Optimization of lipid nanoparticles for pancreatic cancer therapy = 치료용 단백질의 LNP 탑재와 생물학적 응용

원은정 2022년
논문상세정보
' Optimization of lipid nanoparticles for pancreatic cancer therapy = 치료용 단백질의 LNP 탑재와 생물학적 응용' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 약리학과 치료학
  • CRISPR-Cas system
  • Lipid-nanoparticle
  • gene delivery
  • liposome
  • protein delivery
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
748 0

0.0%

' Optimization of lipid nanoparticles for pancreatic cancer therapy = 치료용 단백질의 LNP 탑재와 생물학적 응용' 의 참고문헌

  • βIII-tubulin : A novel mediator of chemoresistance and metastases in pancreatic cancer
  • [9] D. P. Ryan, T. S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N. Engl. J. Med. 371 (2014), 1039–1049.
    [2014]
  • [98] M. Wang, J. A. Zuris, F. Meng, H. Rees, S. Sun, P. Deng, Y. Han, X. Gao, D. Pouli, Q. Wu, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl. Acad. Sci. USA 113 (2016), 2868–2873.
    [2016]
  • [96] J. A. Zuris, D. B. Thompson, Y. Shu, J. P. Guilinger, J. L. Bessen, J. H. Hu, M. L. Maeder, J. K. Joung, Z. Y. Chen, D. R. Liu, Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33 (2015), 73–80.
  • [94] S. Zhang, J. Shen, D. Li, Y. Cheng, Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 11 (2021), 614–648.
  • [93] A. Hendel, R. O. Bak, J. T. Clark, A. B. Kennedy, D. E. Ryan, S. Roy, I. Steinfeld, B. D. Lunstad, R. J. Kaiser, A. B. Wilkens, et al. Chemically modified guide RNAs enhance CRISPRCas genome editing in human primary cells. Nat. Biotechnol. 33 (2015), 985–989.
  • [91] H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin, D. G. Anderson, Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15 (2014), 541–555.
    [2014]
  • [90] X. Liang, J. Potter, S. Kumar, Y. Zou, R. Quintanilla, M. Sridharan, J. Carte, W. Chen, N. Roark, S. Ranganathan, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208 (2015), 44–53.
  • [8] H. Pook, S. Pauklin, Mechanisms of Cancer Cell Death: Therapeutic Implications for Pancreatic Ductal Adenocarcinoma. Cancers 13 (2021), 4834.
  • [8] A. Kapoor, W. Yao, H. Ying, S. Hua, A. Liewen, Q. Wang, Y. Zhong, C. J. Wu, A. Sadanandam, B. Hu, Q. Chang, G. C. Chu, R. Al-Khalil, S. Jiang, H. Xia, E. Fletcher-Sananikone, C. Lim, G. I. Horwitz, A. Viale, P. Pettazzoni, N. Sanchez, H. Wang, A. Protopopov, J. Zhang, T. Heffernan, R. L. Johnson, L. Chin, Y. A. Wang, G. Draetta, R. A. DePinho, Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158 (2014), 185-197.
  • [88] K. M. McAndrews, F. Xiao, A. Chronopoulos, V. S. LeBleu, F. G. Kugeratski, R. Kalluri, Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras(G12D) in pancreatic cancer. Life Sci. Alliance (2021), 4.
  • [87] H. Liu, S. Qiao, X. Fan, Y. Gu, Y. Zhang, S. Huang, Role of exosomes in pancreatic cancer. Oncol. Lett. 21 (2021), 298.
  • [86] M. Mendt, S. Kamerkar, H. Sugimoto, K. M. McAndrews, C. C. Wu, M. Gagea, S. Yang, E. V. R. Blanko, Q. Peng, X. Ma, et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 3 (2018), e99263.
    [2018]
  • [7] M. A. Collins, F. Bednar, Y. Zhang, J. C. Brisset, S. Galbán, C. J. Galbán, S. Rakshit, K. S. Flannagan, N. V. Adsay, M. Pasca di Magliano, Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest. 122 (2012), 639-653.
  • [79] K. Lee, M. Conboy, H. M. Park, F. Jiang, H. J. Kim, M. A. Dewitt, V. A. Mackley, K. Chang, A. Rao, C. Skinner, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1 (2017), 889–901.
    [2017]
  • [76] N. Ryu, M. A. Kim, D. Park, B. Lee, Y. R. Kim, K. H. Kim, J. I. Baek, W. J. Kim, K. Y. Lee, U. K. Kim, Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. Nanomedicine 14 (2018), 2095–2102.
    [2018]
  • [75] H. X. Wang, Z. Song, Y. H. Lao, X. Xu, J. Gong, D. Cheng, S. Chakraborty, J. S. Park, M. Li, D. Huang, et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc. Natl. Acad. Sci. USA 115 (2018), 4903–4908.
  • [6] D. D. Von Hoff, T. Ervin, F. P. Arena, E. G. Chiorean, J. Infante, M. Moore, T. Seay, S. A. Tjulandin, W. W. Ma, M. N. Saleh, et al. Increased survival in pancreatic cancer with nabpaclitaxel plus gemcitabine. N. Engl. J. Med. 369 (2013), 1691–1703.
    [2013]
  • [69] D. Wang, H. Mou, S. Li, Y. Li, S. Hough, K. Tran, J. Li, H. Yin, D. G. Anderson, E. J. Sontheimer, et al. Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. Hum. Gene Ther. 26 (2015), 432– 442.
    [2015]
  • [68] L. Li, Z. Y. He, X. W. Wei, G. P. Gao, Y. Q. Wei, Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Hum. Gene Ther. 26 (2015), 452–462.
    [2015]
  • [66] V. Louis Jeune, J. A. Joergensen, R. J. Hajjar, T. Weber, Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum. Gene Ther. Methods 24 (2013), 59– 67.
    [2013]
  • [64] H. Yin, K. J. Kauffman, D. G. Anderson, Delivery technologies for genome editing. Nat. Rev. Drug Discov. 16 (2017), 387–399.
    [2017]
  • [63] C. E. Nelson, C. A. Gersbach, Engineering Delivery Vehicles for Genome Editing. Annu. Rev. Chem. Biomol. Eng. 7 (2016), 637–662.
    [2016]
  • [5] T. Conroy, F. Desseigne, M. Ychou, O. Bouché, R. Guimbaud, Y. Bécouarn, A. Adenis, J. L. Raoul, S. Gourgou-Bourgade, C. de la Fouchardière, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364 (2011), 1817–1825.
    [2011]
  • [5] J. Kleeff, M. Korc, M. Apte, C. La Vecchia, C. D. Johnson, A. B. Biankin, R. E. Neale, M. Tempero, D. A. Tuveson, R. H. Hruban, J. P. Neoptolemos, Pancreatic cancer. Nat. Rev. Dis. Primers 2 (2016), 16022.
    [2016]
  • [59] A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, D. R. Liu, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 553 (2016), 420–424.
    [2016]
  • [57] A. V. Anzalone, L. W. Koblan, D. R. Liu, Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38 (2020), 824–844.
    [2020]
  • [53] T. Gaj, C. A. Gersbach, C. F. Barbas, III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31 (2013), 397–405.
    [2013]
  • [52] F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott, F. Zhang, Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8 (2013), 2281–2308.
    [2013]
  • [51] M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, E. A. Charpentier, Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816– 821.
    [2012]
  • [4] Y. Binenbaum, S. Naara, Z. Gil, Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist. Updat. 23 (2015), 55-68.
    [2015]
  • [4] T. Conroy, P. Hammel, M. Hebbar, M. Ben Abdelghani, A. C. Wei, J. L. aoul, L. Choné, Francois, E.; P. Artru, J. J. Biagi, et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 379 (2018), 2395–2406.
  • [44] A. Santel, M. Aleku, N. Röder, K. Möpert, B. Durieux, O. Janke, O. Keil, J. Endruschat, S. Dames, C. Lange, et al. Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin. Cancer. Res. 16 (2010), 5469–5480.
    [2010]
  • [43] M. Aleku, P. Schulz, O. Keil, A. Santel, U. Schaeper, B. Dieckhoff, O. Janke, J. Endruschat, B. Durieux, N. Röder, et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 68 (2008), 9788–9798.
    [2008]
  • [42] M. E. Davis, J. E. Zuckerman, C. H. J. Choi, D. Seligson, A. Tolcher, C. A. Alabi, Y. Yen, J. D. Heidel, A. Ribas, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464 (2010), 1067–1070.
    [2010]
  • [3] L. de Sousa Cavalcante, G. Monteiro, Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol. 741 (2014), 8-16.
    [2014]
  • [38] Z. OBrien, L. Wang, B. Majeti, J. Clamme, R. Baclig, J. Chu, S. Fong, J. Harborth, J. Ibarra, H. Yin, et al. A novel lipid nanoparticle (NBF-006) encapsulating glutathione Stransferase P (GSTP) siRNA for the treatment of KRAS-driven non-small cell lung cancer. Cancer Res. 78 (2018), 5917.
  • [36] A. D. Judge, M. Robbins, I. Tavakoli, J. Levi, L. Hu, A. Fronda, E. Ambegia, K. McClintock, I. MacLachlan, Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J. Clin. Investig. 119 (2009), 661–673.
    [2009]
  • [35] T. Golan, E. Z. Khvalevsky, A. Hubert, R. M. Gabai, N. Hen, A. Segal, A. Domb, G. Harari, E. B. David, S. Raskin, et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 6 (2015), 24560–24570.
    [2015]
  • [35] Q. Hu, Y. Qin, B. Zhang, C. Liang, S. Ji, S. Shi, W. Xu, J. Xiang, D. Liang, Q. Ni, X. Yu, J. Xu, FBW7 increases the chemosensitivity of pancreatic cancer cells to gemcitabine through upregulation of ENT1. Oncol. Rep. 38 (2017), 2069-2077.
    [2017]
  • [34] B. Schultheis, D. Strumberg, J. Kuhlmann, M. Wolf, K. Link, T. Seufferlein, J. Kaufmann, M. Feist, F. Gebhardt, M. Khan, et al. Safety, Efficacy and Pharcacokinetics of Targeted Therapy with The Liposomal RNA Interference Therapeutic Atu027 Combined with Gemcitabine in Patients with Pancreatic Adenocarcinoma. A Randomized Phase Ib/IIa Study. Cancers 12 (2020), 3130.
  • [33] H. Ying, A. C. Kimmelman, C. A. Lyssiotis, S. Hua, G. C. Chu, E. Fletcher-Sananikone, J. W. Locasale, J. Son, H. Zhang, J. L. Coloff, H. Yan, W. Wang, S. Chen, A. Viale, H. Zheng, J. H. Paik, C. Lim, A. R. Guimaraes, E. S. Martin, J. Chang, A. F. Hezel, S. R. Perry, J. Hu, B. Gan, Y. Xiao, J. M. Asara, R. Weissleder, Y. A. Wang, L. Chin, L. C. Cantley, R. A DePinho, Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 49 (2012), 656-670.
  • [33] B. Schultheis, D. Strumberg, A. Santel, C. Vank, F. Gebhardt, O. Keil, C. Lange, K. Giese, J. Kaufmann, M. Khan, et al. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol. 32 (2014), 4141–4148.
    [2014]
  • [32] J. E. Zuckerman, I. Gritli, A. Tolcher, J. D. Heidel, D. Lim, R. Morgan, B. Chmielowski, A. Ribas, M. E. Davis, Y. Yen, Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc. Natl. Acad. Sci. USA 111 (2014), 11449–11454.
  • [31] D. Hattab, A. M. Gazzali, A. Bakhtiar, Clinical Advances of siRNA-Based Nanotherapeutics for Cancer Treatment. Pharmaceutics 13 (2021), 1009.
  • [30] Y. Nakamura, A. Mochida, P. L. Choyke, H. Kobayashi, Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? Bioconjugate Chem. 27 (2016), 2225–2238.
    [2016]
  • [30] P. Liang, X. Xie, S. Zhi, H. Sun, X. Zhang, Y. Chen, Y. Chen, Y. Xiong, W. Ma, D. Liu, J. Huang, Z. Songyang, Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat. Commun. 10 (2019), 67.
    [2019]
  • [2] J. D. Mizrahi, R. Surana, J. W. Valle, R. T. Shroff, Pancreatic cancer. Lancet 395 (2020), 2008– 2020.
  • [2] A. Vincent, J. Herman, R. Schulick, R. H. Hruban, M. Goggins, Pancreatic cancer. Lancet 395 (2020), 2008-2020.
    [2020]
  • [29] P. C. McDonald, S. C. Chafe, W. S. Brown, S. Saberi, M. Swayampakula, G. Venkateswaran, O. Nemirovsky, J. A. Gillespie, J. M. Karasinska, S. E. Kalloger, C. T. Supuran, D. F. Schaeffer, A. Bashashati, S. P. Shah, J. T. Topham, D. T. Yapp, J. Li, D. J. Renouf, B. Z. Stanger, S. Dedhar, Regulation of pH by carbonic anhydrase 9 mediates survival of pancreatic cancer cells with activated KRAS in response to hypoxia. Gastroenterology 157 (2019), 823-837.
  • [28] S. Zhang, Z. Cheng, Y. Wang, T. Han, The Risks of miRNA Therapeutics: In a Drug Target Perspective. Drug. Des. Dev. Ther. 15 (2021), 721–733.
  • [27] S. M. Ryu, T. Koo, K. Kim, K. Lim, G. Baek, S. T. Kim, H. S. Kim, D. E. Kim, H. Lee, E. Chung, J. S. Kim, Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36 (2018), 536-539.
    [2018]
  • [27] S. Arora, S. K. Swaminathan, A. Kirtane, S. K. Srivastava, A. Bhardwaj, S. Singh, J. Panyam, A. P. Singh, Synthesis, characterization, and evaluation of poly (D,L-lactide-co-glycolide)-based nanoformulation of miRNA-150: Potential implications for pancreatic cancer therapy. Int. J. Nanomed. 9 (2014), 2933–2942.
    [2014]
  • [25] Y. Wu, Y. Tang, S. Xie, X. Zheng, S. Zhang, J. Mao, B. Wang, Y. Hou, L. Hu, K. Chai, et al. Chimeric peptide supramolecular nanoparticles for plectin-1 targeted miRNA-9 delivery in pancreatic cancer. Theranostics 10 (2020), 1151–1165.
    [2020]
  • [25] H. A. Rees HA, D. R. Liu, Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19 (2018), 770-788.
    [2018]
  • [22] J. Liu, T. Luo, Y. Xue, L. Mao, P. J. Stang, M. Wang, Hierarchical self-assembly of discrete metal-organic cages into supramolecular nanoparticles for intracellular protein delivery, Angew. Chem. Int. Ed. 60 (2021), 5429-5435.
  • [21] W. Cai, T. Luo, L. Mao, M. Wang, Spatiotemporal delivery of CRISPR/Cas9 genome editing machinery using stimuli-responsive vehicles, Angew. Chem. Int. Ed. 60 (2021), 8596-8606.
  • [21] M. E. Gilles, L. Hao, L. Huang, R. Rupaimoole, P. P. Lopez-Casas, E. Pulver, J. C. Jeong, S. K. Muthuswamy, M. Hidalgo, S. N. Bhatia, et al. Personalized RNA Medicine for Pancreatic Cancer. Clin. Cancer Res. 24 (2018), 1734–1747.
    [2018]
  • [1] W. Park, A. chawla, EM. OReilly, Pancreatic Cancer: A Review. JAMA 326 (2021), 851–862.
  • [1] R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2020. CA: Cancer J. Clin. 70 (2020), 7-30.
  • [19] K. S. Hanlon, B. P. Kleinstiver, S. P. Garcia, M. P. Zaborowski, A. Volak, S. E. Spirig, A. Muller, A. A. Sousa, S. Q. Tsai, N. E. Bengtsson, C. Lööv, M. Ingelsson, J. S. Chamberlain, D. P. Corey, M. J. Aryee, J. K. Joung, X. O. Breakefield, C. A. Maguire, B. György, High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat. Commun. 10 (2019), 4439.
  • [19] G. J. Goodall, V. O. Wickramasinghe, RNA in cancer. Nat. Rev. Cancer 21 (2021), 22–36.
  • [18] S. M. Hoy, Patisiran: First, Global Approval. Drugs 78 (2018), 1625–1631.
  • [18] M. F. Naso, B. Tomkowicz, W. L. Perry 3rd, W. R. Strohl, Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 31 (2017), 317-334.
    [2017]
  • [17] D. Adams, A. Gonzalez-Duarte, W. D. ORiordan, C. C. Yang, M. Ueda, A. V. Kristen, I. Tournev, H. H. Schmidt, T. Coelho, J. L. Berk, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 379 (2018), 11–21.
    [2018]
  • [15] E.J. Won, H. Park, S. H. Chang, J. H. Kim, H. Kwon, Y. S. Cho, T. J. Yoon, One-shot dual gene editing for drug-resistant pancreatic cancer therapy. Biomaterials 279 (2021), 121252.
  • [14] X. Hu, F. Xia, J. Lee, F. Li, X. Lu, X. Zhuo, G. Nie, D. Ling, Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Adv. Sci. 8 (2021), 2002545.
  • [14] S. K. Shukla, V. Purohit, K. Mehla, V. Gunda, N. V. Chaika, E. Vernucci, R. J. King, J. Abrego, G. D. Goode, A. Dasgupta, A. L. Illies, T. Gebregiworgis, B. Dai, J. J. Augustine, D. Murthy, K. S. Attri, O. Mashadova, P. M. Grandgenett, R. Powers, Q. P. Ly, A. J. Lazenby, J. L. Grem, F. Yu, J. M. Matés, J. M. Asara, J. W. Kim, J. H. Hankins, C. Weekes, M. A. Hollingsworth, N. J. Serkova, A. R. Sasson, J. B. Fleming, J. M. Oliveto, C. A. Lyssiotis, L. C. Cantley, L. Berim, P. K. Singh, MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell 32 (2017), 71-87.
  • [13] S. A. El-Zahaby, Y. S. R. Elnaggar, O. Y. Abdallah, Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. J. Control. Release 293 (2019), 21–35.
    [2019]
  • [13] E. Poon, A. L. Harris, M. Ashcroft, Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev. Mol. Med. 11 (2009), e26.
    [2009]
  • [11] J. P. Morris 4th, J. J. Yashinskie, R. Koche, R. Chandwani, S. Tian, C. C. Chen, T. Baslan, Z. S. Marinkovic, F. J. Sánchez-Rivera, S. D. Leach, C. Carmona-Fontaine, C. B. Thompson, L. W. S. Finley, S. W. Lowe, α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature 573 (2019), 595-599.
  • [10] S. Weissmueller, E. Manchado, M. Saborowski, J. P. Morris 4th, E. Wagenblast, C. A. Davis, S. H. Moon, N. T. Pfister, D. F. Tschaharganeh, T. Kitzing, D. Aust, E. K. Markert, J. Wu, S. M. Grimmond, C. Pilarsky, C. Prives, A. V. Biankin, S. W. Lowe, Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell 157 (2014), 382-394.
  • [108] M. Zhang, E. A. Eshraghian, O. Al Jammal, Z. Zhang, X. Zhu, X. CRISPR technology: The engine that drives cancer therapy. Biomed. Pharmacother. 133 (2021), 111007.
  • [105] S. Aghamiri, P. Raee, S. Talaei, S. Mohammadi‐Yeganeh, S. Bayat, D. Rezaee, A. A. Ghavidel, A. Teymouri, S. Roshanzamiri, S. Farhadi, et al. Nonviral siRNA delivery systems for pancreatic cancer therapy. Biotechnol. Bioeng. 118 (2021), 3669–3690.
  • [104] E. Poon, A. L. Harris, A. Ashcroft, Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev. Mol. Med. 11 (2009), e26.
    [2009]
  • [102] Y. Binenbaum, S. Naara, Z. Gil, Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist. Updates 23 (2015), 55–68.
    [2015]
  • Thermo-triggered Release of CRISPR-Cas9 System by Lipid-Encapsulated Gold Nanoparticles for Tumor Therapy1491 ? 1496
  • Therapeutic developments in pancreatic cancer : Current and future perspectives
  • The multifaceted role of glutathione S-transferases in cancer .
    A. Chatterjee , S. Gupta , 433 (33 ? 42 . [2018]
  • The current state and future directions of RNAi-based therapeutics
  • The biology , function , and biomedical applications of exosomes
  • The HIF-1α/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells .
  • Targeting polo-like kinase 1 for cancer therapy
  • Synergistic antitumor activity of gemcitabine combined with triptolide in pancreatic cancer cells
  • Stromal Modulation and Treatment of Metastatic Pancreatic Cancer with Local Intraperitoneal Triple miRNA/siRNA Nanotherapy .
  • Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling .
  • Search-and-replace genome editing without double-strand breaks or donor DNA
  • Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer .
  • Ribonucleotide reductase and cancer : Biological mechanisms and targeted therapies2011 ? 2021
  • Recent Advances in CRISPR/Cas9 Delivery Strategies
    B. H. Yip 10 ( [2020]
  • RNA interference .
    G. J. Hannon 418 ( [2002]
  • Pancreatic cancer stroma : An update on therapeutic targeting strategies487 ? 505
  • PROGmiR : A tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data
  • PLGA/poloxamer nanoparticles loaded with EPAS1 siRNA for the treatment of pancreatic cancer in vitro and in vivo
  • Optimizing the outcomes of pancreatic cancer surgery
  • Non-viral delivery systems for CRISPR/Cas9-based genome editing : Challenges and opportunities
    L. Li , S. Hu , X. Chen 171 (207 ? 218 . [2018]
  • Neutralizing antibodies against AAV serotypes 1 , 2 , 6 , and 9 in sera of commonly used animal models
  • MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells
  • MicroRNA in pancreatic ductal adenocarcinoma and its precursor lesions .
  • Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles
  • MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer
  • Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy
  • Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes
  • Knockdown of hypoxia-inducible factor-1 alpha by tumor targeted delivery of CRISPR/Cas9 system suppressed the metastasis of pancreatic cancer
  • Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX
  • Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine
  • Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
  • HPV Oncogene Manipulation Using Nonvirally Delivered CRISPR/Cas9 or Natronobacterium gregoryi Argonaute
  • Gold nanoparticles for nucleic acid delivery1075 ? 1083
  • Gene therapy and DNA delivery systems
  • Gene editing particle system as a therapeutic approach for drug-resistant colorectal cancer1576 ? 1585
  • Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers .
  • Gene editing and its application for hematological diseases
  • Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
  • Functional repair of p53 mutation in colorectal cancer cells using trans-splicing
  • From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer
  • Feedback regulation of ALDOA activates the HIF-1α/MMP9 axis to promote lung cancer progression
  • Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles
  • Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer
  • Evaluation of K-ras and p53 expression in pancreatic adenocarcinoma using the cancer genome atlas
    L. Lu , J. Zeng , 12 ( [2017]
  • Engineering the Delivery System for CRISPR-Based Genome Editing
    Z . Glass , M. Lee , Y. Li , Q. Xu 36 (173 ? 185 . [2018]
  • Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
  • Desmoplasia in pancreatic ductal adenocarcinoma : Insight into pathological function and therapeutic potential
  • Current trends in gene recovery mediated by the CRISPR-Cas system
  • Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing
  • Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy
  • Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer
  • CRISPRCas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment
  • CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy : Challenges and Opportunities for Nonviral Delivery9874 ? 9906
  • CRISPR-Cas9 Structures and Mechanisms505 ? 529
  • CRISPR-Cas : A tool for cancer research and therapeutics
    H. Yin , W. Xue , D. G. Anderson 16 (281 ? 295 [2019]
  • CRISPR Mediated Genome Engineering and its Application in Industry
    S. Kaboli , H. Babazada , 26 (81 ? 92 [2018]
  • Antitumor mechanisms when pRb and p53 are genetically inactivated .
  • A novel gemcitabine derivativeloaded liposome with great pancreas-targeting ability .
  • A Rationally Optimized Nanoparticle System for the Delivery of RNA Interference Therapeutics into Pancreatic Tumors In Vivo