Thermodynamic Analysis of Viscoelastic Fluids and Its Simulation Using the Finite-Element Method = 점탄성 유체의 열역학적 분석과 유한요소법을 이용한 시뮬레이션

이정행 2022년
논문상세정보
' Thermodynamic Analysis of Viscoelastic Fluids and Its Simulation Using the Finite-Element Method = 점탄성 유체의 열역학적 분석과 유한요소법을 이용한 시뮬레이션' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Direct numerical simulation
  • Irreversible thermodynamics
  • Sliding bi-periodic frame
  • Stress diffusion
  • Viscoelastic fluids
  • Viscoelastic-viscoelastic emulsion
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
12 0

0.0%

' Thermodynamic Analysis of Viscoelastic Fluids and Its Simulation Using the Finite-Element Method = 점탄성 유체의 열역학적 분석과 유한요소법을 이용한 시뮬레이션' 의 참고문헌

  • [9] Gennes, P. G. de, Scaling Concepts in Polymer Physics (Cornell University Press, 1979).
    [1979]
  • [98] Soligo, G., A. Roccon, and A. Soldati, Massconservation- improved phase field methods for turbulent multiphase flow simulation, Acta Mech., 230, 683–696 (2019).
    [2019]
  • [97] Amani, A., N. Balcázar, A. Naseri, and J. Rigola, A numerical approach for non-Newtonian two-phase flows using a conservative level-set method, Chem. Eng. J., 385, 123896 (2020).
    [2020]
  • [96] Kim, S. J. and W. R. Hwang, Direct numerical simulations of droplet emulsions in sliding bi-periodic frames using the level-set method, J. Comput. Phys., 225, 615–634 (2007).
    [2007]
  • [93] Santra, S., S. Mandal, and S. Chakraborty, Phase-field modeling of multicomponent and multiphase flows in microfluidic systems: A review, Int. J. Numer. Methods Heat Fluid Flow, (2020).
    [2020]
  • [91] Osher, S. and R. P. Fedkiw, Level set methods: An overview and some recent results, J. Comput. Phys., 169, 463–502 (2001).
    [2001]
  • [8] Treloar, Physics of Rubber Elasticity 3rd ed.(Oxford University Press, 1975).
    [1975]
  • [86] Kwak, S. and C. Pozrikidis, Adaptive triangulation of evolving, closed, or open surfaces by the advancing-front method, J. Comput. Phys., 145, 61–88 (1998).
    [1998]
  • [85] Pozrikidis, C., Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, 1992).
    [1992]
  • [84] Puyvelde, P. Van, A. Vananroye, R. Cardinaels, and P. Moldenaers, Review on morphology development of immiscible blends in confined shear flow, Polymer (Guildf)., 49, 5363–5372 (2008).
    [2008]
  • [81] Larson, R. G., The Structure and Rheology of Complex Fluids (Oxford University Press, 1999).
    [1999]
  • [80] Sanderson, C. and R. Curtin, A user-friendly hybrid sparse matrix class in c++,International Congress on Mathematical Software(Springer: 422–430, (2018).
    [2018]
  • [7] Lodge, A. S., A network theory of flow birefringence and stress in concentrated polymer solutions, Trans. Faraday Soc., 52, 3386–3399 (1956).
    [1956]
  • [77] Shu, C.-W. and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439–471 (1988).
    [1988]
  • [76] Bassi, F. and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267–279 (1997).
    [1997]
  • [72] Vaithianathan, T., A. Robert, J. G. Brasseur, and L. R. Collins, An improved algorithm for simulating threedimensional, viscoelastic turbulence, J. Non-Newton. Fluid Mech., 140, 3–22 (2006).
    [2006]
  • [71] Richter, D., G. Iaccarino, and E. S. G. Shaqfeh, Effects of viscoelasticity in the high Reynolds number cylinder wake, J. Fluid Mech., 693, 297–318 (2012).
    [2012]
  • [70] Richter, D., G. Iaccarino, and E. S. G. Shaqfeh, Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds numbers, J. Fluid Mech., 651, 415–442 (2010).
    [2010]
  • [6] Green, M. S. and A. V. Tobolsky, A new approach to the theory of relaxing polymeric media, J. Chem. Phys., 14, 80–92 (1946).
    [1946]
  • [68] Gupta, A. and D. Vincenzi, Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence, J. Fluid Mech., 870, 405–418 (2019).
    [2019]
  • [66] Liu, N. and B. Khomami, Elastically induced turbulence in Taylor–Couette flow: Direct numerical simulation and mechanistic insight, J. Fluid Mech., 737, R4 (2013).
    [2013]
  • [65] Thomases, B., An analysis of the effect of stress diffusion on the dynamics of creeping viscoelastic flow, J. Non-Newton. Fluid Mech., 166, 1221–1228 (2011).
    [2011]
  • [63] Thomases, B. and M. Shelley, Transition to mixing and oscillations in a stokesian viscoelastic flow, Phys. Rev. Lett., 103, 094501 (2009).
    [2009]
  • [57] Dou, H.-S. and N. Phan-Thien, Viscoelastic flow past a confined cylinder: Instability and velocity inflection, Chem. Eng. Sci., 62, 3909–3929 (2007).
    [2007]
  • [55] Kim, J. M., C. Kim, K. H. Ahn, and S. J. Lee, An efficient iterative solver and high-resolution computations of the Oldroyd-B fluid flow past a confined cylinder, J. Non-Newton. Fluid Mech., 123, 161–173 (2004).
    [2004]
  • [52] Fan, Y., R. I. Tanner, and N. Phan-Thien, Galerkin/least-square finite-element methods for steady viscoelastic flows, J. Non-Newton. Fluid Mech., 84, 233–256 (1999).
    [1999]
  • [50] Owens, R. G. and T. N. Phillips, Computational Rheology (Imperial College Press, 2002).
    [2002]
  • [4] Rouse, P. E., A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, J. Chem. Phys., 21, 1272–1280 (1953).
    [1953]
  • [48] Rubinstein, M. and R. H. Colby, Polymer Physics (Oxford University Press, 2003).
    [2003]
  • [47] Cahn, J. W. and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 258–267 (1958).
    [1958]
  • [42] Monchiet, V. and G. Bonnet, Inversion of higher order isotropic tensors with minor symmetries and solution of higher order heterogeneity problems, Proc. R. Soc. A Math. Phys. Eng. Sci., 467, 314–332 (2011).
    [2011]
  • [41] Doi, M. and T. Ohta, Dynamics and rheology of complex interfaces. I, J. Chem. Phys., 95, 1242–1248 (1991).
    [1991]
  • [40] Eu, B. C., Nonequilibrium Statistical Mechanics: Ensemble Method (Springer, 1998).
    [1998]
  • [3] Truesdell, C. and W. Noll, The Non-Linear Field Theories of Mechanics 3rd ed.(Springer, 2004).
    [2004]
  • [39] Eu, B. C., Generalized Thermodynamics: Thermodynamics of Irreversible Processes and Generalized Hydrodynamics (Springer, 2002).
    [2002]
  • [36] Cho, K. S., Viscoelasticity of Polymers (Springer, 2016).
    [2016]
  • [35] Pavelka, M., V. Klika, and M. Grmela, Multiscale Thermo-Dynamics: Introduction to GENERIC (de Gruyter, 2018).
    [2018]
  • [34] Öttinger, H. C., Beyond Equilibrium Thermodynamics (Wiley-Interscience, 2005).
    [2005]
  • [33] Beris, A. N. and B. J. Edwards, Thermodynamics of Flowing Systems: With Internal Microstructure (Oxford University Press, 1994).
    [1994]
  • [30] Jou, D., J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics 4th ed.(Springer, 2010).
    [2010]
  • [2] Oldroyd, J. G., Non-newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. R. Soc. London. Ser. A. Math. Phys. Sci., 245, 278–297 (1958).
    [1958]
  • [29] Groot, S. R. de and P. Mazur, Non-Equilibrium Thermodynamics (Dover Publication, 1962).
    [1962]
  • [28] Wagner, N. J., H. C. Öttinger, and B. J. Edwards, Generalized Doi–Ohta model for multiphase flow developed via GENERIC, AIChE J., 45, 1169–1181 (1999).
    [1999]
  • [27] Öttinger, H. C. and M. Grmela, Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism, Phys. Rev. E, 56, 6633–6655 (1997).
    [1997]
  • [26] Grmela, M. and H. C. Öttinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, Phys. Rev. E, 56, 6620–6632 (1997).
    [1997]
  • [25] Beris, A. N. and B. J. Edwards, Poisson bracket formulation of viscoelastic flow equations of differential type: A unified approach, J. Rheol., 34, 503–538 (1990).
    [1990]
  • [24] Lubliner, J., On the thermodynamic foundations of non-linear solid mechanics, Int. J. Non. Linear. Mech., 7, 237–254 (1972).
    [1972]
  • [23] Valanis, K. C., Irreversible Thermodynamics of Continuous Media (Springer-Verlag, 1971).
    [1971]
  • [22] Coleman, B. D. and M. E. Gurtin, Thermodynamics with internal state variables, J. Chem. Phys., 47, 597– 613 (1967).
    [1967]
  • [21] Hwang, W. R., M. A. Hulsen, and H. E. H. Meijer, Direct simulation of particle suspensions in sliding biperiodic frames, J. Comput. Phys., 194, 742–772 (2004).
    [2004]
  • [20] Anderson, P. D., B. J. Keestra, and M. A. Hulsen, On the streamfunction–vorticity formulation in sliding biperiod frames: Application to bulk behavior for polymer blends, J. Comput. Phys., 212, 268–287 (2006).
    [2006]
  • [1] Oldroyd, J. G., On the formulation of rheological equations of state, Proc. R. Soc. London. Ser. A. Math. Phys. Sci., 200, 523–541 (1950).
    [1950]
  • [19] Alves, M. A., P. J. Oliveira, and F. T. Pinho, Numerical methods for viscoelastic fluid flows, Annu. Rev. Fluid Mech., 53, 509–541 (2021).
  • [14] Verbeeten, W. M. H., G. W. M. Peters, and F. P. T. Baaijens, Differential constitutive equations for polymer melts: The extended pom–pom model, J. Rheol., 45, 823–843 (2001).
    [2001]
  • [140] Vinckier, I., P. Moldenaers, and J. Mewis, Transient rheological response and morphology evolution of immiscible polymer blends, J. Rheol., 41, 705–718 (1997).
    [1997]
  • [139] Takahashi, Y., S. Kitade, N. Kurashima, and I. Noda, Viscoelastic properties of immiscible polymer blends under steady and transient shear flows, Polym. J., 26, 1206–1212 (1994).
    [1994]
  • [137] Kim, J. and H.-O. Bae, An unconditionally gradient stable adaptive mesh refinement for the Cahn-Hilliard equation, J. Korean Phys. Soc., 53, 672–679 (2008).
    [2008]
  • [136] Lee, J., W. R. Hwang, and K. S. Cho, Stokes-Cahn- Hilliard formulation in sliding bi-periodic frames for the simulation of two-phase flows, J. Comput. Phys., (2022), under review.
  • [135] Cho, K. S. and J. Lee, A variational approach to irreversible thermodynamics, J. Korean Phys. Soc., 79, 230–241 (2021).
  • [134] Lee, J., W. R. Hwang, and K. S. Cho, Effect of stress diffusion on the Oldroyd-B fluid flow past a confined cylinder, J. Non-Newton. Fluid Mech., 297, 104650 (2021).
  • [133] Hwang, W. R., M. A. Hulsen, and H. E. H. Meijer, Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames, J. Non- Newton. Fluid Mech., 121, 15–33 (2004).
    [2004]
  • [131] Deblais, A., M. A. Herrada, J. Eggers, and D. Bonn, Self-similarity in the breakup of very dilute viscoelastic solutions, J. Fluid Mech., 904, R2 (2020).
    [2020]
  • [129] Dekker, P. J., M. A. Hack, W. Tewes, C. Datt, A. Bouillant, and J. H. Snoeijer, When elasticity affects drop coalescence, Phys. Rev. Lett., 128, 28004 (2022).
  • [121] Mukherjee, S. and K. Sarkar, Effects of viscosity ratio on deformation of a viscoelastic drop in a Newtonian matrix under steady shear, J. Non-Newton. Fluid Mech., 160, 104–112 (2009).
    [2009]
  • [11] Edwards, S. F. and T. A. Vilgis, The tube model theory of rubber elasticity, Reports Prog. Phys., 51, 243–297 (1988).
    [1988]
  • [119] Aggarwal, N. and K. Sarkar, Effects of matrix viscoelasticity on viscous and viscoelastic drop deformation in a shear flow, J. Fluid Mech., 601, 63–84 (2008).
    [2008]
  • [10] Doi, M. and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1986).
    [1986]
  • [108] Taylor, G. I., The formation of emulsions in definable fields of flow, Proc. R. Soc. London. Ser. A, 146, 501– 523 (1934).
    [1934]
  • [106] Yue, P., C. Zhou, and J. J. Feng, Spontaneous shrinkage of drops and mass conservation in phase-field simulations, J. Comput. Phys., 223, 1–9 (2007).
    [2007]
  • [103] Verschueren, M., A Diffuse-Interface Model for Structure Development in Flow (Eindgoven University of Technology, The Netherlands, 1999).
    [1999]
  • [102] Lowengrub, J. and L. Truskinovsky, Quasi– incompressible Cahn–Hilliard fluids and topological transitions, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 454, 2617–2654 (1998).
    [1998]
  • [101] Zhang, Y. and W. Ye, A flux-corrected phase-field method for surface diffusion, Commun. Comput. Phys., 22, 422–440 (2017).
    [2017]
  • [100] Li, Y., J.-I. Choi, and J. Kim, A phase-field fluid modeling and computation with interfacial profile correction term, Commun. Nonlinear Sci. Numer. Simul., 30, 84–100 (2016).
    [2016]
  • Viscoelastic flow past a confined cylinder of a low density polyethylene melt ,
  • Viscoelastic flow around a confined cylinder using spectral/hp element methods
    Claus , S. and T. N. Phillips , 200 , 131 ? 146 [2013]
  • Viscoelastic effects on drop deformation in steady shear ,
  • Universality in coalescence of polymeric fluids
  • Two-dimensional study of drop deformation under simple shear for Oldroyd-B liquids
  • Two-dimensional elastic turbulence ,
  • Tumbling of vesicles under shear flow within an advected-field approach
    Biben , T. and C. Misbah , 67 , 031908 [2003]
  • Three-dimensional shape of a drop under simple shear flow
    Guido , S. and M. Villone , 42 , 395 ? 415 [1998]
  • Thermodynamics with internal variables . part II . Applications
    Maugin , G. A. and W. Muschik 19 , 250 ? 289 [1994]
  • Thermodynamics with internal variables . part I . General concepts
    Maugin , G. A. and W. Muschik 19 , 217 ? 249 [1994]
  • Theory and numerical simulation of droplet dynamics in complex flows ? a review
    Cristini , V. and Y.-C. Tan , 4 , 257 ? 264 [2004]
  • The log-conformation tensor approach in the finitevolume method framework
  • The flow of viscoelastic fluids past a cylinder : Finite-volume highresolution methods
  • The computer study of transport processes under extreme conditions
    Lees , A. W. and S. F. Edwards , 5 , 1921 ? 1928 [1972]
  • Stress and structure in fluid interfaces
  • Stability constraints in the formulation of viscoelastic constitutive equations ,
    Kwon , Y. and A. I. Leonov 58 , 25 ? 46 [1995]
  • Single-chain slip-link model of entangled polymers : simultaneous description of neutron spin ? echo , rheology , and diffusion
    Likhtman , A. E. 38 , 6128 ? 6139 [2005]
  • Selfsimilar breakup of polymeric threads as described by the Oldroyd-B model
  • Rheology and rheological morphology determination in immiscible two-phase polymer model blends
  • Relationships between rheology and morphology for immiscible molten blends of polypropylene and ethylene copolymers under shear flow ,
  • Particle-laden two-dimensional elastic turbulence ,
  • On the rheological modeling of viscoelastic polymer liquids with stable constitutive equations
  • On the diffuse interface method using a dual-resolution cartesian grid
    Ding , H. and C. Yuan 273 , 243 ? 254 [2014]
  • Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method
  • Nonequilibrium thermodynamics and rheology of viscoelastic polymer media
    Leonov , A. I. 15 , 85 ? 98 [1976]
  • Motion and deformation of liquid drops , and the rheology of dilute emulsions in simple shear flow
  • Molecular constitutive equations for a class of branched polymers : the pom-pom polymer
  • Models for the deformation of a single ellipsoidal drop : A review
    Minale , M. 49 , 789 ? 806 [2010]
  • Mixed finite element methods for viscoelastic flow analysis : a review
    P.T . Baaijens , F. 79 , 361 ? 385 [1998]
  • Microstructural evolution in polymer blends
    Tucker , C. L. and P. Moldenaers 34 , 177 ? 210 [2002]
  • Lattice boltzmann method for fluid flows
    Shi , Y. and J. E. Sader 30 , 329 ? 364 [1998]
  • Internal variables and the nonequilibrium thermodynamics of colloidal suspensions
    Lhuillier , D. 96 , 19 ? 30 [2001]
  • Gmsh : a 3-D finite element mesh generator with built-in pre- and postprocessing facilities
    Geuzaine , C. and J.-F. Remacle 79 , 1309 ? 1331 [2009]
  • Flow of viscoelastic fluids past a cylinder at high Weissenberg number : Stabilized simulations using matrix logarithms
  • Experimental tests of the scaling relation for textured materials in mixtures of two immiscible fluids
  • Existence of solutions for all deborah numbers for a non-newtonian model modified to include diffusion
    El-Kareh , A. W. and L. Gary Leal 33 , 257 ? 287 [1989]
  • Emulsion drops in external flow fields ? the role of liquid interfaces
    Fischer , P. and P. Erni , 12 , 196 ? 205 [2007]
  • Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow ,
    Berti , S. and G. Boffetta , 82 , 036314 [2010]
  • Effects of viscoelasticity on the retraction of a sheared drop
    Mukherjee , S. and K. Sarkar , 165 , 340 ? 349 [2010]
  • Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows
  • Dynamics of polymer molecules in dilute solution : viscoelasticity , flow birefringence and dielectric loss
    Zimm , B. H. 24 , 269 ? 278 [1956]
  • Dynamics of drop deformation and breakup in viscous fluids
    Stone , H. A. 26 , 65 ? 102 [1994]
  • Droplet dynamics in confinement
  • Drop deformation for non-Newtonian fluids in slow flows
    Greco , F. 107 , 111 ? 131 [2002]
  • Drag reduction and the dynamics of turbulence in simple and complex fluids
    Graham , M. D. 26 , 101301 [2014]
  • Direct numerical simulation of the turbulent channel flow of a polymer solution
  • Direct numerical simulation of free-surface and interfacial flow
    Scardovelli , R. and S. Zaleski , 31 , 567 ? 603 [1999]
  • Diffuseinterface simulations of drop coalescence and retraction in viscoelastic fluids
  • Diffuse-interface methods in fluid mechanics
  • Development and implementation of VOF-PROST for 3D viscoelastic liquid-liquid simulations
  • Deformation and breakup of viscoelastic droplets in confined shear flow
  • Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear ,
    Aggarwal , N. and K. Sarkar , 584 , 1 ? 21 [2007]
  • Constitutive laws for the matrix-logarithm of the conformation tensor .
    Fattal , R. and R. Kupferman , 123 , 281 ? 285 [2004]
  • Comparison of different numerical schemes for the Cahn-Hilliard equation
  • Coil-stretch transition and the breakdown of computations for viscoelastic fluid flow around a confined cylinder
  • Armadillo : a templatebased c++ library for linear algebra
  • Application of diffusive internal variables in complex fluids
    Drouot , R. and G. . Maugin 96 , 31 ? 43 [2001]
  • Analysis of simple constitutive equations for viscoelastic liquids
    Leonov , A. I. 42 , 323 ? 350 [1992]
  • A viscoelastic two-phase solver using a phasefield approach
  • A new mixed finite element method for computing viscoelastic flows
    Gu ? nette , R. and M. Fortin 60 , 27 ? 52 [1995]
  • A new constitutive equation derived from network theory
    Thien , N. P. and R. I. Tanner 2 , 353 ? 365 [1977]
  • A new approach for the FEM simulation of viscoelastic flows
    Fortin , M. and A. Fortin 32 , 295 ? 310 [1989]
  • A locally-upwinded spectral technique ( LUST ) for viscoelastic flows
  • A lattice Boltzmann method for simulating viscoelastic drops
  • A generalized differential constitutive equation for polymer melts based on principles of nonequilibrium thermodynamics
  • A diffuseinterface method for simulating two-phase flows of complex fluids
  • A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids
  • A comparison of viscoelastic stress wakes for two-dimensional and threedimensional Newtonian drop deformations in a viscoelastic matrix under shear