Spatio-temporally efficient coding : A computational principle of biological neural networks

Duho Sihn 2022년
논문상세정보
' Spatio-temporally efficient coding : A computational principle of biological neural networks' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Efficient coding
  • Hierarchical structure
  • Neural coding
  • Neural representation
  • Neuronal noise
  • Sensory system
  • Spike distance
  • Temporal coding
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
28 0

0.0%

' Spatio-temporally efficient coding : A computational principle of biological neural networks' 의 참고문헌

  • Time-dependent discrimination advantages for harmonic sounds suggest efficient coding for memory
    McPherson MJ , McDermott JH . 117 ( 50 ) :32169- 32180. doi : 10.1073/pnas.2008956117 [2020]
  • The Relationship between trial-bytrial variability and oscillations of cortical population activity
    Daniel E , Meindertsma T , Arazi A , Donner TH , Dinstein I . 9 ( 1 ) :16901. doi : 10.1038/s41598-019-53270-7 [2019]
  • Single-neuron perturbations reveal feature-specific competition in V1
    Chettih SN , Harvey CD 340 . doi:10.1038/s41586-019-0997-6 [2019]
  • Single neurons in the human brain encode numbers .
    Kutter EF , Bostroem J , Elger CE , Mormann F , Nieder A . 100 ( 3 ) :753-761.e4 . doi : 10.1016/j.neuron.2018.08.036 [2018]
  • Resource-rational analysis : Understanding human cognition as the optimal use of limited computational resources
    Lieder F , Griffiths TL ; 43 : E1 . doi : 10.1017/S0140525X1900061X [2020]
  • Orientation and contrast tuning properties and temporal flicker fusion characteristics of primate superior colliculus neurons .
    Chen C-Y , Hafed ZM . ; 12:58. doi : 10.3389/fncir.2018.00058 [2018]
  • Efficient coding explains the universal law of generalization in human perception
    Sims CR 360 ( 6389 ) :652-656. doi : 10.1126/science.aaq1118 [2018]
  • A simple coding procedure enhances a neuron 's information capacity
    Laughlin SB 36 ( 9-10 ) :910-912. doi : 10.1515/znc-1981-9-1040 [1981]
  • 99. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci 1999 Nov 01; 2(11):1019-1025. doi: 10.1038/14819
  • 98. Reich DS, Mechler F, Victor JD. Temporal coding of contrast in primary visual cortex: When, what, and why. Journal of Neurophysiology 2001 Mar 01; 85(3):1039-1050. doi: 10.1152/jn.2001.85.3.1039
  • 97. Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 1999 Jan 01; 2(1):79-87. doi: 10.1038/4580
  • 96. Pryluk R, Kfir Y, Gelbard-Sagiv H, Fried I, Paz R. A tradeoff in the neural code across regions and species. Cell 2019; 176(3):597-609.e18. doi: 10.1016/j.cell.2018.12.032
    [2019]
  • 95. Polanía R, Woodford M, Ruff CC. Efficient coding of subjective value. Nat Neurosci 2019; 22:134–142. doi: 10.1038/s41593-018-0292-0
    [2019]
  • 94. Pettet MW, Gilbert CD. Dynamic changes in receptive-field size in cat primary visual cortex. Proc Natl Acad Sci USA 1992 Sep 01; 89(17):8366-8370. doi: 10.1073/pnas.89.17.8366
  • 93. Palmer SE, Marre O, Berry MJ, Bialek W. Predictive information in a sensory population. Proc Natl Acad Sci USA 2015 Jun 02; 112(22):6908-6913. doi: 10.1073/pnas.1506855112
  • 92. Ohzawa I, DeAngelis GC, Freeman RD. Encoding of binocular disparity by simple cells in the cat's visual cortex. Journal of Neurophysiology 1996 May 01; 75(5):1779-1805. doi: 10.1152/jn.1996.75.5.1779
  • 91. Nogueira R, Peltier NE, Anzai A, DeAngelis GC, Martínez-Trujillo J, Moreno-Bote R. The effects of population tuning and trial-by-trial variability on information encoding and behavior. J. Neurosci. 2020; 40(5):1066-1083. doi: 10.1523/JNEUROSCI.0859-19.2019
    [2020]
  • 90. Niven JE, Laughlin SB. Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology 2008 Jun 01; 211(11):1792-1804. doi: 10.1242/jeb.017574
  • 9. Bolz J, Gilbert CD. Generation of end-inhibition in the visual cortex via interlaminar connections. Nature 1986 Mar 01; 320(6060):362–365. doi: 10.1038/320362a0
  • 89. Narayan R, Graña G, Sen K. Distinct time scales in cortical discrimination of natural sounds in songbirds. Journal of Neurophysiology 2006 Jul 01; 96(1):252-258. doi: 10.1152/jn.01257.2005
  • 88. Murphy PC, Sillito AM. Corticofugal feedback influences the generation of length tuning in the visual. Nature 1987 Oct 01; 392(6141):727-729. doi: 10.1038/329727a0
  • 87. Muckli L, De Martino F, Vizioli L, Petro LS, Smith FW, Ugurbil K, et al. Contextual feedback to superficial layers of V1. Current Biology 2015 Oct 19, 25(20):2690-2695. doi: 10.1016/j.cub.2015.08.057
  • 86. Mesulam MM, From sensation to cognition. Brain, 1998 Jun 01; 121(6):1013–1052. doi: 10.1093/brain/121.6.1013
  • 85. Mechler F, Victor JD, Purpura KP, Shapley R. Robust temporal coding of contrast by V1 neurons for transient but not for steady-state stimuli. J. Neurosci. 1998 Aug 15; 18(16):6583- 6598. doi: 10.1523/JNEUROSCI.18-16-06583.1998
  • 83. Margoliash D. Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. J. Neurosci. 1983 May 01; 3(5):1039-1057. doi: 10.1523/JNEUROSCI.03-05-01039.1983
  • 82. Malins JG, Pugh KR, Buis B, Frost SJ, Hoeft F, Landi N, Mencl WE, Kurian A, Staples R, Molfese PJ, Sevcik R, Morris R. Individual differences in reading skill are related to trial-bytrial neural activation variability in the reading network. J. Neurosci. 2018; 38(12):2981-2989. doi: 10.1523/JNEUROSCI.0907-17.2018
    [2018]
  • 81. MacLeod K, Bäcker A, Laurent G. Who reads temporal information contained across synchronized and oscillatory spike trains? Nature 1998 Oct 01; 395(6703):693-698. doi: 10.1038/27201
  • 80. Machens CK, Prinz P, Stemmler MB, Ronacher B, Herz AVM. Discrimination of behaviorally relevant signals by auditory receptor neurons. Neurocomputing 2001 Jun 01; 38-40:263-268. doi: 10.1016/S0925-2312(01)00382-4
  • 8. Berry MJ, Brivanlou IH, Jordan TA, Meister M. Anticipation of moving stimuli by the retina. Nature 1999 Mar 01; 398(6725):334-338. doi: 10.1038/18678
  • 79. Logiaco L, Quilodran R, Procyk E, Arleo A. Spatiotemporal spike coding of behavioral adaptation in the dorsal anterior cingulate cortex. PLOS Biology 2015 Aug 12; 13(8):e1002222. doi: 10.1371/journal.pbio.1002222
  • 78. Liu B, Hong A, Rieke F, Manookin MB. Predictive encoding of motion begins in the primate retina. Nature Neuroscience 2021 Aug 02. doi: 10.1038/s41593-021-00899-1
  • 76. Li B, Peterson MR, Freeman RD. Oblique Effect: A neural basis in the visual cortex. J. Neurophysiol. 2003 Jul 01; 90(1):204-217. doi: 10.1152/jn.00954.2002
  • 75. Li D, Constantinidis C, Murray JD. Trial-to-trial variability of spiking delay activity in prefrontal cortex constrains burst-coding models of working memory J. Neurosci. 2021; 41(43):8928-8945. doi: 10.1523/JNEUROSCI.0167-21.2021
  • 74. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998 Nov; 86(11):2278-2324. doi: 10.1109/5.726791
  • 73. Laughlin SB. Energy as a constraint on the coding and processing of sensory information. Current Opinion in Neurobiology 2001 Aug 01; 11(4):475-480. doi: 10.1016/S0959- 4388(00)00237-3
  • 70. Kriegeskorte N, Diedrichsen J. Peeling the onion of brain representations. Annu. Rev. Neurosci. 2019 Jul 08; 42(1):407-432. doi: 10.1146/annurev-neuro-080317-061906
  • 7. Berkes P, Wiskott L. Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision 2005 Jul 20; 5(6):579-602. doi: 10.1167/5.6.9
  • 69. Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A. Measuring spike train synchrony. Journal of Neuroscience Methods 2007 Sep 15; 165(1):151-161. doi: 10.1016/j.jneumeth.2007.05.031
  • 68. Kreuz T, Chicharro D, Houghton C, Andrzejak RG, Mormann F. Monitoring spike train synchrony. Journal of Neurophysiology 2013 Mar 01; 109(5):1457-1472. doi: 10.1152/jn.00873.2012
  • 67. Kreuz T, Chicharro D, Greschner M, Andrzejak RG. Time-resolved and time-scale adaptive measures of spike train synchrony. Journal of Neuroscience Methods 2011 Jan 30; 195(1):92- 106. doi: 10.1016/j.jneumeth.2010.11.020
  • 66. Krause BM, Murphy CA, Uhlrich DJ, Banks MI. PV+ cells enhance temporal population codes but not stimulus-related timing in auditory cortex. Cereb Cortex 2019 Feb 01; 29(2):627-647. doi: 10.1093/cercor/bhx345
  • 65. Kingma DP, Ba J. Adam: A method for stochastic optimization. Proceedings of the 3th International Conference on Learning Representations; 2015 May 7-9; San Diego, California, United States.
  • 64. Karklin Y, Lewicki MS. Emergence of complex cell properties by learning to generalize in natural scenes. Nature 2009 Jan 01; 457(7225):83-86. doi: 10.1038/nature07481
  • 63. Kantorovich LV. On one effective method of solving certain classes of extremal problems. Dokl. Akad. Nauk USSR 1940; 28:212–215.
  • 62. Kamitani Y, Tong F. Decoding the visual and subjective contents of the human brain. Nature Neuroscience 2005 Apr 24; 8(5):679-685. doi: 10.1038/nn1444
  • 61. Kalaska JF, Cohen DA, Hyde ML, Prud'homme M. A comparison of movement directionrelated versus load direction- related activity in primate motor cortex, using a two-dimensional reaching task. J. Neurosci. 1989 Jun 01; 9(6):2080-2102. doi: 10.1523/JNEUROSCI.09-06- 02080.1989
  • 60. Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience 2009 May 01; 10(5):345-359. doi: 10.1038/nrn2621
  • 6. Berens P, Ecker AS, Cotton RJ, Ma WJ, Bethge M, Tolias AS. A fast and simple population code for orientation in primate V1. J. Neurosci. 2012 Aug 01; 32(31):10618-10626. doi: 10.1523/JNEUROSCI.1335-12.2012
  • 59. Jamali M, Chacron MJ, Cullen KE. Self-motion evokes precise spike timing in the primate vestibular system. Nature Communications 2016 Oct 27; 7(1):13229. doi: 10.1038/ncomms13229
  • 58. Issa EB, Cadieu CF, DiCarlo JJ. Neural dynamics at successive stages of the ventral visual stream are consistent with hierarchical error signals. eLife 2018 Nov 28; 7:e42870. doi: 10.7554/eLife.42870
  • 57. Hurri J, Hyvärinen A. Temporal coherence, natural image sequences, and the visual cortex. Proceedings of the Conference on Neural Information Processing Systems; 2002 Dec 9-12; Vancouver, British Columbia, Canada.
  • 56. Huh CYL, Peach JP, Bennett C, Vega RM, Hestrin S. Feature-specific organization of feedback pathways in mouse visual cortex. Current Biology 2018 Jan 08; 28(1):114-120.e5. doi: 10.1016/j.cub.2017.11.056
  • 55. Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology 1968 Mar 01; 195(1):215-243. doi: 10.1113/jphysiol.1968.sp008455
  • 54. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology 1962 Jan 01; 160(1):106-154. doi: 10.1113/jphysiol.1962.sp006837
  • 53. Huang Y, Rao RPN. Predictive coding, WIREs Cogn Sci 2011 Sep 01; 2(5):580-593. doi: 10.1002/wcs.142
  • 52. Huang G, Ramachandran S, Lee TS, Olson CR. Neural correlate of visual familiarity in macaque area V2. J. Neurosci. 2018 Oct 17; 38(42):8967-8975. doi: 10.1523/JNEUROSCI.0664-18.2018
  • 51. Hu X, Zhang J, Li J, Zhang B. Sparsity-regularized HMAX for visual recognition. PLOS ONE 2014 Jan 02; 9(1):e81813. doi: 10.1371/journal.pone.0081813
  • 50. Houghton C, Victor JD. Measuring representational distances–the spike-train metrics approach. In: Kriegeskorte N, Kreiman G editors. Visual population codes: Toward a common multivariate framework for cell recording and functional imaging, MIT Press; 2010, p 213- 250.
    [2010]
  • 5. Barlow HB. Possible principles underlying the transformations of sensory messages. In: Rosenblith WA editor. Sensory communication, MIT Press; 1961. p 217-234. doi: 10.7551/mitpress/9780262518420.003.0013
  • 49. Houghton C, Kreuz T. On the efficient calculation of van Rossum distances. Network: Computation in Neural Systems 2012 Mar 01; 23(1-2):48-58. doi: 10.3109/0954898X.2012.673048
  • 48. Hogendoorn H, Burkitt AN. Predictive coding with neural transmission delays: a real-time temporal alignment hypothesis. eNeuro 2019 May 06; 6(2). doi: 10.1523/ENEURO.0412- 18.2019
  • 47. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: Data mining, inference, and prediction. 2nd ed. Springer; 2009. doi: 10.1007/978-0-387-84858-7
  • 46. Henry CA, Joshi S, Xing D, Shapley RM, Hawken MJ. Functional characterization of the extraclassical receptive field in macaque V1: Contrast, orientation, and temporal dynamics. J. Neurosci. 2013 Apr 03; 33(14):6230-6242. doi: 10.1523/JNEUROSCI.4155-12.2013
  • 45. Harvey MA, Saal HP, Dammann III JF, Bensmaia SJ. Multiplexing stimulus information through rate and temporal codes in primate somatosensory cortex. PLOS Biology 2013 May 07; 11(5):e1001558. doi:10.1371/journal.pbio.1001558
  • 44. Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, Bernard A, Bohn P, Caldejon S, Casal L, Cho A, Feiner A, Feng D, Gaudreault N, Gerfen CR, Graddis N, Groblewski PA, Henry AM, Ho A, Howard R, Knox JE, Kuan L, Kuang X, Lecoq J, Lesnar P, Li Y, Luviano J, McConoughey S, Mortrud MT, Naeemi M, Ng L, Oh SW, Ouellette B, Shen E, Sorensen SA, Wakeman W, Wang Q, Wang Y, Williford A, Phillips JW, Jones AR, Koch C, Zeng H. Hierarchical organization of cortical and thalamic connectivity. Nature 2019 Nov 01; 575(7781):195–202. doi: 10.1038/s41586-019-1716-z Hilgetag CC, Goulas A. ‘Hierarchy’ in the organization of brain networks. Phil. Trans. R. Soc. B 2020 Apr 13; 375(1796):20190319. doi: 10.1098/rstb.2019.0319
  • 43. Hansen JY, Markello RD, Vogel JW, Seidlitz J, Bzdok D, Misic B. Mapping gene transcription and neurocognition across human neocortex. Nat Hum Behav 2021 Mar 25. doi: 10.1038/s41562-021-01082-z
  • 42. Griffiths TL, Lieder F, Goodman ND. Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Top Cogn Sci 2015 Apr 01; 7(2):217-229. doi: 10.1111/tops.12142
  • 41. Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends in Neurosciences 1992 Jan 01; 15(1):20-25. doi: 10.1016/0166-2236(92)90344-8
  • 40. Gollisch T, Meister M. Rapid neural coding in the retina with relative spike latencies. Science 2008 Feb 22; 319(5866):1108-1111. doi: 10.1126/science.1149639
  • 4. Attneave F. Some informational aspects of visual perception. Psychological Review 1954; 61(3):183–193. doi: 10.1037/h0054663
    [1954]
  • 39. Girshick AR, Landy MS, Simoncelli EP. Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat Neurosci 2011 Jul 01; 14(7):926–932. doi: 10.1038/nn.2831
  • 38. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 1982 Nov 01; 2(11):1527-1537. doi: 10.1523/JNEUROSCI.02-11-01527.1982
  • 37. Ganguli D, Simoncelli EP. Efficient sensory encoding and bayesian inference with heterogeneous neural populations. Neural Comput 2014 Oct 01; 26(10):2103–2134. doi: 10.1162/NECO_a_00638
  • 36. Furmanski CS, Engel SA. An oblique effect in human primary visual cortex. Nat Neurosci 2000 Jun 01; 3(6):535–536. doi: 10.1038/75702
  • 35. Fukushima M, Rauske PL, Margoliash D. Temporal and rate code analysis of responses to low-frequency components in the bird’s own song by song system neurons. J Comp Physiol A 2015 Dec 01; 201(12)1103–1114. doi: 10.1007/s00359-015-1037-0
  • 34. Friston K, Thornton C, Clark A. Free-energy minimization and the dark-room problem. Front. Psychol. 2012 May 08; 3:130. doi: 10.3389/fpsyg.2012.00130
  • 33. Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci 2010 Feb 01; 11(2):127–138. doi: 10.1038/nrn2787
  • 32. Friston K. A theory of cortical responses. Phil. Trans. R. Soc. B 2005 Apr 29; 360(1456):815- 836. doi: 10.1098/rstb.2005.1622
  • 31. Flint RD, Lindberg EW, Jordan LR, Miller LE, Slutzky MW. Accurate decoding of reaching movements from field potentials in the absence of spikes. Journal of Neural Engineering 2012 Jun 25; 9(4):046006. doi: 10.1088/1741-2560/9/4/046006
  • 30. Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1991 Jan 01; 1(1):1-47. doi: 10.1093/cercor/1.1.1
  • 3. Allman J, Miezin F, McGuinness E. Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience 1985 Mar 01; 8(1):407-430. doi: 10.1146/annurev.ne.08.030185.002203
  • 29. Di Lorenzo PM, Victor JD. Taste response variability and temporal coding in the nucleus of the solitary tract of the rat. Journal of Neurophysiology 2003 Sep 01; 90(3):1418-1431. doi: 10.1152/jn.00177.2003
  • 28. Di Gesù V, Starovoitov V. Distance-based functions for image comparison. Pattern Recognition Letters 1999 Feb 01; 20(2):207-214. doi: 10.1016/S0167-8655(98)00115-9
  • 27. DiCarlo JJ, Zoccolan D, Rust NC. How does the brain solve visual object recognition? Neuron 2012 Feb 09; 73(3):415-434. doi: 10.1016/j.neuron.2012.01.010
  • 26. de la Rocha J, Doiron B, Shea-Brown E, Josic K, Reyes A. Correlation between neural spike trains increases with firing rate. Nature 2007 Aug 01; 448(7155):802–806. doi: 10.1038/nature06028
  • 25. deCharms RC, Zador A. Neural representation and the cortical code. Annu. Rev. Neurosci. 2000 May 01; 23(1):613-647. doi: 10.1146/annurev.neuro.23.1.613
  • 23. Creutzig F, Sprekeler H. Predictive coding and the slowness principle: An informationtheoretic approach. Neural Computation 2008 Apr; 20(4):1026-1041. doi: 10.1162/neco.2008.01-07-455
  • 22. Cohen S. Finding color and shape patterns in images. Dissertation, Stanford University; 1999.
    [1999]
  • 21. Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences 2013 May 10; 36(3):181-204. doi: 10.1017/S0140525X12000477
  • 20. Christensen RK, Lindén H, Nakamura M, Barkat TR. White noise background improves tone discrimination by suppressing cortical tuning curves. Cell Reports 2019; 29(7):2041-2053.e4. doi: 10.1016/j.celrep.2019.10.049
    [2019]
  • 2. Adrian E. The basis of sensation, the action of the sense organs. New York: Norton; 1928. p 122.
  • 17. Chen KS, Chen C-C, Chan CK. Characterization of predictive behavior of a retina by mutual information. Front. Comput. Neurosci. 2017 Jul 20; 11:66. doi: 10.3389/fncom.2017.00066
  • 16. Chalk M, Marre O, Tkačik G. Toward a unified theory of efficient, predictive, and sparse coding. Proc Natl Acad Sci USA 2018 Jan 02; 115(1):186-191. doi: 10.1073/pnas.1711114115
  • 15. Caminiti R, Johnson PB, Urbano A. Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J. Neurosci. 1990 Jul 01; 10(7):2039-2058. doi: 10.1523/JNEUROSCI.10-07-02039.1990
  • 145. Zou WY, Ng AY, Yu K. Unsupervised learning of visual invariance with temporal coherence. Proceedings of the Conference on Neural Information Processing Systems; 2011 Dec 12-17; Granada, Spain.
  • 144. Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang W, Jenvay S, et al. Long-range and local circuits for top-down modulation of visual cortex processing. Science 2014 Aug 08; 345(6197):660-665. doi: 10.1126/science.1254126
  • 143. Zhang Q, Hu X, Hong B, Zhang B. A hierarchical sparse coding model predicts acoustic feature encoding in both auditory midbrain and cortex. PLOS Computational Biology 2019 Feb 11; 15(2):e1006766. doi: 10.1371/journal.pcbi.1006766
  • 142. Zhang Q, Cramer SR, Ma Z, Turner KL, Gheres KW, Liu Y, Drew PJ, Zhang N. Brain-wide ongoing activity is responsible for significant cross-trial BOLD variability. Cerebral Cortex 2022; bhac016, doi: 10.1093/cercor/bhac016
  • 141. Zavitz E, Yu H-H, Rowe EG, Rosa MGP, Price NSC. Rapid adaptation induces persistent biases in population codes for visual motion. J. Neurosci. 2016 Apr 20; 36(16):4579-4590. doi: 10.1523/JNEUROSCI.4563-15.2016
  • 140. Zandvakili A, Kohn A. Simultaneous V1-V2 neuronal population recordings in anesthetized macaque monkeys. CRCNS.org 2019. doi: 10.6080/K0B27SHN
  • 14. Burt JB, Demirtaş M, Eckner WJ, Navejar NM, Ji JL, Martin WJ, Bernacchia A, Anticevic A, Murray JD. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat Neurosci 2018 Sep 01; 21(9):1251–1259. doi: 10.1038/s41593-018-0195-0
  • 139. Zandvakili A, Kohn A. Coordinated neuronal activity enhances corticocortical communication. Neuron 2015 Aug 19; 87(4):827-839. doi: 10.1016/j.neuron.2015.07.026
  • 138. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. Performanceoptimized hierarchical models predict neural responses in higher visual cortex. Proc Natl Acad Sci USA 2014 Jun 10; 111(23):8619-8624. doi: 10.1073/pnas.1403112111
  • 137. Wiskott L, Sejnowski TJ. Slow feature analysis: Unsupervised learning of invariances. Neural Computation 2002 Apr 01; 14(4):715-770. doi: 10.1162/089976602317318938
  • 136. Waydo S, Kraskov A, Quian Quiroga R, Fried I, Koch C. Sparse representation in the human medial temporal lobe. J. Neurosci. 2006 Oct 04; 26(40):10232-10234. doi: 10.1523/JNEUROSCI.2101-06.2006
  • 135. Wang W, Jones HE, Andolina IM, Salt TE, Sillito AM. Functional alignment of feedback effects from visual cortex to thalamus. Nat Neurosci 2006 Oct 01; 9(10):1330-1336. doi: 10.1038/nn1768
  • 134. Wang L, Narayan R, Graña G, Shamir M, Sen K. Cortical discrimination of complex natural stimuli: Can single neurons match behavior? J. Neurosci. 2007 Jan 17; 27(3):582-589. doi: 10.1523/JNEUROSCI.3699-06.2007
  • 133. Victor JD, Purpura KP. Spatial phase and the temporal structure of the response to gratings in V1. Journal of Neurophysiology 1998 Aug 01; 80(2):554-571. doi: 10.1152/jn.1998.80.2.554
  • 132. Victor JD, Purpura KP. Nature and precision of temporal coding in visual cortex: a metricspace analysis. Journal of Neurophysiology 1996 Aug 01; 76(2):1310-1326. doi: 10.1152/jn.1996.76.2.1310
  • 131. Vaserstein LN. Markov processes over denumerable products of spaces, describing large systems of automata. Probl. Peredachi Inf. 1969; 5(3):64–72.
    [1969]
  • 130. Vargas-Irwin CE, Franquemont L, Black MJ, Donoghue JP. Linking objects to actions: Encoding of target object and grasping strategy in primate ventral premotor cortex. J. Neurosci. 2015 Jul 29; 35(30):10888-10897. doi: 10.1523/JNEUROSCI.1574-15.2015
  • 13. Butts DA, Weng C, Jin J, Yeh C-I, Lesica NA, Alonso J-M, Stanley GB. Temporal precision in the neural code and the timescales of natural vision. Nature 2007 Sep 01; 449(7158):92-95. doi: 10.1038/nature06105
  • 129. van Rossum MCW. A novel spike distance. Neural Computation 2001 Apr 01; 13(4):751-763. doi: 10.1162/089976601300014321
  • 128. van Hateren JH, van der Schaaf A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Royal Soc. B 1998 Mar 07; 265(1394):359- 366. doi: 10.1098/rspb.1998.0303
  • 127. van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res 2008 Nov; 9(86):2579−2605.
  • 126. Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience 2004 Feb 01; 5(2):97-107. doi: 10.1038/nrn1327
  • 125. Toyoizumi T, Pfister J-P, Aihara K, Gerstner W. Generalized Bienenstock–Cooper–Munro rule for spiking neurons that maximizes information transmission. Proc Natl Acad Sci USA 2005 Mar 28; 102(14):5239-5244. doi: 10.1073/pnas.0500495102
  • 124. Tomov P, Pena RFO, Zaks MA, Roque AC. Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types. Front. Comput. Neurosci. 2014 Sep 02; 8:103 doi: 10.3389/fncom.2014.00103
  • 123. Teufel C, Fletcher PC. Forms of prediction in the nervous system. Nat Rev Neurosci 2020 Apr 01; 21(4):231–242. doi: 10.1038/s41583-020-0275-5
  • 122. Tabuchi M, Monaco JD, Duan G, Bell B, Liu S, Liu Q, Zhang K, Wu MN. Clock-generated temporal codes determine synaptic plasticity to control sleep. Cell 2018 Nov 15; 175(5):1213- 1227.e18. doi: 10.1016/j.cell.2018.09.016
  • 121. Sullivan TJ, de Sa VR. Homeostatic synaptic scaling in self-organizing maps. Neural Networks 2006 Jul; 19(6):734-743. doi: 10.1016/j.neunet.2006.05.006
  • 120. Stringer C, Pachitariu M, Steinmetz N, Carandini M, Harris KD. High-dimensional geometry of population responses in visual cortex. Nature 2019 Jul 01; 571(7765)361–365. doi: 10.1038/s41586-019-1346-5
  • 12. Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci 2012 May 01; 13(5)336–349. doi: 10.1038/nrn3214
  • 119. Spratling MW. A review of predictive coding algorithms. Brain and Cognition 2017 Mar 01; 112:92-97. doi: 10.1016/j.bandc.2015.11.003
  • 118. Solomon SS, Tang H, Sussman E, Kohn A. Limited evidence for sensory prediction error responses in visual cortex of macaques and humans. Cereb Cortex 2021 Jun 01; 31(6):3136- 3152. doi: 10.1093/cercor/bhab014
  • 117. Singer Y, Teramoto Y, Willmore BDB, Schnupp JWH, King AJ, Harper NS, Gallant JL, Kastner S. Sensory cortex is optimized for prediction of future input. eLife 2018 Jun 18; 7:e31557. doi: 10.7554/eLife.31557
  • 115. Simoncelli EP, Olshausen BA. Natural image statistics and neural representation. Annu. Rev. Neurosci. 2001 Mar 01; 24(1):1193-1216. doi: 10.1146/annurev.neuro.24.1.1193
  • 114. Simoncelli EP. Vision and the statistics of the visual environment. Current Opinion in Neurobiology 2003 Apr 01; 13(2):144-149. doi: 10.1016/S0959-4388(03)00047-3
  • 113. Sillito AM, Cudeiro J, J HE. Always returning: feedback and sensory processing in visual cortex and thalamus. Trends Neurosci. 2006 Jun 01; 29(6):307-316. doi: 10.1016/j.tins.2006.05.001
  • 112. Sihn D, Kim S-P. Spatio-temporally efficient coding assigns functions to hierarchical structures of the visual system. Front. Comput. Neurosci. 2022 May 27; 16:890447. doi: 10.3389/fncom.2022.890447
  • 111. Sihn D, Kim S-P. Spatio-temporally efficient coding assigns functions to hierarchical structures of the visual system. bioRxiv 2021 Aug 13; 456321. doi: 10.1101/2021.08.13.456321
  • 110. Sihn D, Kim S-P. A spike train distance robust to firing rate changes based on the earth mover’s distance. Front. Comput. Neurosci. 2019 Dec 10; 13:82. doi: 10.3389/fncom.2019.00082
  • 11. Brouwer GJ, Heeger DJ. Decoding and reconstructing color from responses in human visual cortex. J. Neurosci. 2009 Nov 04; 29(44):13992-14003. doi: 10.1523/JNEUROSCI.3577- 09.2009
  • 109. Serre T, Oliva A, Poggio T. A feedforward architecture accounts for rapid categorization. Proc Natl Acad Sci USA 2007 Apr 10; 104(15):6424-6429. doi: 10.1073/pnas.0700622104
  • 108. Semedo JD, Zandvakili A, Machens CK, Yu BM, Kohn A. Cortical Areas Interact through a Communication Subspace. Neuron 2019 Apr 03; 102(1):249-259.e4. doi: 10.1016/j.neuron.2019.01.026
  • 107. Sederberg AJ, MacLean JN, Palmer SE. Learning to make external sensory stimulus predictions using internal correlations in populations of neurons. Proc Natl Acad Sci USA 2018 Jan 30; 115(5):1105-1110. doi: 10.1073/pnas.1710779115
  • 106. Schwartz AB, Kettner RE, Georgopoulos AP. Primate motor cortex and free arm movements to visual targets in three- dimensional space. I. Relations between single cell discharge and direction of movement. J. Neurosci. 1988 Aug 01; 8(8):2913-2927. doi: 10.1523/JNEUROSCI.08-08-02913.1988
  • 105. Schneider GE. Two Visual Systems. Science 1969 Feb 28; 163(3870):895-902. doi: 10.1126/science.163.3870.895
  • 104. Satuvuori E, Mulansky M, Bozanic N, Malvestio I, Zeldenrust F, Lenk K, Kreuz T. Measures of spike train synchrony for data with multiple time scales. Journal of Neuroscience Methods 2017 Aug 01; 287:25-38. doi: 10.1016/j.jneumeth.2017.05.028
  • 103. Satuvuori E, Kreuz T. Which spike train distance is most suitable for distinguishing rate and temporal coding? Journal of Neuroscience Methods 2018 Apr 01; 299:22-33. doi: 10.1016/j.jneumeth.2018.02.009
  • 102. Rubner Y, Tomasi C, Guibas LJ. The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision 2000 Nov 01; 40(2):99-121. doi: 10.1023/A:1026543900054
  • 101. Rubinov M, Sporns O, van Leeuwen C, Breakspear M. Symbiotic relationship between brain structure and dynamics. BMC Neuroscience 2009 Jun 02; 10(1):55. doi: 10.1186/1471-2202- 10-55
  • 100. Riesenhuber M, Poggio T. Models of object recognition. Nat Neurosci 2000 Nov 01; 3(11):1199-1204. doi: 10.1038/81479
  • 10. Borst A, Theunissen FE. Information theory and neural coding. Nature Neuroscience 1999 Nov 01; 2(11):947-957. doi: 10.1038/14731
  • 1. Adams RA, Perrinet LU, Friston K. Smooth pursuit and visual occlusion: Active inference and oculomotor control in schizophrenia. PLOS ONE 2012 Oct 26; 7(10):e47502. doi: 10.1371/journal.pone.0047502