 (2021) 128546
  • D. D. Lecce and J. Hassoun, Lithium Transport Properties in LiMn1-αFeαPO4 Olivine Cathodes, J. Phys. Chem. C 2015, 115, 20855-20863.
    [2015]
  • Current status and challenges for automotive battery production technologies
  • Crystal Orientation Tuning of LiFePO4 Nanoplates for High-Rate Lithium Battery Cathode Materials ,
  • Crystal Orientation , and Electrochemical Reactivity of LiFePO4 Synthesized by the Hydrothermal Method at 443 K
  • Controllable Synthesis of LiMnPO4 Nanocrystals : Morphology Evolution and Their Size-Dependent Electrochemical Properties
  • Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries
  • C. Neef, C. Jähne, H.–P. Meyer, and R. Klingeler, Morphology and Agglomeration Control of LiMnPO4 Micro- and Nanocrystals, Langmuir 2013, 29, 8054-8060.
    [2013]
  • C. Huang, Y. Zhou, H. Shu, M. Chen, Q. Liang, S. Jiang, X. Li, T. Sun, M. Han, Y. J. Zhou, J. Jian, X. Wang, Synergetic Restriction to Polysulfides by Hollow FePO4 Nanospheres Wrapped by Reduced Graphene Oxide for Lithium–Sulfur Battery, Electrochim. Acta. 329 (2020) 135135
    [2020]
  • C. A. Fisher and M.–S. Islam, Surface Structures and Crystal Morphologies of LiFePO4: Relevance to Electrochemical Behavior, J. Mater. Chem. 2008, 18, 1209-1215.
    [2008]
  • Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics
  • B.Šantić, A. M.-Milanković, D. E. Day, The DC electrical conductivity of iron phosphate glasses, J. Non-Cryst. Solids 296 (2001) 65
    [2001]
  • Atomic Layer Deposition of Zn ( O , S ) Thin Films with Tunable Electrical Properties by Oxygen Annealing
  • Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries
  • Additive-Free Solvothermal Synthesis and Li-Ion Intercalation Properties of Dumbbell-Shaped LiFePO4/C Mesocrystals .
  • A. Yamada, Y. Kudo, and K.–Y. Liu, Reaction Mechanism of the Olivine Type Lix(Mn0.6Fe0.4)PO4 (0 ≤ x ≤ 1), J. Electrochem. Soc. 2001, 148, A747-A754.
    [2001]
  • A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium–sulfur batteries, Acc. Chem. Res. 46 (2013) 1125-1134
    [2013]
  • A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium–sulfur batteries, Acc. Chem. Res. 46 (2013) 1125
    [2013]
  • A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, Rechargeable Lithium–Sulfur Batteries, Chem. Rev. 114, (2014) 23 11751-11787
    [2014]
  • A. M.-Milanković, B.Šantić, D. E. Day, C. S. Ray, Electrical conductivity in mixed-alkali iron phosphate glasses, J. Non-Cryst. Solids 283 (2001) 119
    [2001]
  • A vibrational study of phase transitions in Fe2P2O7 and Cr2P2O7 under high-pressures
  • A reflection on lithium-ion battery cathode chemistry
    A. Manthiram 11 ( [2020]
  • A compact inorganic layer for robust anode protection in lithium-sulfur batteries ,
  • 3D Inverse-Opal Structured Li4Ti5O12 Anode for fast Li-Ion Storage Capabilities