Preventive Effects of Protocatechuic Acid on Cardiac Hypertrophy and Heart Failure = 심장비대 및 심부전에 대한 프로토카테츄산의 예방 효과

백리연 2022년
논문상세정보
' Preventive Effects of Protocatechuic Acid on Cardiac Hypertrophy and Heart Failure = 심장비대 및 심부전에 대한 프로토카테츄산의 예방 효과' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 의료과학 약
  • cardiac hypertrophy
  • fibrosis
  • heart failure
  • protocatechuic acid
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
4,070 0

0.0%

' Preventive Effects of Protocatechuic Acid on Cardiac Hypertrophy and Heart Failure = 심장비대 및 심부전에 대한 프로토카테츄산의 예방 효과' 의 참고문헌

  • Transgenic overexpression of constitutively active protein kinase C ε causes concentric cardiac hypertrophy .
  • The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo
  • The transcription factor GATA-6 regulates pathological cardiac hypertrophy .
  • The PPAR regulatory system in cardiac physiology and disease
    Finck BN 73:269-277 [2007]
  • Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis
  • Structural basis of protein kinase C isoform function .
    Steinberg SF 88:1341-1378 [2008]
  • RhoA/Rho-kinase in the cardiovascular system
  • Rho kinases and cardiac remodeling .
    Shimizu T , Liao JK . 80 ; 1491-1498 . [2016]
  • Regulation of cardiac hypertrophy by intracellular signalling pathways .
    Heineke J , Molkentin JD . 7:589-600 [2006]
  • Protocatechuic acid methyl ester modulates fluoride induced pulmonary toxicity in rats
  • Protocatechuic acid inhibits Toll-like receptor-4-dependent activation of NF-κB by suppressing activation of the Akt , mTOR , JNK and p38-MAPK
    Nam YJ , Lee CS 55:272-281 [2018]
  • Protein kinase C and cardiac dysfunction : a review
  • PKC-β is not necessary for cardiac hypertrophy .
  • Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload
    Schiattarella GG , Hill JA 131:1435-1447 [2015]
  • Heart failure after myocardial infarction in the era of primary percutaneous coronary intervention : mechanisms , incidence and identification of patients at risk
  • Gentisic acid prevents the transition from pressure overload-induced cardiac hypertrophy to heart failure .
  • Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity .
  • GATA4 regulates ANF expression synergistically with Sp1 in a cardiac hypertrophy model .
  • Disruption of ROCK1 gene attenuates cardiac dilation and improves contractile function in pathological cardiac hypertrophy .
  • Dendropanax morbifera prevents cardiomyocyte hypertrophy by inhibiting the Sp1/GATA4 pathway .
  • Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy , compensation , and myocyte viability .
  • Cardiac actions of protein kinase C isoforms
    Steinberg SF 27:130-139 [2012]
  • A systematic review of fetal genes as biomarkers of cardiac hypertrophy in rodent models of diabetes .
    Cox EJ , Marsh SA . 9 : e92903 . [2014]
  • A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program
  • 8. Shah AK, Bhullar SK, Elimban V, Dhalla NS. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants. 2021;10:931.
  • 7. Liu T, Song D, Dong J, Zhu P, Liu J, Liu W, Ma X, Zhao L, Ling S. Current understanding of the pathophysiology of myocardial fibrosis and its quantitative assessment in heart failure. Front Psychol. 2017;8:238.
    [2017]
  • 66. Song H, Ren J. Protocatechuic acid attenuates angiotensin II‐induced cardiac fibrosis in cardiac fibroblasts through inhibiting the NOX4/ROS/p38 signaling pathway. Phytother Res. 2019;33:2440-2447.
    [2019]
  • 65. Cui B, Yang Z, Wang S, Guo M, Li Q, Zhang Q, Bi X. The protective role of protocatechuic acid against chemically induced liver fibrosis in vitro and in vivo. Pharmazie. 2021;76:232-238.
  • 64. Zheng X, Zhang A, Binnie M, McGuire K, Webster SP, Hughes J, Howie SE, Mole DJ. Kynurenine 3-monooxygenase is a critical regulator of renal ischemia–reperfusion injury. Exp Mol Med. 2019;51:1-14.
    [2019]
  • 63. Korstanje R, Deutsch K, Bolanos-Palmieri P, Hanke N, Schroder P, Staggs L, Bräsen JH, Roberts IS, Sheehan S, Savage H. Loss of kynurenine 3-mono-oxygenase causes proteinuria. J Am Soc Nephrol. 2016;27:3271-3277.
  • 62. Mole DJ, Webster SP, Uings I, Zheng X, Binnie M, Wilson K, Hutchinson JP, Mirguet O, Walker A, Beaufils B. Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis. Nat Med. 2016;22:202-209.
    [2016]
  • 61. Tsang YW, Liao CH, Ke CH, Tu CW, Lin CS. Integrated molecular characterization to reveal the association between Kynurenine 3-Monooxygenase expression and tumorigenesis in human breast cancers. J Pers Med. 2021;11:948.
  • 60. Li CY, Zhang JR, Li XX, Zhao L, Xi H, Hu WN, Li SN. Lefty1 ameliorates post-infarction fibrosis by suppressing p-Smad2 and p-ERK1/2 signaling pathways. J Cardiovasc Transl Res. 2021;14:636-646.
  • 59. Zhang L, Zhang J, Xu C, Zhou X, Wang W, Zheng R, Hu W, Wu P. Lefty-1 alleviates TGF-beta1-induced fibroblastmyofibroblast transdifferentiation in NRK-49F cells. Drug Des Dev Ther. 2015; 9: 4669–4678.
    [2015]
  • 58. Dong ZX, Wan L, Wang RJ, Shi YQ, Liu GZ, Zheng SJ, Hou HL, Han W, Hai X. (–)-Epicatechin suppresses angiotensin II-induced cardiac hypertrophy via the activation of the SP1/SIRT1 signaling pathway. Cell Physiol Biochem. 2017;41:2004-2015.
    [2017]
  • 54. Rikitake Y, Oyama N, Wang C-YC, Noma K, Satoh M, Kim H-H, Liao JK. Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1+/− haploinsufficient mice. Circulation. 2005;112:2959-2965.
  • 53. Sunamura S, Satoh K, Kurosawa R, Ohtsuki T, Kikuchi N, Elias-Al-Mamun M, Shimizu T, Ikeda S, Suzuki K, Satoh T. Different roles of myocardial ROCK1 and ROCK2 in cardiac dysfunction and postcapillary pulmonary hypertension in mice. Proc Natl Acad Sci U S A. 2018;115:E7129-E7138.
    [2018]
  • 52. Hoshijima M, Sah VP, Wang Y, Chien KR, Brown JH. The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes: involvement of Rho kinase. J Biol Chem. 1998;273:7725-7730.
  • 51. Wang G, Woods A, Sabari S, Pagnotta L, Stanton L-A, Beier F. RhoA/ROCK signaling suppresses hypertrophic chondrocyte differentiation. J Biol Chem. 2004;279:13205-13214.
  • 50. Shi J, Wei L. Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp (Warsz). 2007;55:61-75.
    [2007]
  • 5. Pinho-Gomes AC, Rahimi K. Management of blood pressure in heart failure. Heart. 2019;105:589-595.
    [2019]
  • 47. Bai L, Kee HJ, Han X, Zhao T, Kee SJ, Jeong MH. Protocatechuic acid attenuates isoproterenol-induced cardiac hypertrophy via downregulation of ROCK1–Sp1–PKCγ axis. Sci Rep. 2021;11:1-16.
  • 44. Dai Y, Luo W, Chang J. Rho kinase signaling and cardiac physiology. Curr Opin Physiol. 2018;1:14-20.
    [2018]
  • 43. El-Sonbaty YA, Suddek GM, Megahed N, Gameil NM. Protocatechuic acid exhibits hepatoprotective, vasculoprotective, antioxidant and insulin-like effects in dexamethasone-induced insulin-resistant rats. Biochimie. 2019;167:119-134.
  • 41. Ryu Y, Kee HJ, Sun S, Seok YM, Choi SY, Kim GR, Kee SJ, Pflieger M, Kurz T, Kim H-S. Class I histone deacetylase inhibitor MS-275 attenuates vasoconstriction and inflammation in angiotensin II-induced hypertension. PloS One. 2019;14:e0213186.
    [2019]
  • 40. Fang X, Liu Y, Lu J, Hong H, Yuan J, Zhang Y, Wang P, Liu P, Ye J. Protocatechuic aldehyde protects against isoproterenol-induced cardiac hypertrophy via inhibition of the JAK2/STAT3 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol. 2018;391:1373-1385.
    [2018]
  • 4. Oh GC, Cho H-J. Blood pressure and heart failure. Clin Hypertens. 2020;26:1-8.
  • 39. Gahloth D, Dunstan MS, Quaglia D, Klumbys E, Lockhart-Cairns MP, Hill AM, Derrington SR, Scrutton NS, Turner NJ, Leys D. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nat Chem Biol. 2017;13:975-981
    [2017]
  • 38. Masella R, Santangelo C, Darchivio M, LiVolti G, Giovannini C, Galvano F. Protocatechuic acid and human disease prevention: biological activities and molecular mechanisms. Curr Med Chem. 2012;19:2901-2917.
    [2012]
  • 37. Sun S, Kee HJ, Jin L, Ryu Y, Choi SY, Kim GR, Jeong MH. Gentisic acid attenuates pressure overload‐induced cardiac hypertrophy and fibrosis in mice through inhibition of the ERK 1/2 pathway. J Cell Mol Med. 2018;22:5964-5977.
    [2018]
  • 36. Juurlink BH, Azouz HJ, Aldalati AM, AlTinawi BM, Ganguly P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr J. 2014;13:1-10.
  • 35. Khan AK, Rashid R, Fatima N, Mahmood S, Mir S, Khan S, Jabeen N, Murtaza G. Pharmacological activities of protocatechuic acid. Acta Pol Pharm. 2015;72:643-650.
    [2015]
  • 33. Zhang J, Fu B, Chen X, Chen D, Yang H. Protocatechuic acid attenuates anterior cruciate ligament transection‑induced osteoarthritis by suppressing osteoclastogenesis. Exp Ther Med. 2020;19:232-240.
  • 32. Liu C, Wang W, Lin W, Ling W, Wang D. Established atherosclerosis might be a prerequisite for chicory and its constituent protocatechuic acid to promote endothelium‐dependent vasodilation in mice. Mol Nutr Food Res. 2016;60:2141-2150.
    [2016]
  • 31. Beishline K, Azizkhan‐Clifford J. Sp1 and the hallmarks of cancer. FEBS J. 2015;282:224-258.
  • 30. Marin M, Karis A, Visser P, Grosveld F, Philipsen S. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell. 1997;89:619-628.
    [1997]
  • 3. Paradis J-M, Fried J, Nazif T, Kirtane A, Harjai K, Khalique O, Grubb K, George I, Hahn R, Williams M. Aortic stenosis and coronary artery disease: what do we know? What don't we know? A comprehensive review of the literature with proposed treatment algorithms. Eur Heart J. 2014;35:2069-2082.
  • 26. Marttila M, Hautala N, Paradis P, Toth M, Vuolteenaho O, Nemer M, Ruskoaho H. GATA4 mediates activation of the B-type natriuretic peptide gene expression in response to hemodynamic stress. Endocrinology. 2001;142:4693-4700.
    [2001]
  • 24. Chen L, Hahn H, Wu G, Chen C-H, Liron T, Schechtman D, Cavallaro G, Banci L, Guo Y, Bolli R. Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and ɛPKC. Proc Natl Acad Sci U S A. 2001;98:11114-11119.
  • 22. Bowman JC, Steinberg SF, Jiang T, Geenen DL, Fishman GI, Buttrick PM. Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J Clin Invest. 1997;100:2189-2195.
  • 20. Liu Q, Chen X, MacDonnell SM, Kranias EG, Lorenz JN, Leitges M, Houser SR, Molkentin JD. Protein kinase Cα, but not PKCβ or PKCγ, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach. Circ Res. 2009;105:194-200.
  • 19. Hahn HS, Marreez Y, Odley A, Sterbling A, Yussman MG, Hilty KC, Bodi I, Liggett SB, Schwartz A, Dorn GW. Protein kinase Cα negatively regulates systolic and diastolic function in pathological hypertrophy. Circ Res. 2003;93:1111-1119.
  • 18. Braz JC, Bueno OF, De Windt LJ, Molkentin JD. PKCα regulates the hypertrophic growth of cardiomyocytes through extracellular signal–regulated kinase1/2 (ERK1/2). J Cell Biol. 2002;156:905-919.
    [2002]
  • 17. Dorn GW, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest. 2005;115:527-537.
    [2005]
  • 11. Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK. Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci U S A. 2006;103:7432-7437.
  • 10. Lezoualc'h F, Métrich M, Hmitou I, Duquesnes N, Morel E. Small GTP-binding proteins and their regulators in cardiac hypertrophy. J Mol Cell Cardiol. 2008;44:623-632.
    [2008]
  • 1. Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109:1580-1589.
    [2004]