Aeroacoustics of Multirotor Configurations: Effects of Flight Control System and Aerodynamic Interactions = 멀티로터형 비행체의 공력소음: 비행 제어 시스템과 공기역학적 상호작용의 영향

고정우 2022년
논문상세정보
' Aeroacoustics of Multirotor Configurations: Effects of Flight Control System and Aerodynamic Interactions = 멀티로터형 비행체의 공력소음: 비행 제어 시스템과 공기역학적 상호작용의 영향' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 응용 물리
  • Distributed electric propulsion
  • Frequency and amplitude modulation
  • Multirotor configurations
  • Psychoacoustics
  • Torque ripple
  • Wake interactions
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
842 0

0.0%

' Aeroacoustics of Multirotor Configurations: Effects of Flight Control System and Aerodynamic Interactions = 멀티로터형 비행체의 공력소음: 비행 제어 시스템과 공기역학적 상호작용의 영향' 의 참고문헌

  • [98] Robert TN Chen: A survey of nonuniform inflow models for rotorcraft flight dynamics and control applications. Technical report TM-102219. NASA, 1989.
    [1989]
  • [97] Robert Niemiec, and Farhan Gandhi: Effects of inflow model on simulated aeromechanics of a quadrotor helicopter. 72nd American Helicopter Society Forum. West Palm Beach, FL, 2016.
    [2016]
  • [94] Frederic M Hoblit: Gust loads on aircraft: concepts and applications. American Institute of Aeronautics and Astronautics, 1988.
    [1988]
  • [92] Gang Yu: A multisynchrosqueezing-based high-resolution time-frequency analysis tool for the analysis of non-stationary signals. Journal of Sound and Vibration, 492 (2021), 115813. doi: 10.1016/j.jsv.2020.115813.
  • [91] Alireza Najafi-Yazdi, Guillaume A Brès, and Luc Mongeau: An acoustic analogy formulation for moving sources in uniformly moving media. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467 (2011), 144–165. doi: 10.1098/rspa.2010.0172.
    [2011]
  • [90] GA Brès, KS Brentner, G Perez, and HE Jones: Maneuvering rotorcraft noise prediction. Journal of Sound and Vibration, 275 (2004), 719–738. doi: 10.1016/j.jsv.2003.07.005.
    [2004]
  • [8] Robert Niemiec, Farhan Gandhi, and Rajneesh Singh: Control and performance of a reconfigurable multicopter. Journal of Aircraft, 55 (2018), 1855–1866. doi: 10.2514/1.c034731.
    [2018]
  • [89] D Casalino: An advanced time approach for acoustic analogy predictions. Journal of Sound and Vibration, 261 (2003), 583–612. doi: 10.1016/ S0022-460X(02)00986-0.
    [2003]
  • [88] Eric Greenwood II: Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME). University of Maryland, College Park, 2011.
    [2011]
  • [87] TS Beddoes: A wake model for high resolution airloads. International Conference on Rotorcraft Basic Research. 1985.
    [1985]
  • [86] Behdad Davoudi, and Karthikeyan Duraisamy: A Hybrid Blade Element Momentum Model for Flight Simulation of Rotary Wing Unmanned Aerial Vehicles. AIAA Aviation 2019 Forum. Dallas, Texas, 2019, 2823. doi: 10.2514/6.2019-2823.
    [2019]
  • [85] Zongyu Zuo: Trajectory tracking control design with command-filtered compensation for a quadrotor. IET control theory & applications, 4 (2010), 2343–2355. doi: 10.1049/iet-cta.2009.0336.
    [2010]
  • [84] Jérémie XJ Bannwarth, Z Jeremy Chen, Karl A Stol, Bruce A MacDonald, and Peter J Richards: Aerodynamic Force Modeling of Multirotor Unmanned Aerial Vehicles. AIAA Journal, 57 (2019), 1250–1259. doi: 10.2514/1.j057165.
    [2019]
  • [82] Devin Barcelos, Amir Kolaei, and Götz Bramesfeld: Aerodynamic Interactions of Quadrotor Configurations. Journal of Aircraft, 57 (2020), 1074–1090. doi: 10.2514/1.C035614.
    [2020]
  • [81] Richard Healy, Farhan Gandhi, and Mihir Mistry: Computational Investigation of Multirotor Interactional Aerodynamics with Hub Lateral and Longitudinal Canting. AIAA Journal, 60 (2022), 872–882. doi: 10.2514/1.J060530.
  • [80] Austin D Thai, Sheryl M Grace, and Rohit Jain: Effect of Turbulence Modeling Selection Within Helios for Small Quadrotor Aerodynamics. Journal of Aircraft (2022), 1–19. doi: 10.2514/1.C036410.
  • [7] Marilena D Pavel: Understanding the control characteristics of electric vertical take-off and landing (eVTOL) aircraft for urban air mobility. Aerospace Science and Technology (2021), 107143. doi: 10.1016/j.ast. 2021.107143.
  • [79] Orazio Pinti, Assad A Oberai, Richard Healy, Robert J Niemiec, and Farhan Gandhi: Multi-Fidelity Approach to Predicting Multi-Rotor Aerodynamic Interactions. AIAA Journal (2022), 1–15. doi: 10.2514/ 1.J060227.
  • [78] Matteo Tugnoli, Davide Montagnani, Monica Syal, Giovanni Droandi, and Alex Zanotti: Mid-fidelity approach to aerodynamic simulations of unconventional VTOL aircraft configurations. Aerospace Science and Technology, 115 (2021), 106804. doi: 10.1016/j.ast.2021.106804.
  • [77] Haitao Hu, Yannian Yang, Yu Liu, Xiaomin Liu, and Yong Wang: Aerodynamic and aeroacoustic investigations of multi-copter rotors with leading edge serrations during forward flight. Aerospace Science and Technology, 112 (2021), 106669. doi: 10.1016/j.ast.2021.106669.
  • [75] Caterina Poggi, Monica Rossetti, Giovanni Bernardini, Umberto Iemma, Cristiano Andolfi, Christian Milano, and Massimo Gennaretti: Surrogate models for predicting noise emission and aerodynamic performance of propellers. Aerospace Science and Technology (2021), 107016. doi: 10. 1016/j.ast.2021.107016.
  • [73] Yunusi Fuerkaiti, Edoardo Grande, Damiano Casalino, Francesco Avallone, and Daniele Ragni: Efficient low-fidelity aeroacoustic permanence calculation of propellers. Aerospace Science and Technology (2022), 107438. doi: 10.1016/j.ast.2022.107438.
  • [72] Xiaofan Fei, Brandon L Litherland, and Brian J German: Development of an Unsteady Vortex Lattice Method to Model Propellers at Incidence. AIAA Journal, 60 (2022), 176–188. doi: 10.2514/1.J060133.
  • [71] Gianluca Romani, Edoardo Grande, Francesco Avallone, Daniele Ragni, and Damiano Casalino: Performance and noise prediction of low-Reynolds number propellers using the Lattice-Boltzmann method. Aerospace Science and Technology (2021), 107086. doi: 10.1016/j.ast.2021.107086.
  • [70] Damiano Casalino, Edoardo Grande, Gianluca Romani, Daniele Ragni, and Francesco Avallone: Definition of a benchmark for low Reynolds number propeller aeroacoustics. Aerospace Science and Technology, 113 (2021), 106707. doi: 10.1016/j.ast.2021.106707.
  • [6] John V Foster, Luke J Miller, Ronald C Busan, Sarah Langston, and David Hartman: Recent NASA Wind Tunnel Free-Flight Testing Of A Multirotor Unmanned Aircraft System. AIAA Scitech 2020 Forum. 2020, 1504. doi: 10.2514/6.2020-1504.
    [2020]
  • [69] Romain Gojon, Thierry Jardin, and Hélène Parisot-Dupuis: Experimental investigation of low Reynolds number rotor noise. The Journal of the Acoustical Society of America, 149 (2021), 3813–3829. doi: 10.1121/10.0005068.
  • [68] Abhishek Shastry, and Anubhav Datta: Predicting Wake and Structural Loads in RPM Controlled Multirotor Aircraft. VFS Transformative Vertical Flight 2020 Technical Meeting. 2020, 1–15.
  • [65] Huanxian Bu, Han Wu, Celia Bertin, Yi Fang, and Siyang Zhong: Aerodynamic and acoustic measurements of dual small-scale propellers. Journal of Sound and Vibration, 511 (2021), 116330. doi: 10.1016/j.jsv.2021.116330.
  • [64] Alper Celik, Nur Syafiqah Jamaluddin, Kabilan Baskaran, Djamel Rezgui, and Mahdi Azarpeyvand: Aeroacoustic Performance of Rotors in Tandem Configuration. AIAA AVIATION 2021 FORUM. 2021, 2282. doi: 10.2514/6.2021-2282.
  • [63] Behdad Davoudi, Ehsan Taheri, Karthik Duraisamy, Balaji Jayaraman, and Ilya Kolmanovsky: Quad-rotor flight simulation in realistic atmospheric conditions. AIAA Journal, 58 (2020), 1992–2004. doi: 10.2514/1.J058327.
  • [62] Jeongwoo Ko, Jonghui Kim, and Soogab Lee: Computational study of wake interaction and aeroacoustic characteristics in multirotor configurations. INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering. 2019, 5145–5156.
    [2019]
  • [61] Jeongwoo Ko, and Soogab Lee: Numerical Investigation of Inter-Rotor Spacing Effects on Wake Dynamics of Coaxial Rotors. Journal of Aircraft, 58 (2021), 363–373. doi: 10.2514/1.C035857.
  • [60] Talib Dbouk, and Dimitris Drikakis: Quadcopter drones swarm aeroacoustics. Physics of Fluids, 33 (2021), 057112. doi: 10.1063/5.0052505.
  • [5] Anna Straubinger, Raoul Rothfeld, Michael Shamiyeh, Kai-Daniel Büchter, Jochen Kaiser, and Kay Olaf Plötner: An overview of current research and developments in urban air mobility–Setting the scene for UAM introduction. Journal of Air Transport Management, 87 (2020), 101852. doi: 10.1016/j.jairtraman.2020.101852.
    [2020]
  • [58] Cibin Joseph, and Ranjith Mohan: A parallel, object-oriented framework for unsteady free-wake analysis of multi-rotor/wing systems. Computers & Fluids, 215 (2021), 104788. doi: 10.1016/j.compfluid.2020.104788.
  • [56] Siddhartha Krishnamurthy, Stephen A Rizzi, Rui Cheng, D Douglas Boyd, and Andrew W Christian: Prediction-Based Auralization of a Multirotor Urban Air Mobility Vehicle. AIAA Scitech 2021 Forum. Virtual Event, 2021, 0587. doi: 10.2514/6.2021-0587.
  • [55] Antonio J Torija, Paruchuri Chaitanya, and Zhengguang Li: Psychoacoustic analysis of contra-rotating propeller noise for unmanned aerial vehicles. The Journal of the Acoustical Society of America, 149 (2021), 835–846. doi: 10.1121/10.0003432.
  • [53] Antonio J Torija, Zhengguang Li, and Paruchuri Chaitanya: Psychoacoustic modelling of rotor noise. The Journal of the Acoustical Society of America, 151 (2022), 1804–1815. doi: 10.1121/10.0009801.
  • [51] Eberhard Zwicker, and Hugo Fastl: Psychoacoustics: Facts and models. Volume 22. Springer Science & Business Media, 2013.
    [2013]
  • [50] AndrewWChristian, and Randolph Cabell: Initial investigation into the psychoacoustic properties of small unmanned aerial system noise. 23rd AIAA/CEAS aeroacoustics conference. 2017, 4051. doi: 10.2514/6.2017- 4051.
    [2017]
  • [4] Suchithra Rajendran, and Sharan Srinivas: Air taxi service for urban mobility: a critical review of recent developments, future challenges, and opportunities. Transportation research part E: logistics and transportation review, 143 (2020), 102090. doi: 10.1016/j.tre.2020.102090.
    [2020]
  • [49] Antonio J Torija, and Charlotte Clark: A Psychoacoustic Approach to Building Knowledge about Human Response to Noise of Unmanned Aerial Vehicles. International Journal of Environmental Research and Public Health, 18 (2021), 682. doi: 10.3390/ijerph18020682.
  • [46] François Auger, Patrick Flandrin, Yu-Ting Lin, Stephen McLaughlin, Sylvain Meignen, Thomas Oberlin, and Hau-Tieng Wu: Time-frequency reassignment and synchrosqueezing: An overview. IEEE Signal Processing Magazine, 30 (2013), 32–41. doi: 10.1109/MSP.2013.2265316.
    [2013]
  • [42] Jeongwoo Ko, Jaeheon Jeong, Huisang Cho, and Soogab Lee: Real- Time Prediction Framework for Frequency-Modulated Multirotor Noise. Physics of Fluids, 34 (2022), 027103. doi: 10.1063/5.0081103.
  • [41] Jaeheon Jeong, Jeongwoo Ko, Huisang Cho, and Soogab Lee: Random process-based stochastic analysis of multirotor hovering noise under rotational speed fluctuations. Physics of Fluids, 33 (2021), 127107. doi: 10.1063/5.0071850.
  • [40] Woutijn J Baars, Liam Bullard, and Abdulghani Mohamed: Quantifying modulation in the acoustic field of a small-scale rotor using bispectral analysis. AIAA Scitech 2021 Forum. 2021, 0713. doi: 10.2514/6.2021- 0713.
  • [3] Michael D Patterson, Douglas R Isaacson, Nancy L Mendonca, Natasha A Neogi, Kenneth H Goodrich, Matt Metcalfe, Bill Bastedo, Chris Metts, Brian P Hill, Dwight DeCarme, et al.: An initial concept for intermediatestate, passenger-carrying urban air mobility operations. AIAA Scitech 2021 Forum. 2021, 1626. doi: 10.2514/6.2021-1626.
  • [39] Dongwook Kim, Jeongwoo Ko, Vignesh Saravanan, and Soogab Lee: Stochastic analysis of a single-rotor to quantify the effect of RPS variation on noise of hovering multirotors. Applied Acoustics, 182 (2021), 108224. doi: 10.1016/j.apacoust.2021.108224.
  • [36] Patrick C Mortimer, Chloe Johnson, Jayant Sirohi, Stefan Platzer, and Juergen Rauleder: Experimental and Numerical Investigation of a Variable-Speed Rotor for Thrust Control. AIAA AVIATION 2020 FORUM. 2020, 2791. doi: 10.2514/6.2020-2791.
    [2020]
  • [35] Stephen A Rizzi, Dennis L Huff, D. Douglas Boyd jr., Paul Bent, Brenda S Henderson, Kyle A Pascioni, D Caleb Sargent, David L Josephson, Mehmet Marsan, Hua He, and Royce Snider: Urban Air Mobility Noise: Current Practice, Gaps, and Recommendations. Technical report TP- 2020-5007433. NASA, 2020.
  • [34] Brenda S Henderson, and Dennis Huff: Electric Motor Noise for Small Quadcopters: Part II-Source Characteristics and Predictions. 2018 AIAA/CEAS Aeroacoustics Conference. 2018, 2953. doi: 10.2514/6.2018-2953.
    [2018]
  • [33] Dennis L Huff, and Brenda S Henderson: Electric Motor Noise for Small Quadcopters: Part I-Acoustic Measurements. 2018 AIAA/CEAS Aeroacoustics Conference. 2018, 2952. doi: 10.2514/6.2018-2952.
    [2018]
  • [32] Nikolas S Zawodny, Andrew Christian, and Randolph Cabell: A summary of NASA research exploring the acoustics of small unmanned aerial systems. AHS Specialists’ conference on Aeromechanics Design for Transformative Vertical Flight. 2018.
    [2018]
  • [31] Ryan McKay, and Michael J Kingan: Multirotor Unmanned Aerial System Propeller Noise Caused by Unsteady Blade Motion. 25th AIAA/CEAS Aeroacoustics Conference. 2019, 2499. doi: 10.2514/6.2019-2499.
    [2019]
  • [30] Changle Xiang, Xiaoliang Wang, Yue Ma, and Bin Xu: Practical Modeling and Comprehensive System Identification of a BLDC Motor. Mathematical Problems in Engineering, 2015 (2015). doi: 10.1155/2015/879581.
  • [2] Karolin Schweiger, Franz Knabe, and Bernd Korn: An exemplary definition of a vertidrome’s airside concept of operations. Aerospace Science and Technology (2021), 107144. doi: 10.1016/j.ast.2021.107144.
  • [29] Thomas Edwards, and George Price: eVTOL passenger acceptance. Technical report CR-2020-220460. NASA, 2020.
    [2020]
  • [28] Adam P Cohen, Susan A Shaheen, and Emily M Farrar: Urban air mobility: History, ecosystem, market potential, and challenges. IEEE Transactions on Intelligent Transportation Systems, 22 (2021), 6074–6087. doi: 10.1109/TITS.2021.3082767.
  • [27] W Johnson, and C Silva: NASA concept vehicles and the engineering of advanced air mobility aircraft. The Aeronautical Journal, 126 (2022), 59–91. doi: 10.1017/aer.2021.92.
  • [26] Satadru Roy, Mark T Kotwicz Herniczek, Brian J German, and Laurie A Garrow: User Base Estimation Methodology for a Business Airport Shuttle Air Taxi Service. Journal of Air Transportation, 29 (2021), 69–79. doi: 10.2514/1.D0216.
  • [25] Christelle Al Haddad, Emmanouil Chaniotakis, Anna Straubinger, Kay Plötner, and Constantinos Antoniou: Factors affecting the adoption and use of urban air mobility. Transportation research part A: policy and practice, 132 (2020), 696–712. doi: 10.1016/j.tra.2019.12.020.
    [2020]
  • [24] Moussa Labbadi, and Mohamed Cherkaoui: Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerospace Science and Technology, 93 (2019), 105306. doi: 10.1016/j.ast.2019.105306.
    [2019]
  • [23] Emanuele L de Angelis, Fabrizio Giulietti, Goele Pipeleers, Gianluca Rossetti, and Ruben Van Parys: Optimal autonomous multirotor motion planning in an obstructed environment. Aerospace Science and Technology, 87 (2019), 379–388. doi: 10.1016/j.ast.2019.03.017.
    [2019]
  • [22] Nikolas Zawodny, and Nicole Pettingill: Acoustic wind tunnel measurements of a quadcopter in hover and forward flight conditions. INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering. 2018, 487–500.
    [2018]
  • [21] Tom Stokkermans, Leo Veldhuis, Bambang Soemarwoto, Raphaël Fukari, and Paul Eglin: Breakdown of aerodynamic interactions for the lateral rotors on a compound helicopter. Aerospace Science and Technology, 101 (2020), 105845. doi: 10.1016/j.ast.2020.105845.
    [2020]
  • [1] Laurie A Garrow, Brian J German, and Caroline E Leonard: Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. Transportation Research Part C: Emerging Technologies, 132 (2021), 103377. doi: 10.1016/j.trc.2021.103377.
  • [18] Dhwanil Shukla, and Narayanan Komerath: Low Reynolds number multirotor aerodynamic wake interactions. Experiments in Fluids, 60 (2019), 77. doi: 10.1007/s00348-019-2724-3.
    [2019]
  • [16] Dhwanil Shukla, and Narayanan Komerath: Rotor–duct aerodynamic and acoustic interactions at low Reynolds number. Experiments in Fluids, 60 (2019), 20. doi: 10.1007/s00348-018-2668-z.
    [2019]
  • [15] Charles E Tinney, and John Valdez: Thrust and Acoustic Performance of Small-Scale, Coaxial, Corotating Rotors in Hover. AIAA Journal, 58 (2020), 1657–1667. doi: 10.2514/1.j058489.
    [2020]
  • [13] Design and assessment of octocopter drones with improved aerodynamic efficiency and performance ().
  • [139] Edoardo Grande, Gianluca Romani, Daniele Ragni, Francesco Avallone, and Damiano Casalino: Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers. AIAA Journal, 60 (2022), 860–871. doi: 10.2514/1.J060611.
  • [138] Hanbo Jiang, Siyang Zhong, HanWu, Xin Zhang, Xun Huang, Guocheng Zhou, and Bao Chen: Radiation modes of propeller tonal noise. Journal of Vibration and Acoustics, 144 (2022). doi: 10.1115/1.4051864.
  • [136] Seungcheol Lee, Seokbong Chae, Seong Yong Woo, Jaesung Jang, and Jooha Kim: Effects of Rotor-Rotor Interaction on the Wake Structure and Thrust Generation of a Quadrotor Unmanned Aerial Vehicle. IEEE Access, 9 (2021), 85995–86016. doi: 10.1109/ACCESS.2021.3088150.
  • [135] S Li, and Seongkyu Lee: UCD-QuietFly: A New Program to Predict Multi-Rotor eVTOL Broadband Noise. Proceedings of the 2020 VFS Aeromechanics for Advanced Vertical Flight Technical Meeting. San Jose, California, USA, 2020, 21–23.
  • [134] Michaela Herr, Roland Ewert, Christof Rautmann, Mohammad Kamruzzaman, Dimitrios Bekiropoulos, Renzo Arina, Andrea Iob, Paul Batten, Sukumar Chakravarthy, and Franck Bertagnolio: Broadband trailing-edge noise predictions—overview of BANC-III results. 21st AIAA/CEAS Aeroacoustics Conference. 2015, 2847. doi: 10.2514/6.2015-2847.
    [2015]
  • [133] Zhongqi Jia, and Seongkyu Lee: Acoustic analysis of a quadrotor eVTOL design via high-fidelity simulations. 25th AIAA/CEAS Aeroacoustics Conference. 2019, 2631. doi: 10.2514/6.2019-2631.
    [2019]
  • [132] Andrew Christian, and Joseph Lawrence: Initial development of a quadcopter simulation environment for auralization. the 72nd American Helicopter Society Forum. West Palm Beach, FL, 2016.
    [2016]
  • [131] Austin Thai, Beatrice Roget, Jay Sitaraman, and Sheryl Grace: Multirotor Trim using Loose Aerodynamic Coupling. VFS Aeromechanics for Advanced Vertical Flight Technical Meeting. San Jose, CA, 2020.
    [2020]
  • [12] Robert Niemiec, and Farhan Gandhi: Multirotor Controls, Trim, and Autonomous Flight Dynamics of Plus-and Cross-Quadcopters. Journal of Aircraft, 54 (2017), 1910–1920. doi: 10.2514/1.c034165.
    [2017]
  • [129] Michael S Selig: Summary of low speed airfoil data. SOARTECH publications, 1995.
    [1995]
  • [128] Andrew Christian, D Douglas Boyd Jr, Nikolas S Zawodny, and Stephen A Rizzi: Auralization of tonal rotor noise components of a quadcopter flyover. INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Volume 250. 3. Institute of Noise Control Engineering. 2015, 3983–3994.
    [2015]
  • [127] Robert W Deters, Stefan Kleinke, and Michael S Selig: Static testing of propulsion elements for small multirotor unmanned aerial vehicles. 35th AIAA Applied Aerodynamics Conference. Denver, Colorado, 2017, 3743. doi: 10.2514/6.2017-3743.
    [2017]
  • [126] Zhongqi Jia, and Seongkyu Lee: Aerodynamically induced noise of a lift-offset coaxial rotor with pitch attitude in high-speed forward flight. Journal of Sound and Vibration, 491 (2021), 115737. doi: 10.1016/j. jsv.2020.115737.
  • [125] F Farassat: Derivation of Formulations 1 and 1A of Farassat. Technical report TM-2007-214853. NASA, 2007.
    [2007]
  • [124] Donald B Bliss, Milton E Teske, and Todd R Quackenbush: A new methodology for free wake analysis using curved vortex elements. Technical report CR-3958. NASA, 1987.
    [1987]
  • [122] Mahendra J Bhagwat, and J Gordon Leishman: Generalized viscous vortex model for application to free-vortex wake and aeroacoustic calculations. 58th Annual Forum and Technology Display of the American Helicopter Society International. 2002, 2042–2057.
    [2002]
  • [121] Michael Scully: Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads. PhD thesis. Massachusetts Institute of Technology, 1975.
    [1975]
  • [11] Mingkai Wang, Johannes Diepolder, Shuguang Zhang, Maximilian Söpper, and Florian Holzapfel: Trajectory optimization-based maneuverability assessment of eVTOL aircraft. Aerospace Science and Technology (2021), 106903. doi: 10.1016/j.ast.2021.106903.
  • [119] Joseph Katz, and Allen Plotkin: Low-speed aerodynamics. Volume 13. Cambridge university press, 2001.
    [2001]
  • [118] DIN 45692:2009. Measurement Technique for the Simulation of the Auditory Sensation of Sharpness. 2009.
    [2009]
  • [117] ISO 532-1: 2017(E). Acoustics–methods for calculating loudness–Part 1: Zwicker method. 2017.
    [2017]
  • [113] Yannick Rozenberg, Michel Roger, and Stéphane Moreau: Rotating blade trailing-edge noise: Experimental validation of analytical model. AIAA journal, 48 (2010), 951–962. doi: 10.2514/1.43840.
    [2010]
  • [112] Roy K Amiet: Noise due to turbulent flow past a trailing edge. Journal of sound and vibration, 47 (1976), 387–393. doi: 10.1016/0022-460X(76) 90948-2.
    [1976]
  • [111] Roy K Amiet: Acoustic radiation from an airfoil in a turbulent stream. Journal of Sound and vibration, 41 (1975), 407–420. doi: 10.1016/S0022- 460X(75)80105-2.
    [1975]
  • [110] Robert W Paterson, and Roy K Amiet: Noise of a model helicopter rotor due to ingestion of turbulence. Technical report CR-3213. NASA, 1979.
    [1979]
  • [10] Prajwal Shiva Prakasha, Nabih Naeem, Patrick Ratei, and Björn Nagel: Aircraft architecture and fleet assessment framework for urban air mobility using a system of systems approach. Aerospace Science and Technology (2021), 107072. doi: 10.1016/j.ast.2021.107072.
  • [108] Nicole A Pettingill, Nikolas S Zawodny, Christopher Thurman, and Leonard V Lopes: Acoustic and Performance Characteristics of an Ideally Twisted Rotor in Hover. AIAA Scitech 2021 Forum. VIRTUAL EVENT, 2021, 1928. doi: 10.2514/6.2021-1928.
  • [107] Nikolas S Zawodny, D Douglas Boyd Jr, and Casey L Burley: Acoustic characterization and prediction of representative, small-scale rotary-wing unmanned aircraft system components. Technical report NF1676L-22587. NASA, 2016.
    [2016]
  • [106] Thomas F Brooks, D Stuart Pope, and Michael A Marcolini: Airfoil self-noise and prediction. Technical report RP-1218. NASA, 1989.
    [1989]
  • [105] Gang Yu, Zhonghua Wang, and Ping Zhao: Multisynchrosqueezing transform. IEEE Transactions on Industrial Electronics, 66 (2018), 5441–5455. doi: 10.1109/TIE.2018.2868296.
    [2018]
  • [104] Leonard V Lopes: Compact Assumption Applied to Monopole Term of Farassat’s Formulations. Journal of Aircraft, 54 (2017), 1649–1663. doi: 10.2514/1.C034048.
    [2017]
  • [103] Berend G Van der Wall, and J Gordon Leishman: The influence of variable flow velocity on unsteady airfoil behavior. 18th European Rotorcraft Forum. Avignon, France, 1992.
    [1992]
  • [102] Robert T Jones: Operational treatment of the nonuniform-lift theory in airplane dynamics. Technical report TN-667. NACA, 1938.
    [1938]
  • [101] Carl Russell, Jaewoo Jung, Gina Willink, and Brett Glasner: Wind tunnel and hover performance test results for multicopter UAS vehicles. AHS 72nd annual forum. West Palm Beach, FL, 2016.
    [2016]
  • [100] OR Bilgi, and Ö Savaş: Vortex wakes of tip loaded rotors at low Reynolds numbers. Physics of Fluids, 33 (2021), 077102. doi: 10.1063/5.0049524.
  • Wake structures behind a rotor with superhydrophobic-coated blades at low Reynolds number .
  • Synchrosqueezing transforms : From low-to high-frequency modulations and perspectives .
  • Synchroextracting transform : The theory analysis and comparisons with the synchrosqueezing transform
  • Sound quality factors influencing annoyance from hovering UAV .
  • Signal estimation from modified short-time Fourier transform .
  • Scaling laws and similarity models for the preliminary design of multirotor drones .
  • Rotor interactional effects on aerodynamic and noise characteristics of a small multirotor unmanned aerial vehicle .
  • Rotor aerodynamic loads computation using a constant vorticity contour free wake model
  • Role of filament strain in the free-vortex modeling of rotor wakes
  • Richards : Preliminary design of multirotor UAVs with tilted-rotors for improved disturbance rejection capability
  • Quadrotor gray-box model identification from high-speed flight data
  • Prediction of blade wake interaction noise based on a turbulent vortex model
    Stewart AL Glegg 29 ( [1991]
  • Prediction of airfoil trailing-edge noise using empirical wall-pressure spectrum models .
  • Phase reconstruction from amplitude spectrograms based on directional-statistics deep neural networks .
  • Objective quantification of perceived differences between measured and synthesized aircraft sounds
  • Noise reduction and aerodynamics of isolated multi-copter rotors with serrated trailing edges during forward flight .
  • Multirotor drone noise at static thrust
  • Investigation of small-scale propellers under non-axial inflow conditions .
  • Integrated methodology for the prediction of helicopter rotor noise at mission level
  • Improvement of Zwicker ’ s psychoacoustic annoyance model aiming at tonal noises
  • High-Fidelity Modeling of Multirotor Aerodynamic Interactions for Aircraft Design
  • Experimental study on noise reduction of a wavy multi-copter rotor .
  • Experimental and numerical study of micro-aerial-vehicle propeller performance in oblique flow
  • Experimental Characterization of a Propulsion System for Multi-rotor UAVs
  • Engineering Method to Estimate the Blade Loading of Propellers in Nonuniform Flow
  • Effect of disk angle-of-attack on aerodynamic performance of small propellers
  • Computational study on rotor interactional effects for a quadcopter in edgewise flight
  • Auralization of air vehicle noise for community noise assessment
  • Anticogging : Torque ripple suppression , modeling , and parameter selection
  • Analysis of a quadcopter ’ s acoustic signature in different flight regimes
  • Aerodynamic and aeroacoustic performance of an isolatedmulticopter rotor during forward flight
  • A revisit of the tonal noise of small rotors
  • A review of mathematical modelling techniques for advanced rotorcraft configurations