저온 상변화 물질 함침 경량골재를 이용한 나노개질 융설 콘크리트 개발 = Development of Nanomodified Snow Melting Concrete using Low-Temperature Phase Change Material Impregnated Light Weight Aggregate

김선미 2022년
논문상세정보
' 저온 상변화 물질 함침 경량골재를 이용한 나노개질 융설 콘크리트 개발 = Development of Nanomodified Snow Melting Concrete using Low-Temperature Phase Change Material Impregnated Light Weight Aggregate' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Tetradecane
  • deicing salt
  • latent heat storage
  • multi-walled carbon nanotubes
  • phase change material
  • snow melting pavement
  • tetradecane
  • 다중벽탄소나노튜브
  • 상변화 물질 경량골재
  • 상변화물질
  • 탄소나노튜브
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
234 0

0.0%

' 저온 상변화 물질 함침 경량골재를 이용한 나노개질 융설 콘크리트 개발 = Development of Nanomodified Snow Melting Concrete using Low-Temperature Phase Change Material Impregnated Light Weight Aggregate' 의 참고문헌

  • [9] W. Liao, C. Zeng, Y. Zhuang, H. Ma, W. Deng, J. Huang, Mitigation of thermal curling of concrete slab using phase change material: A feasibility study, Cement and Concrete Composites. 120 (2021) 104021. https://doi.org/10.1016/j.cemconcomp.2021.104021.
    [2021]
  • [8] K. Darkwa, P.W. O’Callaghan, Simulation of phase change drywalls in a passive solar building, Applied Thermal Engineering. 26 (2006) 853–858. https://doi.org/10.1016/j.applthermaleng.2005.10.007.
    [2006]
  • [84] P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites Part A: Applied Science and Manufacturing. 41 (2010) 1345 –1367. https://doi.org/10.1016/j.compositesa.2010.07.003.
    [2010]
  • [83] J. Yu, N. Grossiord, C.E. Koning, J. Loos, Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon. 45 (2007) 618–623. https://doi.org/10.1016/j.carbon.2006.10.010.
    [2007]
  • [82] E.T. Thostenson, Z. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology. 61 (2001) 1899–1912. https://doi.org/10.1016/S0266-3538(01)00094-X.
    [2001]
  • [81] N. Zhang, Y. Yuan, Y. Yuan, X. Cao, X. Yang, Effect of carbon nanotubes on the thermal behavior of palmitic–stearic acid eutectic mixtures as phase change materials for energy storage, Solar Energy. 110 (2014) 64–70. https://doi.org/10.1016/j.solener.2014.09.003.
    [2014]
  • [80] H. El-Chabib, 11 - Properties of SCC with supplementary cementing materials, in: R. Siddique (Ed.), Self-Compacting Concrete: Materials, Properties and Applications, Woodhead Publishing, 2020: pp. 283–308. https://doi.org/10.1016/B978-0-12-817369-5.00011-8.
    [2020]
  • [7] B.M. Diaconu, M. Cruceru, Novel concept of composite phase change material wall system for year-round thermal energy savings, Energy and Buildings. 42 (2010) 1759–1772. https://doi.org/10.1016/j.enbuild.2010.05.012.
    [2010]
  • [79] S.C. Pal, A. Mukherjee, S.R. Pathak, Investigation of hydraulic activity of ground granulated blast furnace slag in concrete, Cement and Concrete Research. 33 (2003) 1481–1486. https://doi.org/10.1016/S0008-8846(03)00062-0.
    [2003]
  • [78] R. Siddique, R. Bennacer, Use of iron and steel industry by-product (GGBS) in cement paste and mortar, Resources, Conservation and Recycling. 69 (2012) 29–34. https://doi.org/10.1016/j.resconrec.2012.09.002.
    [2012]
  • [77] B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials, Cement and Concrete Research. 41 (2011) 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
    [2011]
  • [76] J.E. Rossen, B. Lothenbach, K.L. Scrivener, Composition of C–S–H in pastes with increasing levels of silica fume addition, Cement and Concrete Research. 75 (2015) 14–22. https://doi.org/10.1016/j.cemconres.2015.04.016.
    [2015]
  • [75] F. Köksal, F. Altun, İ. Yiğit, Y. Şahin, Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes, Construction and Building Materials. 22 (2008) 1874–1880. https://doi.org/10.1016/j.conbuildmat.2007.04.017.
    [2008]
  • [74] S. Chandra, L. Berntsson, 9 - Use of silica fume in concrete, in: S. Chandra (Ed.), Waste Materials Used in Concrete Manufacturing, William Andrew Publishing, Westwood, NJ, 1996: pp. 554–623. https://doi.org/10.1016/B978-081551393-3.50012-0.
    [1996]
  • [73] M.K. Samani, N. Khosravian, G.C.K. Chen, M. Shakerzadeh, D. Baillargeat, B.K. Tay, Thermal conductivity of individual multiwalled carbon nanotubes, International Journal of Thermal Sciences. 62 (2012) 40–43. https://doi.org/10.1016/j.ijthermalsci.2012.03.003.
    [2012]
  • [72] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature. 381 (1996) 678–680. https://doi.org/10.1038/381678a0.
    [1996]
  • [71] G.M. Kim, I.W. Nam, B. Yang, H.N. Yoon, H.K. Lee, S. Park, Carbon nanotube incorporated cementitious composites for functional construction materials: The state of the art, Composite Structures. 227 (2019) 111244. https://doi.org/10.1016/j.compstruct.2019.111244.
    [2019]
  • [70] M. Nayfeh, ed., Chapter 10 - Nanocarbon, in: Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines, Elsevier, 2008: pp. 287 –309. https://doi.org/10.1016/B978-0-323-48057-4.00010-4.
    [2008]
  • [6] A. Carbonari, M. De Grassi, C. Di Perna, P. Principi, Numerical and experimental analyses of PCM containing sandwich panels for prefabricated walls, Energy and Buildings. 38 (2006) 472–483. https://doi.org/10.1016/j.enbuild.2005.08.007.
    [2006]
  • [69] R. Gellert, 8 - Inorganic mineral materials for insulation in buildings **This chapter is dedicated to Dr Walter F. Cammerer on the occasion of his 90th birthday., in: M.R. Hall (Ed.), Materials for Energy Efficiency and Thermal Comfort in Buildings, Woodhead Publishing, 2010: pp. 193–228. https://doi.org/10.1533/9781845699277.2.193.
    [2010]
  • [68] P.L. Owens, J.B. Newman, 7 - Lightweight aggregate manufacture, in: J. Newman, B.S. Choo (Eds.), Advanced Concrete Technology, Butterworth- Heinemann, Oxford, 2003: pp. 1–12. https://doi.org/10.1016/B978-075065686-3/50283-4.
    [2003]
  • [67] Y. Farnam, M. Krafcik, L. Liston, T. Washington, K. Erk, B. Tao, J. Weiss, Evaluating the Use of Phase Change Materials in Concrete Pavement to Melt Ice and Snow, Journal of Materials in Civil Engineering. 28 (2016) 04015161. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001439.
    [2016]
  • [66] X. Zhou, G. Kastiukas, C. Lantieri, P. Tataranni, R. Vaiana, C. Sangiorgi, Mechanical and Thermal Performance of Macro-Encapsulated Phase Change Materials for Pavement Application, Materials. 11 (2018) 1398. https://doi.org/10.3390/ma11081398.
    [2018]
  • [65] M. Kheradmand, J. Castro-Gomes, M. Azenha, P.D. Silva, J.L.B. de Aguiar, S.E. Zoorob, Assessing the feasibility of impregnating phase change materials in lightweight aggregate for development of thermal energy storage systems, Construction and Building Materials. 89 (2015) 48–59. https://doi.org/10.1016/j.conbuildmat.2015.04.031.
    [2015]
  • [64] L.C. Liston, Y. Farnam, M. Krafcik, J. Weiss, K. Erk, B.Y. Tao, Binary mixtures of fatty acid methyl esters as phase change materials for low temperature applications, Applied Thermal Engineering. 96 (2016) 501–507. https://doi.org/10.1016/j.applthermaleng.2015.11.007.
    [2016]
  • [63] H. Ma, H. Yu, B. Da, Y. Tan, Study on failure mechanism of concrete subjected to freeze-thaw condition in airport deicers, Construction and Building Materials. 313 (2021) 125202. https://doi.org/10.1016/j.conbuildmat.2021.125202.
    [2021]
  • [62] X. Shi, L. Fay, M.M. Peterson, M. Berry, M. Mooney, A FESEM/EDX investigation into how continuous deicer exposure affects the chemistry of Portland cement concrete, Construction and Building Materials. 25 (2011) 957– 966. https://doi.org/10.1016/j.conbuildmat.2010.06.086.
    [2011]
  • [61] Corrosion of Embedded Materials, (n.d.). https://www.cement.org/learn/concrete-technology/durability/corrosion-of-embe dded-materials (accessed May 24, 2022).
  • [60] Lee, H.Y. Song, Y.M. Loh, K.J. Chung, W.S. Thermal response characterization and comparison of carbon nanotube-enhanced cementitious composites, Composite Structures. 202 (2018) 1042–1050. https://doi.org/10.1016/j.compstruct.2018.05.027.
    [2018]
  • [5] P.K.M. Ph.D, P.J.M.M. Ph.D, Concrete: Microstructure, Properties, and Materials, McGraw-Hill Education, 2014. https://www.accessengineeringlibrary.com/content/book/9780071797870 (accessed May 24, 2022).
    [2014]
  • [59] Y.H. Zhao, Effect of CNT/CNF on Thermal and Mechanical Properties of Cement Mortars, Advanced Materials Research. 1049–1050 (2014) 234–237. https://doi.org/10.4028/www.scientific.net/AMR.1049-1050.234.
    [2014]
  • [58] Jung, S.H. Oh, S.W. Kim, S.W. Moon, J.H. Effects of CNT Dosages in Cement Composites on the Mechanical Properties and Hydration Reaction with Low Water-to-Binder Ratio, Applied Sciences. 9 (2019) 4630. https://doi.org/10.3390/app9214630.
    [2019]
  • [57] E. Batiston, P.J.P. Gleize, P. Mezzomo, F. Pelisser, P.R. de Matos, Effect of Carbon Nanotubes aspect ratio on the rheology, thermal conductivity and mechanical performance of Portland cement paste, Rev. IBRACON Estrut. Mater. 14 (2021). https://doi.org/10.1590/S1983-41952021000500010.
    [2021]
  • [56] M.K. Hassanzadeh-Aghdam, M.J. Mahmoodi, M. Safi, Effect of adding carbon nanotubes on the thermal conductivity of steel fiber-reinforced concrete, Composites Part B: Engineering. 174 (2019) 106972. https://doi.org/10.1016/j.compositesb.2019.106972.
    [2019]
  • [55] Ha, S.J. R.S. Rajadurai, Kang, S.T. Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites, 1. 12 (2021) 439–450.
    [2021]
  • [54] Lee, H.Y. Yu, W.J. Chung, W.S. Damage Detection of Carbon Nanotube Cementitious Composites Using Thermal and Electrical Resistance Properties, Applied Sciences. 11 (2021) 2955. https://doi.org/10.3390/app11072955.
    [2021]
  • [53] R. Parameshwaran, R. Naresh, V.V. Ram, P.V. Srinivas, Microencapsulated bio-based phase change material-micro concrete composite for thermal energy storage, Journal of Building Engineering. 39 (2021) 102247. https://doi.org/10.1016/j.jobe.2021.102247.
    [2021]
  • [52] M. Ren, X. Wen, X. Gao, Y. Liu, Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material, Construction and Building Materials. 273 (2021) 121714. https://doi.org/10.1016/j.conbuildmat.2020.121714.
    [2021]
  • [51] D. Zhang, S. Tian, D. Xiao, Experimental study on the phase change behavior of phase change material confined in pores, Solar Energy. 81 (2007) 653 –660. https://doi.org/10.1016/j.solener.2006.08.010.
    [2007]
  • [50] A.R. Sakulich, D.P. Bentz, Incorporation of phase change materials in cementitious systems via fine lightweight aggregate, Construction and Building Materials. 35 (2012) 483–490. https://doi.org/10.1016/j.conbuildmat.2012.04.042.
    [2012]
  • [4] Chapter 5: Increasing Efficiency of Building Systems and Technologies, (n.d.) 39.
  • [49] H. Cui, S.A. Memon, R. Liu, Development, mechanical properties and numerical simulation of macro encapsulated thermal energy storage concrete, Energy and Buildings. 96 (2015) 162–174. https://doi.org/10.1016/j.enbuild.2015.03.014.
    [2015]
  • [48] R. Wang, M. Ren, X. Gao, L. Qin, Preparation and properties of fatty acids based thermal energy storage aggregate concrete, Construction and Building Materials. 165 (2018) 1–10. https://doi.org/10.1016/j.conbuildmat.2018.01.034.
    [2018]
  • [47] H. Cui, W. Tang, Q. Qin, F. Xing, W. Liao, H. Wen, Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball, Applied Energy. 185 (2017) 107– 118. https://doi.org/10.1016/j.apenergy.2016.10.072.
    [2017]
  • [46] S.A. Memon, H. Cui, T.Y. Lo, Q. Li, Development of structural– functional integrated concrete with macro-encapsulated PCM for thermal energy storage, Applied Energy. 150 (2015) 245–257. https://doi.org/10.1016/j.apenergy.2015.03.137.
    [2015]
  • [45] M. Hunger, A.G. Entrop, I. Mandilaras, H.J.H. Brouwers, M. Founti, The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials, Cement and Concrete Composites. 31 (2009) 731–743. https://doi.org/10.1016/j.cemconcomp.2009.08.002.
    [2009]
  • [44] D.W. Hawes, D. Feldman, Absorption of phase change materials in concrete, Solar Energy Materials and Solar Cells. 27 (1992) 91–101. https://doi.org/10.1016/0927-0248(92)90112-3.
    [1992]
  • [43] L.F. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings, Energy and Buildings. 39 (2007) 113–119. https://doi.org/10.1016/j.enbuild.2006.03.030.
    [2007]
  • [42] X. Kong, C. Yao, P. Jie, Y. Liu, C. Qi, X. Rong, Development and thermal performance of an expanded perlite-based phase change material wallboard for passive cooling in building, Energy and Buildings. 152 (2017) 547 –557. https://doi.org/10.1016/j.enbuild.2017.06.067.
    [2017]
  • [41] C. Li, H. Yu, Y. Song, Z. Liu, Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings, Energy Conversion and Management. 183 (2019) 791–802. https://doi.org/10.1016/j.enconman.2019.01.036.
    [2019]
  • [40] M. Li, Z. Wu, M. Chen, Preparation and properties of gypsum-based heat storage and preservation material, Energy and Buildings. 43 (2011) 2314– 2319. https://doi.org/10.1016/j.enbuild.2011.05.016.
    [2011]
  • [3] A.F. Regin, S.C. Solanki, J.S. Saini, Heat transfer characteristics of thermal energy storage system using PCM) capsules: A review, Renewable and Sustainable Energy Reviews. 12 (2008) 2438–2458. https://doi.org/10.1016/j.rser.2007.06.009.
    [2008]
  • [39] M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications, Energy Conversion and Management. 45 (2004) 1597–1615. https://doi.org/10.1016/j.enconman.2003.09.015.
    [2004]
  • [38] S.M. Hasnain, Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques, Energy Conversion and Management. 39 (1998) 1127–1138. https://doi.org/10.1016/S0196-8904(98)00025-9.
    [1998]
  • [37] Yang, Yim, Y.J. Lee, J.W. Heo, Y.J. Park, S.J. Carbon-Filled Organic Phase-Change Materials for Thermal Energy Storage: A Review, Molecules. 24 (2019) 2055. https://doi.org/10.3390/molecules24112055.
    [2019]
  • [36] A. Sarı, A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Applied Thermal Engineering. 27 (2007) 1271–1277. https://doi.org/10.1016/j.applthermaleng.2006.11.004.
    [2007]
  • [35] Q. Wang, D. Zhou, Y. Chen, P. Eames, Z. Wu, Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites, Renewable Energy. 147 (2020) 1131–1138. https://doi.org/10.1016/j.renene.2019.09.091.
    [2020]
  • [34] A. Palou, J. Cruz, M. Blanco, R. Larraz, J. Frontela, C.M. Bengoechea, J.M. González, M. Alcalà, Characterization of the Composition of Paraffin Waxes on Industrial Applications, Energy Fuels. 28 (2014) 956–963. https://doi.org/10.1021/ef4021813.
    [2014]
  • [33] V. Kumar, M. Pallapa, P. Rezai, P.R. Selvaganapathy, Polymers, in: Reference Module in Materials Science and Materials Engineering, Elsevier, 2016. https://doi.org/10.1016/B978-0-12-803581-8.00522-1.
    [2016]
  • [32] A. Genovese, G. Amarasinghe, M. Glewis, D. Mainwaring, R.A. Shanks, Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material, Thermochimica Acta. 443 (2006) 235– 244. https://doi.org/10.1016/j.tca.2006.02.008.
    [2006]
  • [31] D.W. Hawes, D. Banu, D. Feldman, The stability of phase change materials in concrete, Solar Energy Materials and Solar Cells. 27 (1992) 103– 118. https://doi.org/10.1016/0927-0248(92)90113-4.
    [1992]
  • [30] F. Kuznik, J. Virgone, J. Noel, Optimization of a phase change material wallboard for building use, Applied Thermal Engineering. 28 (2008) 1291–1298. https://doi.org/10.1016/j.applthermaleng.2007.10.012.
    [2008]
  • [2] R. Baetens, B.P. Jelle, A. Gustavsen, Phase change materials for building applications: A state-of-the-art review, Energy and Buildings. 42 (2010) 1361– 1368. https://doi.org/10.1016/j.enbuild.2010.03.026.
    [2010]
  • [29] F. Fernandes, S. Manari, M. Aguayo, K. Santos, T. Oey, Z. Wei, G. Falzone, N. Neithalath, G. Sant, On the feasibility of using phase change materials PCMs to mitigate thermal cracking in cementitious materials, Cement and Concrete Composites. 51 (2014) 14–26. https://doi.org/10.1016/j.cemconcomp.2014.03.003.
    [2014]
  • [28] D. Sonar, Chapter 4 - Renewable energy based trigeneration systems— technologies, challenges and opportunities, in: J. Ren (Ed.), Renewable-Energy -Driven Future, Academic Press, 2021: pp. 125–168. https://doi.org/10.1016/B978-0-12-820539-6.00004-2.
    [2021]
  • [27] Q. Al-Yasiri, M. Szabó, Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis, Journal of Building Engineering. 36 (2021) 102122. https://doi.org/10.1016/j.jobe.2020.102122.
    [2021]
  • [26] W. Aftab, A. Usman, J. Shi, K. Yuan, M. Qin, R. Zou, Phase change material-integrated latent heat storage systems for sustainable energy solutions, Energy & Environmental Science. 14 (2021) 4268–4291. https://doi.org/10.1039/D1EE00527H.
    [2021]
  • [25] G.S. Wahile, P.D. Malwe, U. Aswalekar, Latent heat storage system by using phase change materials and their application, Materials Today: Proceedings. 52 (2022) 513–517. https://doi.org/10.1016/j.matpr.2021.09.268.
    [2022]
  • [24] Yeon, J.H. , Kim, K.K. , Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement, Construction and Building Materials. 177 (2018) 202–209. https://doi.org/10.1016/j.conbuildmat.2018.05.113.
    [2018]
  • [23] M. Mahedi, B. Cetin, K.S. Cetin, Freeze-thaw performance of phase change material PCM incorporated pavement subgrade soil, Construction and Building Materials. 202 (2019) 449–464. https://doi.org/10.1016/j.conbuildmat.2018.12.210.
    [2019]
  • [22] L.C. Liston, M. Krafcik, Y. Farnam, B. Tao, K. Erk, W. Weiss, Toward the Use of Phase Change Materials PCM in Concrete Pavements: Evaluation of Thermal Properties of PCM 2014.
    [2014]
  • [21] Y. Farnam, H.S. Esmaeeli, P.D. Zavattieri, J. Haddock, J. Weiss, Incorporating phase change materials in concrete pavement to melt snow and ice, Cement and Concrete Composites. 84 (2017) 134–145. https://doi.org/10.1016/j.cemconcomp.2017.09.002.
    [2017]
  • [20] Y. Farnam, S. Dick, A. Wiese, J. Davis, D. Bentz, J. Weiss, The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials, Cement and Concrete Composites. 64 (2015) 1–15. https://doi.org/10.1016/j.cemconcomp.2015.09.006.
    [2015]
  • [1] T. C. Ling, C. S. Poon, Use of phase change materials for thermal energy storage in concrete: An overview, Construction and Building Materials. 46 (2013) 55–62. https://doi.org/10.1016/j.conbuildmat.2013.04.031.
    [2013]
  • [19] X. Shi, L. Fay, M.M. Peterson, Z. Yang, Freeze–thaw damage and chemical change of a portland cement concrete in the presence of diluted deicers, Mater Struct. 43 (2010) 933–946. https://doi.org/10.1617/s11527-009-9557-0.
    [2010]
  • [18] A. Arora, G. Sant, N. Neithalath, Numerical simulations to quantify the influence of phase change materials PCMs on the early- and later-age thermal response of concrete pavements, Cement and Concrete Composites.81(2017)11–24. https://doi.org/10.1016/j.cemconcomp.2017.04.006.
    [2017]
  • [17] Y. Farnam, D.P. Bentz, A.R. Sakulich, D.R. Flynn, J. Weiss, Measuring Freeze and Thaw Damage in Mortars Containing Deicing Salt Using a Low Temperature Longitudinal Guarded Comparative Calorimeter and Acoustic Emission (AE-LGCC), 3 (2014). https://www.nist.gov/publications/measuring-freeze-and-thaw-damage-mortars -containing-deicing-salt-using-low-temperature (accessed May 23, 2022).
    [2014]
  • [16] Y. Farnam, D. Bentz, A. Hampton, W.J. Weiss, Acoustic Emission and Low-Temperature Calorimetry Study of Freeze and Thaw Behavior in Cementitious Materials Exposed to Sodium Chloride Salt, Transportation Research Record. 2441 (2014) 81–90. https://doi.org/10.3141/2441-11.
    [2014]
  • [15] Y. Farnam, A. Wiese, D. Bentz, J. Davis, J. Weiss, Damage development in cementitious materials exposed to magnesium chloride deicing salt, Construction and Building Materials. 93 (2015) 384–392. https://doi.org/10.1016/j.conbuildmat.2015.06.004.
    [2015]
  • [14] D.P. Bentz, R. Turpin, Potential applications of phase change materials in concrete technology, Cement and Concrete Composites. 29 (2007) 527–532. https://doi.org/10.1016/j.cemconcomp.2007.04.007.
    [2007]
  • [13] A.R. Sakulich, D.P. Bentz, Increasing the Service Life of Bridge Decks by Incorporating Phase-Change Materials to Reduce Freeze-Thaw Cycles, Journal of Materials in Civil Engineering. 24 (2012) 1034–1042. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000381.
    [2012]
  • [12] Y. Gao, L. Huang, H. Zhang, Study on anti-freezing functional design of phase change and temperature control composite bridge decks, Construction and Building Materials. 122 (2016) 714–720. https://doi.org/10.1016/j.conbuildmat.2016.06.065.
    [2016]
  • [11] X. Cocu, D. Nicaise, S. Rachidi, THE USE OF PHASE CHANGE MATERIALS TO DELAY PAVEMENT FREEZING, 2010.
    [2010]
  • [10] B.P. Jelle, S.E. Kalnæs, Chapter 3 - Phase Change Materials for Application in Energy-Efficient Buildings, in: F. Pacheco-Torgal, C.-G. Granqvist, B.P. Jelle, G.P. Vanoli, N. Bianco, J. Kurnitski (Eds.), Cost-Effective Energy Efficient Building Retrofitting, Woodhead Publishing, 2017: pp. 57–118. https://doi.org/10.1016/B978-0-08-101128-7.00003-4.