Design and Synthesis of Nanostructured Transition Metal (Co, Mn, Fe, and Ni) Compounds for Electrochemical Water Splitting = 전기화학적 물 분해를 위한 나노 구조 전이금속 (Co, Mn, Fe, Ni) 화합물의 설계 및 합성

이설 2022년
논문상세정보
' Design and Synthesis of Nanostructured Transition Metal (Co, Mn, Fe, and Ni) Compounds for Electrochemical Water Splitting = 전기화학적 물 분해를 위한 나노 구조 전이금속 (Co, Mn, Fe, Ni) 화합물의 설계 및 합성' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Fe-doping
  • Nanowire-nanosheet coexistence
  • Transition metal compound
  • core-shell
  • electrochemicalwatersplitting
  • synergistic effect
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
65 0

0.0%

' Design and Synthesis of Nanostructured Transition Metal (Co, Mn, Fe, and Ni) Compounds for Electrochemical Water Splitting = 전기화학적 물 분해를 위한 나노 구조 전이금속 (Co, Mn, Fe, Ni) 화합물의 설계 및 합성' 의 참고문헌

  • [9] L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting, Chem. Soc. Rev. 49 (2020) 3072–3106. doi:10.1039/d0cs00013b.
    [2020]
  • [99] J. Tian, Y. Xue, X. Yu, Y. Pei, H. Zhang, J. Wang, 2D nanoporous Ni(OH) 2 film as an electrode material for high-performance energy storage devices, RSC Adv. 9 (2019) 17706–17716. doi:10.1039/c9ra02034a.
    [2019]
  • [98] J. Zhao, J. Chen, S. Xu, M. Shao, D. Yan, M. Wei, D.G. Evans, X. Duan, CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices, J. Mater. Chem. A. 1 (2013) 8836–8843. doi:10.1039/c3ta11452j.
    [2013]
  • [97] G. Abellán, J.A. Carrasco, E. Coronado, J. Romero, M. Varela, Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: Structural, magnetic and electrochemical properties, J. Mater. Chem. C. 2 (2014) 3723– 3731. doi:10.1039/c3tc32578d.
    [2014]
  • [96] T. Nogueira, N. Gonçalves, R. Botan, F. Wypych, L. Lona, Layered double hydroxides as fillers in poly(l-lactide) nanocomposites, obtained by in situ bulk polymerization, Polimeros. 26 (2016) 106–114. doi:10.1590/0104-1428.2282.
    [2016]
  • [95] F.O. Ochai-Ejeh, M.J. Madito, D.Y. Momodu, A.A. Khaleed, O. Olaniyan, N. Manyala, High-performance hybrid supercapacitor device based on cobalt manganese layered double hydroxide and activated carbon derived from cork (Quercus Suber), Electrochim. Acta. 252 (2017) 41–54. doi:10.1016/j.electacta.2017.08.163.
    [2017]
  • [94] M. Guo, M. He, X. Li, Q. Zheng, F. Xie, C. Xu, D. Lin, CoMnFe hydroxysulfide nanowire@Ni(OH)2 nanorod arrays as self-supporting electrodes for high-efficiency oxygen evolution reaction, Electrochim. Acta. 356 (2020). doi:10.1016/j.electacta.2020.136793.
    [2020]
  • [93] Z. Wang, S. Zeng, W. Liu, X. Wang, Q. Li, Z. Zhao, F. Geng, Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity, ACS Appl. Mater. Interfaces. 9 (2017) 1488– 1495. doi:10.1021/acsami.6b13075.
    [2017]
  • [92] M. Arif, G. Yasin, M. Shakeel, X. Fang, R. Gao, S. Ji, D. Yan, Coupling of Bifunctional CoMn-Layered Double Hydroxide@Graphitic C3N4 Nanohybrids towards Efficient Photoelectrochemical Overall Water Splitting, Chem. - An Asian J. 13 (2018) 1045–1052. doi:10.1002/asia.201800016.
    [2018]
  • [91] X. Hu, X. Tian, Y.W. Lin, Z. Wang, Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media, RSC Adv. 9 (2019) 31563–31571. doi:10.1039/c9ra07258f.
    [2019]
  • [90] J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Hydrogen energy, economy, and storage: Review and recommendation, Int. J. Hydrogen Energy. 44 (2019) 15072–15086. doi:10.1016/j.ijhydene.2019.04.068.
    [2019]
  • [8] Eng. ToolBox Https//Www.Engineeringtoolbox.Com/Fossil-57 Fuels-Energy-Content- D_1298.Html. (n.d.).
  • [89] S. Fan, J. Zhang, Q. Wu, S. Huang, J. Zheng, D. Kong, S. Chen, Y. Wang, L.K. Ang, Y. Shi, H.Y. Yang, Morphological and Electronic Dual Regulation of Cobalt-Nickel Bimetal Phosphide Heterostructures Inducing High Water-Splitting Performance, J. Phys. Chem. Lett. 11 (2020) 3911–3919. doi:10.1021/acs.jpclett.0c00851.
  • [88] M. Guo, L. Zhou, Y. Li, Q. Zheng, F. Xie, D. Lin, Unique nanosheet-nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for a highefficiency oxygen evolution reaction, J. Mater. Chem. A. 7 (2019) 13130–13141. doi:10.1039/c9ta01531k.
    [2019]
  • [87] X. Lin, H. Li, F. Musharavati, E. Zalnezhad, S. Bae, B.Y. Cho, O.K.S. Hui, Synthesis and characterization of cobalt hydroxide carbonate nanostructures, RSC Adv. 7 (2017) 46925–46931. doi:10.1039/c7ra09050a.
    [2017]
  • [86] W. Choi, H.C. Shin, J.M. Kim, J.Y. Choi, W.S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (Eis) for lithium-ion batteries, J. Electrochem. Sci. Technol. 11 (2020) 1–13. doi:10.33961/jecst.2019.00528.
    [2020]
  • [85] N. Sekar, R.P. Ramasamy, Electrochemical impedance spectroscopy for microbial fuel cell characterization, J. Microb. Biochem. Technol. 5 (2013). doi:10.4172/1948-5948.s6- 004.
    [2013]
  • [84] J.J. Van Benschoten, J.Y. Lewis, W.R. Heineman, D.A. Roston, P.T. Kissinger, Cyclic voltammetry experiment, J. Chem. Educ. 60 (1983) 772–776. doi:10.1021/ed060p772.
    [1983]
  • [83] T. Gueshi, K. Tokuda, H. Matsuda, Voltammetry at partially covered electrodes. Part I. Chronopotentiometry and chronoamperometry at model electrodes, J. Electroanal. Chem. 89 (1978) 247–260. doi:10.1016/S0022-0728(78)80188-0.
    [1978]
  • [82] A.J.B. and L. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & son, 2001.
    [2001]
  • [81] S. Anantharaj, S. Kundu, Do the Evaluation Parameters Reflect Intrinsic Activity of Electrocatalysts in Electrochemical Water Splitting?, ACS Energy Lett. 4 (2019) 1260– 1264. doi:10.1021/acsenergylett.9b00686.
    [2019]
  • [80] J.R. Ferraro, Practical Fourier transform infrared spectroscopy: industrial and laboratory chemical analysis, Elsevier, 2012.
    [2012]
  • [7] S. McAllister, J.-Y. Chen, A.C. Fernandez-Pello, Fundamentals of Combustion Processes, (2011) 1–13. doi:10.1007/978-1-4419-7943-8.
    [2011]
  • [79] W.D. Perkins, Fourier transform infrared spectroscopy. Part II. Advantages of FT-IR, J. Chem. Educ. 64 (1987) A269. doi:10.1021/ed064pa269.
    [1987]
  • [78] R.R. Jones, D.C. Hooper, L. Zhang, D. Wolverson, V.K. Valev, Raman Techniques: Fundamentals and Frontiers, Nanoscale Res. Lett. 14 (2019). doi:10.1186/s11671-019- 3039-2.
    [2019]
  • [77] D. Zhang, Y. Zhu, L. Liu, X. Ying, C.E. Hsiung, R. Sougrat, K. Li, Y. Han, Atomic - resolution transmission electron microscopy of electron beam–sensitive crystalline materials, Science (80-. ). 359 (2018) 675–679. doi:10.1126/science.aao0865.
  • [76] A. Abdullah, A. Mohammed, Scanning Electron Microscopy ( SEM ): A Review Scanning Electron Microscopy ( SEM ): A Review, Int. Conf. Hydraul. Pneum. (2019) 1–9.
    [2019]
  • [75] D. Zhou, Weilie and Apkarian, Robert and Wang, Zhong Lin and Joy, Fundamentals of scanning electron microscopy (SEM), in: Scanning Microsc. Nanotechnol., Springer, 2006: pp. 1–40.
    [2006]
  • [74] B.J. Inkson, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, Mater. Charact. Using Nondestruct. Eval. Methods. (2016) 17–43.
    [2016]
  • [73] B.D. Cullity, Elements of X-ray Diffraction, Addition-Wesley Publishing, 1956.
    [1956]
  • [72] D. Briggs, X-ray photoelectron spectroscopy (XPS), Handb. Adhes. Second Ed. (2005) 621–622. doi:10.1002/0470014229.ch22.
    [2005]
  • [71] F.G. Hone, T. Abza, Short review of factors affecting chemical bath deposition method for metal chalcogenide thin films, Int. J. Thin Film Sci. Technol. 8 (2019) 43 –52. doi:10.18576/ijtfst/080203.
    [2019]
  • [70] D.P. Dubal, R. Holze, P. Gomez-Romero, Development of hybrid materials based on sponge supported reduced graphene oxide and transition metal hydroxides for hybrid energy storage devices, Sci. Rep. 4 (2014) 1–10. doi:10.1038/srep07349.
    [2014]
  • [6] I.B. Franco, T. Chatterji, E. Derbyshire, J. Tracey, Actioning the Global Goals for Local Impact, 2020. http://link.springer.com/10.1007/978-981-32-9927-6.
  • [69] J.A. Switzer, G. Hodes, Electrodeposition and chemical bath deposition of functional nanomaterials, MRS Bull. 35 (2010) 743–750. doi:10.1557/s0883769400051253.
    [2010]
  • [68] T. Han, L. Wu, P. Wang, T. Wang, Z. Yang, K. Tian, J. Jin, Room chemical bath temperature deposition of Mn:FeOOH on BiVO4 photoanode to enhance water oxidation, J. Alloys Compd. 894 (2022) 162571. doi:10.1016/j.jallcom.2021.162571.
  • [67] H. Feng, X. Sun, X. Guan, D. Zheng, W. Tian, C. Li, C. Li, M. Yan, Y. Yao, Construction of interfacial engineering on CoP nanowire arrays with CoFe-LDH nanosheets for enhanced oxygen evolution reaction, FlatChem. 26 (2021) 100225. doi:10.1016/j.flatc.2021.100225.
  • [66] E. Hatami, A. Toghraei, G. Barati Darband, Electrodeposition of Ni–Fe micro/nano urchin-like structure as an efficient electrocatalyst for overall water splitting, Int. J. Hydrogen Energy. 46 (2021) 9394–9405. doi:10.1016/j.ijhydene.2020.12.110.
  • [65] U. Erb, Electrodeposited nanocrystals: Synthesis, properties and industrial applications, Nanostructured Mater. 6 (1995) 533–538. doi:10.1016/0965-9773(95)00114-X.
    [1995]
  • [64] https://books.google.co.kr/books? hl=en&lr=&id=asA3BQAAQBAJ&oi=fnd&pg=PP1 &dq=Electrodeposition+&ots=-DCg6z3BUn&sig=LAthoFm568tZYmKjSC0RY7dj1 Ak#v=onepage&q=Electrodeposition&f=false, n.d.
  • [63] L. Ma, Z. Wei, X. Zhu, J. Liang, X. Zhang, Synthesis and photocatalytic properties of codoped Zn1-xCoxMn2O hollow nanospheres, J. Nanomater. 2019 (2019). doi:10.1155/2019/4257270.
  • [62] M.L.M. Napi, S.M. Sultan, R. Ismail, M.K. Ahmad, G.M.T. Chai, Optimization of a hydrothermal growth process for low resistance 1d fluorine-doped zinc oxide nanostructures, J. Nanomater. 2019 (2019). doi:10.1155/2019/4574507.
  • [61] Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal Synthesis of Nanomaterials, J. Nanomater. 2020 (2020). doi:10.1155/2020/8917013.
  • [60] W. Liu, D. Cao, D. Cheng, Review on Synthesis and Catalytic Coupling Mechanism of Highly Active Electrocatalysts for Water Splitting, Energy Technol. 9 (2021) 1–23. doi:10.1002/ente.202000855.
  • [5] Royal Dutch shell (2012) Sustainablity Report, 2012.
    [2012]
  • [59] J. Wang, X. Yue, Y. Yang, S. Sirisomboonchai, P. Wang, X. Ma, A. Abudula, G. Guan, Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review, J. Alloys Compd. 819 (2020) 153346. doi:10.1016/j.jallcom.2019.153346.
    [2020]
  • [58] H.F. Wang, C. Tang, Q. Zhang, A Review of Precious-Metal-Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Zn−Air Batteries, Adv. Funct. Mater. 28 (2018) 1–22. doi:10.1002/adfm.201803329.
    [2018]
  • [57] G. Zhu, X. Xie, X. Li, Y. Liu, X. Shen, K. Xu, S. Chen, Nanocomposites Based on CoSe2- Decorated FeSe2 Nanoparticles Supported on Reduced Graphene Oxide as High- Performance Electrocatalysts toward Oxygen Evolution Reaction, ACS Appl. Mater. Interfaces. 10 (2018) 19258–19270. doi:10.1021/acsami.8b04024.
    [2018]
  • [56] S. Peng, F. Gong, L. Li, D. Yu, D. Ji, T. Zhang, Z. Hu, Z. Zhang, S. Chou, Y. Du, S. Ramakrishna, Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis, J. Am. Chem. Soc. 140 (2018) 13644–13653. doi:10.1021/jacs.8b05134.
    [2018]
  • [55] K. Lankauf, K. Cysewska, J. Karczewski, A. Mielewczyk-Gryń, K. Górnicka, G. Cempura, M. Chen, P. Jasiński, S. Molin, MnxCo3-xO4 spinel oxides as efficient oxygen evolution reaction catalysts in alkaline media, Int. J. Hydrogen Energy. 45 (2020) 14867– 14879. doi:10.1016/j.ijhydene.2020.03.188.
    [2020]
  • [54] P.W. Menezes, A. Indra, O. Levy, K. Kailasam, V. Gutkin, J. Pfrommer, M. Driess, Using nickel manganese oxide catalysts for efficient water oxidation, Chem. Commun. 51 (2015) 5005–5008. doi:10.1039/c4cc09671a.
    [2015]
  • [53] N. Garg, M. Mishra, Govind, A.K. Ganguli, Electrochemical and magnetic properties of nanostructured CoMn2O4 and Co2MnO4, RSC Adv. 5 (2015) 84988–84998. doi:10.1039/c5ra16937b.
    [2015]
  • [52] S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng, J. Chen, S. Ramakrishna, Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications, ACS Nano. 9 (2015) 1945–1954. doi:10.1021/nn506851x.
    [2015]
  • [51] P. Babar, K. Patil, P. Bhoite, S. Pawar, J. Hyeok Kim, 1D iron cobaltite electrode for efficient electrochemical water oxidation, Mater. Lett. 312 (2022) 131663. doi:10.1016/j.matlet.2022.131663.
  • [50] S. Periyasamy, P. Subramanian, E. Levi, D. Aurbach, A. Gedanken, A. Schechter, Exceptionally Active and Stable Spinel Nickel Manganese Oxide Electrocatalysts for Urea Oxidation Reaction, ACS Appl. Mater. Interfaces. 8 (2016) 12176–12185. doi:10.1021/acsami.6b02491.
    [2016]
  • [4] K. Singh, R. Rathore, S. Rai, Review of Hydrogen-Based Energy Storage Techniques, (2021).
    [2021]
  • [49] X. Li, K. Patil, A. Agarwal, P. Babar, J.S. Jang, X. Chen, Y.T. Yoo, J.H. Kim, Ni(OH) 2 Coated CoMn-layered double hydroxide nanowires as efficient water oxidation electrocatalysts , New J. Chem. 46 (2022) 2044–2052. doi:10.1039/d1nj04792b.
  • [48] S.M. Pawar, A.T. Aqueel Ahmed, C.H. Lee, P.T. Babar, J.H. Kim, S.U. Lee, H. Kim, H. Im, Experimental and Theoretical Insights into Transition-Metal (Mo, Fe) Codoping in a Bifunctional Nickel Phosphide Microsphere Catalyst for Enhanced Overall Water Splitting, ACS Appl. Energy Mater. 4 (2021) 14169–14179. doi:10.1021/acsaem.1c02930.
  • [47] Q. Kong, W. Bai, F. Bai, X. An, W. Feng, F. Zhou, Q. Chen, Q. Wang, C. Sun, FeCoNi Ternary Spinel Oxides Nanosheets as High Performance Water Oxidation Electrocatalyst, ChemCatChem. 12 (2020) 2209–2214. doi:10.1002/cctc.202000004.
    [2020]
  • [46] P. Babar, K. Patil, V. Karade, K. Gour, A. Lokhande, S. Pawar, J.H. Kim, In Situ Fabrication of Nickel-Iron Oxalate Catalysts for Electrochemical Water Oxidation at High Current Densities, ACS Appl. Mater. Interfaces. 13 (2021) 52620–52628. doi:10.1021/acsami.1c14742.
  • [45] M.P. Suryawanshi, U. V. Ghorpade, S.W. Shin, U.P. Suryawanshi, E. Jo, J.H. Kim, Hierarchically Coupled Ni:FeOOH Nanosheets on 3D N-Doped Graphite Foam as Self93 Supported Electrocatalysts for Efficient and Durable Water Oxidation, ACS Catal. 9 (2019) 5025–5034. doi:10.1021/acscatal.9b00492.
    [2019]
  • [44] Z. Liu, C. Yu, X. Han, J. Yang, C. Zhao, H. Huang, J. Qiu, CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as High-Performance Electrocatalysts for the Oxygen Evolution Reaction, ChemElectroChem. 3 (2016) 906–912. doi:10.1002/celc.201600116.
    [2016]
  • [43] X. Yin, L. Yang, Q. Gao, Core-shell nanostructured electrocatalysts for water splitting, Nanoscale. 12 (2020) 15944–15969. doi:10.1039/d0nr03719b.
  • [42] P. Wang, T. Jia, B. Wang, A critical review: 1D/2D nanostructured self -supported electrodes for electrochemical water splitting, J. Power Sources. 474 (2020) 228621. doi:10.1016/j.jpowsour.2020.228621.
    [2020]
  • [41] N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting, Nanoscale. 9 (2017) 12231–12247. doi:10.1039/c7nr04187j.
    [2017]
  • [40] P. Wang, J. Qi, C. Li, W. Li, T. Wang, C. Liang, Hierarchical CoNi2S4@NiMn-layered double hydroxide heterostructure nanoarrays on superhydrophilic carbon cloth for enhanced overall water splitting, Electrochim. Acta. 345 (2020) 1–11. doi:10.1016/j.electacta.2020.136247.
    [2020]
  • [3] Https://Eneroutlook.Enerdata.Net/Forecast-World-Energy-Primary-Consumption.Html. (2021) 1.
  • [39] J. Zhou, L. Yu, Q. Zhu, C. Huang, Y. Yu, Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core-shell electrocatalyst for efficient water oxidation, J. Mater. Chem. A. 7 (2019) 18118–18125. doi:10.1039/c9ta06347a.
    [2019]
  • [38] L. Hu, M. Li, X. Wei, H. Wang, Y. Wu, J. Wen, W. Gu, C. Zhu, Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis, Chem. Eng. J. 398 (2020) 1–6. doi:10.1016/j.cej.2020.125605.
    [2020]
  • [37] L. Yu, H. Zhou, J. Sun, I.K. Mishra, D. Luo, F. Yu, Y. Yu, S. Chen, Z. Ren, Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core-shell electrocatalyst for efficient oxygen evolution, J. Mater. Chem. A. 6 (2018) 13619–13623. doi:10.1039/c8ta02967a.
  • [36] P. Babar, K. Patil, D.M. Lee, V. Karade, K. Gour, S. Pawar, J.H. Kim, Cost-effective and efficient water and urea oxidation catalysis using nickel-iron oxyhydroxide nanosheets synthesized by an ultrafast method, J. Colloid Interface Sci. 584 (2021) 760–769. doi:10.1016/j.jcis.2020.09.108.
  • [35] K. Patil, P. Babar, D.M. Lee, V. Karade, E. Jo, S. Korade, J.H. Kim, Bifunctional catalytic activity of Ni-Co layered double hydroxide for the electro-oxidation of water and methanol, Sustain. Energy Fuels. 4 (2020) 5254–5263. doi:10.1039/d0se00899k.
  • [34] L. Feng, A. Li, Y. Li, J. Liu, L. Wang, L. Huang, Y. Wang, X. Ge, A Highly Active CoFe Layered Double Hydroxide for Water Splitting, Chempluschem. 82 (2017) 483–488. doi:10.1002/cplu.201700005.
    [2017]
  • [33] H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, S. Jin, Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis, Nano Lett. 15 (2015) 1421–1427. doi:10.1021/nl504872s.
    [2015]
  • [32] M. Cui, X. Bai, J. Zhu, C. Han, Y. Huang, L. Kang, C. Zhi, H. Li, Electrochemically induced NiCoSe2@NiOOH/CoOOH heterostructures as multifunctional cathode materials for flexible hybrid zn batteries, Energy Storage Mater. 36 (2021) 427–434. doi:10.1016/j.ensm.2021.01.015.
  • [31] J.A. Rajesh, Y.H. Lee, Y.H. Yun, V.H. Vinh Quy, S.H. Kang, H. Kim, K.S. Ahn, Bifunctional NiCo2Se4 and CoNi2Se4 nanostructures: Efficient electrodes for batterytype supercapacitors and electrocatalysts for the oxygen evolution reaction, J. Ind. Eng. Chem. 79 (2019) 370–382. doi:10.1016/j.jiec.2019.07.013.
    [2019]
  • [30] M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu, J. Jiang, Q. Gao, J. Li, S.H. Yu, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation, Nat. Commun. 6 (2015). doi:10.1038/ncomms6982.
    [2015]
  • [2] M. Aresta, A. Dibenedetto, The Carbon Dioxide Revolution - Challenges and Perspectives for a Global Society, 2021.
  • [29] M. Sun, H. Liu, J. Qu, J. Li, Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage, Adv. Energy Mater. 6 (2016). doi:10.1002/aenm.201600087.
    [2016]
  • [28] A. Dutta, N. Pradhan, Developments of Metal Phosphides as Efficient OER Precatalysts, J. Phys. Chem. Lett. 8 (2017) 144–152. doi:10.1021/acs.jpclett.6b02249.
    [2017]
  • [27] D. Jiang, W. Ma, R. Yang, B. Quan, D. Li, S. Meng, M. Chen, Nickel–manganese bimetallic phosphides porous nanosheet arrays as highly active bifunctional hydrogen and oxygen evolution electrocatalysts for overall water splitting, Electrochim. Acta. 329 (2020). doi:10.1016/j.electacta.2019.135121.
    [2020]
  • [26] J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS 2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11 (2012) 963–969. doi:10.1038/nmat3439.
    [2012]
  • [25] C. Zhang, J. Zhao, L. Zhou, Z. Li, M. Shao, M. Wei, Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water, J. Mater. Chem. A. 4 (2016) 11516–11523. doi:10.1039/c6ta02537d.
    [2016]
  • [24] V. Vij, S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari, W.G. Lee, T. Yoon, K.S. Kim, Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions, ACS Catal. 7 (2017) 7196–7225. doi:10.1021/acscatal.7b01800.
    [2017]
  • [23] M.I. Jamesh, X. Sun, Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review, J. Power Sources. 400 (2018) 31–68. doi:10.1016/j.jpowsour.2018.07.125.
    [2018]
  • [22] S.M. Ibn Shamsah, Earth-abundant electrocatalysts for water splitting: Current and future directions, Catalysts. 11 (2021). doi:10.3390/catal11040429.
  • [21] N. Yuan, Q. Jiang, J. Li, J. Tang, A review on non-noble metal based electrocatalysis for the oxygen evolution reaction, Arab. J. Chem. 13 (2020) 4294–4309. doi:10.1016/j.arabjc.2019.08.006.
  • [20] S. Kumaravel, K. Karthick, S.S. Sankar, A. Karmakar, R. Madhu, K. Bera, S. Kundu, Current progressions in transition metal based hydroxides as bi-functional catalysts towards electrocatalytic total water splitting, Sustain. Energy Fuels. 5 (2021) 6215–6268. doi:10.1039/d1se01193f.
  • [1] R. Lee, The outlook for population growth, Science (80-. ). 333 (2011) 569–573. doi:10.1126/science.1208859.
  • [19] M.S. Dresselhaus, I.L. Thomas, Alternative energy technologies. dresselhaus2001, Nature. 414 (2001) 332–337.
    [2001]
  • [18] J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles, Chem. Rev. 120 (2020) 851–918. doi:10.1021/acs.chemrev.9b00248.
    [2020]
  • [17] F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet, X. Hu, Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance, J. Am. Chem. Soc. 140 (2018) 7748–7759. doi:10.1021/jacs.8b04546.
    [2018]
  • [16] C. Hu, L. Zhang, J. Gong, Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting, Energy Environ. Sci. 12 (2019) 2620–2645. doi:10.1039/c9ee01202h.
    [2019]
  • [15] S. Wang, A. Lu, C.J. Zhong, Hydrogen production from water electrolysis: role of catalysts, Nano Converg. 8 (2021). doi:10.1186/s40580-021-00254-x.
  • [14] J.M. Olivares-Ramírez, M.L. Campos-Cornelio, J. Uribe Godínez, E. Borja-Arco, R.H. Castellanos, Studies on the hydrogen evolution reaction on different stainless steels, Int. J. Hydrogen Energy. 32 (2007) 3170–3173. doi:10.1016/j.ijhydene.2006.03.017.
    [2007]
  • [143] J. Yuan, C. Chen, Y. Hao, X. Zhang, R. Agrawal, C. Wang, X. Li, Y. Hao, B. Liu, Q. Li, Y. Xie, Three-dimensionally porous CoMn2O4 thin films grown on Ni foams for highperformance lithium-ion battery anodes, J. Mater. Sci. 52 (2017) 5751–5758. doi:10.1007/s10853-017-0810-6.
    [2017]
  • [142] L. Gao, E. Han, Y. He, C. Du, J. Liu, X. Yang, Effect of different templating agents on cobalt ferrite (CoFe2O4) nanomaterials for high-performance supercapacitor, Ionics (Kiel). 26 (2020) 3643–3654. doi:10.1007/s11581-020-03482-z.
  • [141] M. Zulqarnain, A. Shah, M.A. Khan, F. Jan Iftikhar, J. Nisar, FeCoSe2 Nanoparticles Embedded in g-C3N4: A Highly Active and Stable bifunctional electrocatalyst for overall water splitting, Sci. Rep. 10 (2020) 1–8. doi:10.1038/s41598-020-63319-7.
    [2020]
  • [140] H. Sim, J. Lee, T. Yu, B. Lim, Manganese oxide with different composition and morphology as electrocatalyst for oxygen evolution reaction, Korean J. Chem. Eng. 35 (2018) 257–262. doi:10.1007/s11814-017-0247-2.
    [2018]
  • [13] W. Kreuter, H. Hofmann, Electrolysis: the important energy transformer in a world of sustainable energy, Int. J. Hydrogen Energy. 23 (1998) 661–666. doi:10.1016/S0360- 3199(97)00109-2.
    [1998]
  • [139] X. Huang, H. Zheng, G. Lu, P. Wang, L. Xing, J. Wang, G. Wang, Enhanced Water Splitting Electrocatalysis over MnCo2O4 via Introduction of Suitable Ce Content, ACS Sustain. Chem. Eng. 7 (2019) 1169–1177. doi:10.1021/acssuschemeng.8b04814.
    [2019]
  • [138] T. Zhao, S. Gadipelli, G. He, M.J. Ward, D. Do, P. Zhang, Z. Guo, Tunable Bifunctional Activity of MnxCo3−xO4 Nanocrystals Decorated on Carbon Nanotubes for Oxygen Electrocatalysis, ChemSusChem. 11 (2018) 1295–1304. doi:10.1002/cssc.201800049.
    [2018]
  • [137] P.W. Menezes, A. Indra, N.R. Sahraie, A. Bergmann, P. Strasser, M. Driess, Cobaltmanganese- based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions, ChemSusChem. 8 (2015) 164–167. doi:10.1002/cssc.201402699.
    [2015]
  • [136] Z. Li, B. Li, J. Chen, Q. Pang, P. Shen, Spinel NiCo2O4 3-D nanoflowers supported on graphene nanosheets as efficient electrocatalyst for oxygen evolution reaction, Int. J. Hydrogen Energy. 44 (2019) 16120–16131. doi:10.1016/j.ijhydene.2019.04.219.
    [2019]
  • [135] P.S. Jain, V.S. Darshane, Cation distribution of the system Zn1-xCoxFeMnO4 by x-ray, electrical conductivity and Mössbauer studies, Pramana. 20 (1983) 7–17. doi:10.1007/BF02846175.
    [1983]
  • [134] L. Zhou, S. Jiang, Y. Liu, M. Shao, M. Wei, X. Duan, Ultrathin CoNiP@Layered Double Hydroxides Core-Shell Nanosheets Arrays for Largely Enhanced Overall Water Splitting, ACS Appl. Energy Mater. 1 (2018) 623–631. doi:10.1021/acsaem.7b00151.
    [2018]
  • [133] R. Khan, M.T. Mehran, M.M. Baig, B. Sarfraz, S.R. Naqvi, M.B. Muhammad, M.Z. Khan, A.H. Khoja, 3D hierarchical heterostructured LSTN@NiMn-layered double hydroxide as a bifunctional water splitting electrocatalyst for hydrogen production, Fuel. 285 (2021) 119174. doi:10.1016/j.fuel.2020.119174.
  • [132] D. Liu, Q. Lu, Y. Luo, X. Sun, A.M. Asiri, NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity, Nanoscale. 7 (2015) 15122–15126. doi:10.1039/c5nr04064g.
    [2015]
  • [131] H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang, S. Jin, Porous Two- Dimensional Nanosheets Converted from Layered Double Hydroxides and Their Applications in Electrocatalytic Water Splitting, Chem. Mater. 27 (2015) 5702–5711. doi:10.1021/acs.chemmater.5b02177.
    [2015]
  • [130] S. Deng, Y. Zhong, Y. Zeng, Y. Wang, X. Wang, X. Lu, X. Xia, J. Tu, Hollow TiO2@Co9S8 Core–Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production, Adv. Sci. 5 (2018). doi:10.1002/ADVS.201700772.
    [2018]
  • [12] M. Zeng, Y. Li, Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. A. 3 (2015) 14942–14962. doi:10.1039/c5ta02974k.
    [2015]
  • [129] S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhu, H. Fu, Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting, Chem. Commun. 51 (2015) 8066–8069. doi:10.1039/c5cc01080b.
    [2015]
  • [128] W. Fang, D. Liu, Q. Lu, X. Sun, A.M. Asiri, Nickel promoted cobalt disulfide nanowire array supported on carbon cloth: An efficient and stable bifunctional electrocatalyst for full water splitting, Electrochem. Commun. 63 (2016) 60–64. doi:10.1016/j.elecom.2015.10.010.
    [2016]
  • [127] F. Ming, H. Liang, H. Shi, X. Xu, G. Mei, Z. Wang, MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting, J. Mater. Chem. A. 4 (2016) 15148–15155. doi:10.1039/c6ta06496e.
    [2016]
  • [126] Y. Hou, M.R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng, Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting, Energy Environ. Sci. 9 (2016) 478–483. doi:10.1039/c5ee03440j.
    [2016]
  • [125] A.L. Wang, H. Xu, G.R. Li, NiCoFe Layered Triple Hydroxides with Porous Structures as High-Performance Electrocatalysts for Overall Water Splitting, ACS Energy Lett. 1 (2016) 445–453. doi:10.1021/acsenergylett.6b00219.
    [2016]
  • [124] L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren, Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting, Energy Environ. Sci. 10 (2017) 1820–1827. doi:10.1039/c7ee01571b.
    [2017]
  • [123] P. Zhang, L. Li, D. Nordlund, H. Chen, L. Fan, B. Zhang, X. Sheng, Q. Daniel, L. Sun, Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation, Nat. Commun. 9 (2018) 1–10. doi:10.1038/s41467-017- 02429-9.
    [2018]
  • [122] G. Jia, Y. Hu, Q. Qian, Y. Yao, S. Zhang, Z. Li, Z. Zou, Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation, ACS Appl. Mater. Interfaces. 8 (2016) 14527– 14534. doi:10.1021/acsami.6b02733.
    [2016]
  • [121] A.D. Jagadale, G. Guan, X. Li, X. Du, X. Ma, X. Hao, A. Abudula, Ultrathin nanoflakes of cobalt-manganese layered double hydroxide with high reversibility for asymmetric supercapacitor, J. Power Sources. 306 (2016) 526–534. doi:10.1016/j.jpowsour.2015.12.097.
    [2016]
  • [120] S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review, ACS Catal. 6 (2016) 8069–8097. doi:10.1021/acscatal.6b02479.
    [2016]
  • [11] H. Sun, X. Xu, Y. Song, W. Zhou, Z. Shao, Designing High-Valence Metal Sites for Electrochemical Water Splitting, Adv. Funct. Mater. 31 (2021) 1–44. doi:10.1002/adfm.202009779.
  • [119] Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction, Chem. Soc. Rev. 45 (2016) 1529–1541. doi:10.1039/c5cs00434a.
    [2016]
  • [118] M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst, J. Am. Chem. Soc. 136 (2014) 7077–7084. doi:10.1021/ja502128j.
    [2014]
  • [117] J. Bao, J. Xie, F. Lei, Z. Wang, W. Liu, L. Xu, M. Guan, Y. Zhao, H. Li, Two-dimensional Mn-Co LDH/graphene composite towards high-performance water splitting, Catalysts. 8 (2018). doi:10.3390/catal8090350.
    [2018]
  • [116] H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S.L. Schweizer, A.W. Maijenburg, R.B. Wehrspohn, Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting, Adv. Funct. Mater. 28 (2018) 1–10. doi:10.1002/adfm.201706847.
    [2018]
  • [115] S. Anantharaj, S.R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P.E. Karthik, S. Kundu, Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment, Energy Environ. Sci. 11 (2018) 744–771. doi:10.1039/c7ee03457a.
    [2018]
  • [114] P.T. Babar, A.C. Lokhande, B.S. Pawar, M.G. Gang, E. Jo, C. Go, M.P. Suryawanshi, S.M. Pawar, J.H. Kim, Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction, Appl. Surf. Sci. 427 (2018) 253 – 259. doi:10.1016/j.apsusc.2017.07.142.
    [2018]
  • [113] M. Baek, D. Kim, K. Yong, Simple but effective way to enhance photoelectrochemical solar-water-splitting performance of ZnO nanorod arrays: Charge-trapping Zn(OH)2 annihilation and oxygen vacancy generation by vacuum annealing, ACS Appl. Mater. Interfaces. 9 (2017) 2317–2325. doi:10.1021/acsami.6b12555.
    [2017]
  • [112] J.Y. Wang, P.Y. Kuang, N. Li, Z.Q. Liu, Y.Z. Su, S. Chen, Facile hydrothermal synthesis of cobalt manganese oxides spindles and their magnetic properties, Ceram. Int. 41 (2015) 8670–8679. doi:10.1016/j.ceramint.2015.03.083.
    [2015]
  • [111] L. Saleh Ghadimi, N. Arsalani, I. Ahadzadeh, A. Hajalilou, E. Abouzari-Lotf, Effect of synthesis route on the electrochemical performance of CoMnFeO4 nanoparticles as a novel supercapacitor electrode material, Appl. Surf. Sci. 494 (2019) 440–451. doi:10.1016/j.apsusc.2019.07.183.
    [2019]
  • [110] M.E. Dos Santos, A. Castro, I. Martinez, P. Noronha Lisboa-Filho, O. Peña, Mechanosynthesis of the multiferroic cubic spinel Co2MnO4: Influence of the calcination temperature, Ceram. Int. 40 (2014) 7185–7193. doi:10.1016/j.ceramint.2013.12.057.
    [2014]
  • [10] X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang, H. Liu, W. Zhou, Water Splitting: From Electrode to Green Energy System, Nano-Micro Lett. 12 (2020) 1–29. doi:10.1007/s40820-020- 00469-3.
    [2020]
  • [109] M. Guo, L. Zhou, Y. Li, Q. Zheng, F. Xie, D. Lin, Unique nanosheet-nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for a highefficiency oxygen evolution reaction, J. Mater. Chem. A. 7 (2019) 13130–13141. doi:10.1039/c9ta01531k.
    [2019]
  • [108] P. Babar, K. Patil, V. Karade, K. Gour, A. Lokhande, S. Pawar, J.H. Kim, In Situ Fabrication of Nickel–Iron Oxalate Catalysts for Electrochemical Water Oxidation at High Current Densities, ACS Appl. Mater. Interfaces. 13 (2021) 52620–52628. doi:10.1021/acsami.1c14742.
  • [107] D. Chen, H. Chen, X. Chang, P. Liu, Z. Zhao, J. Zhou, G. Xu, H. Lin, S. Han, Hierarchical CoMn-layered double hydroxide nanowires on nickel foam as electrode material for high-capacitance supercapacitor, J. Alloys Compd. 729 (2017) 866–873. doi:10.1016/j.jallcom.2017.07.313.
    [2017]
  • [106] P. Babar, K. Patil, D.M. Lee, V. Karade, K. Gour, S. Pawar, J.H. Kim, Cost-effective and efficient water and urea oxidation catalysis using nickel-iron oxyhydroxide nanosheets synthesized by an ultrafast method, J. Colloid Interface Sci. 584 (2021) 760–769. doi:10.1016/j.jcis.2020.09.108.
  • [105] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides, and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci. 257 (2011) 2717–2730. doi:10.1016/j.apsusc.2010.10.051.
  • [104] Z. Liu, C. Yu, X. Han, J. Yang, C. Zhao, H. Huang, J. Qiu, CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as High-Performance Electrocatalysts for the Oxygen Evolution Reaction, ChemElectroChem. 3 (2016) 906–912. doi:10.1002/CELC.201600116.
    [2016]
  • [103] M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation, J. Am. Chem. Soc. 135 (2013) 8452–8455. doi:10.1021/ja4027715.
    [2013]
  • [102] L. Yang, L. Chen, D. Yang, X. Yu, H. Xue, L. Feng, NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction, J. Power Sources. 392 (2018) 23– 32. doi:10.1016/j.jpowsour.2018.04.090.
    [2018]
  • [101] F. Yan, D. Guo, J. Kang, L. Liu, C. Zhu, P. Gao, X. Zhang, Y. Chen, Fast fabrication of ultrathin CoMn LDH nanoarray as flexible electrode for water oxidation, Electrochim. Acta. 283 (2018) 755–763. doi:10.1016/j.electacta.2018.06.202.
    [2018]
  • [100] T. Tang, W.J. Jiang, S. Niu, N. Liu, H. Luo, Y.Y. Chen, S.F. Jin, F. Gao, L.J. Wan, J.S. Hu, Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting, J. Am. Chem. Soc. 139 (2017) 8320–8328. doi:10.1021/jacs.7b03507.