(A) study of capping layers for improvement of the electrical performance of metal-oxide semiconductor-based thin-film transistors and phototransistor application

유혁준 2022년
논문상세정보
' (A) study of capping layers for improvement of the electrical performance of metal-oxide semiconductor-based thin-film transistors and phototransistor application' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • capping layer
  • ethyl cyanoacrylate
  • metal oxide semiconductor
  • phototransistor
  • selenium
  • thin film transistor
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
83 0

0.0%

' (A) study of capping layers for improvement of the electrical performance of metal-oxide semiconductor-based thin-film transistors and phototransistor application' 의 참고문헌

  • [9] Martin, S.; Chiang, C.S.; Nahm, J. Y.; Li, T.; Kanicki, J.; Ugai, Y. Influence of the Amorphous Silicon Thickness on Top Gate Thin-Film Transistor Electrical Performances. Japanese Journal of Applied Physics 2001, 40, 530.
    [2001]
  • [99] Ryu, B.; Noh, H.-K.; Choi, E.-A.; Chang, K.-J. O-vacancy as the origin of negative bias illumination stress instability in amorphous In–Ga–Zn–O thin film transistors. Applied physics letters 2010, 97 (2), 022108.
    [2010]
  • [98] Cross, R.; De Souza, M. M.; Deane, S. C.; Young, N. D. A comparison of the performance and stability of ZnO-TFTs with silicon dioxide and nitride as gate insulators. IEEE Transactions on Electron Devices 2008, 55 (5), 1109-1115.
    [2008]
  • [97] Chang, Y. H.; Yu, M. J.; Lin, R. P.; Hsu, C. P.; Hou, T.-H. Abnormal positive bias stress instability of In–Ga–Zn–O thin-film transistors with low-temperature Al2O3 gate dielectric. Applied Physics Letters 2016, 108 (3), 033502.
    [2016]
  • [96] Suresh, A.; Muth, J. Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Applied Physics Letters 2008, 92 (3), 033502.
    [2008]
  • [95] Ku, C. J.; Hong, W. C.; Mohsin, T.; Li, R.; Duan, Z.; Lu, Y. Improvement of negative bias stress stability in Mg 0.03 Zn 0.97 O thin-film transistors. IEEE Electron Device Letters 2015, 36 (9), 914-916.
    [2015]
  • [94] Li, M.; Lan, L.; Xu, M.; Wang, L.; Xu, H.; Luo, D.; Zou, J.; Tao, H.; Yao, R.; Peng, J. Gate bias stress stability under light irradiation for indium zinc oxide thin-film transistors based on anodic aluminium oxide gate dielectrics. Journal of Physics D: Applied Physics 2011, 44 (45), 455102.
    [2011]
  • [93] Schroder, D. K. Semiconductor material and device characterization, John Wiley & Sons: 2006.
    [2006]
  • [92] Yang, E. S. Microelectronic devices, McGraw-Hill New York: 1988.
    [1988]
  • [91] Wager, J. F.; Keszler, D. A.; Presley, R. E. Devices. Transparent Electronics; Springer: 2008; pp 83-151.
    [2008]
  • [90] Kim, C. H.; Rim, Y. S.; Kim, H. J. Chemical stability and electrical performance of dual-active-layered zinc–tin–oxide/indium–gallium–zinc–oxide thin-film transistors using a solution process. ACS applied materials & interfaces 2013, 5 (13), 6108-6112.
    [2013]
  • [8] Gleskova, H.; Wagner, S.; Gašparık, V.; Kováč, P. 150°C Amorphous Silicon Thin-Film Transistor Technology for Polyimide Substrates. Journal of Electrochemical Society 2001, 148, G370.
    [2001]
  • [89] Lee, J. H.; Liu, D. N.; Wu, S. T. Introduction to flat panel displays, John Wiley & Sons: 2008; Vol. 20.
    [2008]
  • [88] Wallmark, J. T.; Johnson, H. Field-effect Transistors: Physics, Technology and Aplications, Prentice Hall: 1966.
    [1966]
  • [87] Kagan, C. R.; Andry, P. Thin-film transistors, CRC Press: 2003.
    [2003]
  • [86] Choi, Y.; Kim, G. H.; Jeong, W. H.; Kim, H. J.; Chin, B. D.; Yu, J. W. Characteristics of gravure printed InGaZnO thin films as an active channel layer in thin film transistors. Thin Solid Films 2010, 518, 6249.
    [2010]
  • [85] Danks, A. E.; Hall, S. R.; Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Materials Horizons. 2016, 3, 91.
    [2016]
  • [84] Safi, I., Recent aspects concerning DC reactive magnetron sputtering of thin films: a review. Surface and Coatings Technology 2000, 127, 203.
    [2000]
  • [83] Shah, H. N.; Jayaganthan, R.; Kaur, D.; Chandra, R. Influence of sputtering parameters and nitrogen on the microstructure of chromium nitride thin films deposited on steel substrate by direct-current reactive magnetron sputtering. Thin Solid Films 2010, 518, 5762.
    [2010]
  • [82] Ye, H.; Kwon, H. J.; Tang, X.; Lee, D. Y.; Nam, S.; Kim, S. H. Direct Patterned Zinc- Tin-Oxide for Solution-Processed Thin-Film Transistors and Complementary Inverter through Electrohydrodynamic Jet Printing. Nanomaterials 2020, 10, 1304.
    [2020]
  • [81] LI, M.; Zheng, J.; Xu, H.; Wang, Z.; Wu, Q.; Huang, B.; Zhou, H.; Liu, C. Precise Patterning of Large-Scale TFT Arrays Based on Solution-Processed Oxide Semiconductors: A Comparative Study of Additive and Subtractive Approaches. Advanced Materials Interfaces 2017, 5, 1700981.
    [2017]
  • [80] Sheng, J.; Hong, T.; Lee, H. M.; Kim, K.; Sasase, M.; Kim, J.; Hosono, H.; Park, J. S. ACS Applied Materials & Interfaces 2019, 11, 40300.
    [2019]
  • [7] Liu, A.; Zhu, H.; Park, W. T.; Kang, S. J.; Xu, Y.; Kim, M. G.; Noh, Y. Y. Room- Temperature Solution-Synthesized p-Type Copper(I) Iodide Semiconductors for Transparent Thin-Film Transistors and Complementary Electronics Advanced Materials 2018, 30, 1802379.
    [2018]
  • [79] Kim, D. G.; Kim, J. U.; Lee, J. S.; Park, K. S.; Chang, Y. G.; Kim, M. H.; Choi, D. K. Negative threshold voltage shift in an a-IGZO thin film transistor under X-ray irradiation. RSC Advances 2019, 9, 20865.
    [2019]
  • [78] Lee, S. M. ; Park, S. J.; Lee, K. H.; Park, J. S.; Park, S.; Yi, Y.; Kang, S. J. Enhanced photocurrent of Ge-doped InGaO thin film transistors with quantum dots. Applied Physics Letters 2015, 106, 031112.
    [2015]
  • [77] Vishniakou, S.; Chen, R.; Ro, Y. G.; Brennan, C. J.; Levy, C.; Yu, E. T.; Dayeh, S. A. Improved Performance of Zinc Oxide Thin Film Transistor Pressure Sensors and a Demonstration of a Commercial Chip Compatibility with the New Force Sensing Technology. Advanced Materials Technolies 2018, 3, 1700279.
    [2018]
  • [76] Ding, S. J.; Wu, X. Superior atomic layer deposition technology for amorphous oxide semiconductor thin-film transistor memory devices. Chemitry of Materials, 2020, 32, 1343.
    [2020]
  • [75] Kim, S. J.; Jung, J.; Lee, K. W.; Yoon, D. H.; Jung, T. S.; Dugasani, S. R.; Park, S. H.; Kim, H. J. Low-Cost Label-Free Electrical Detection of Artificial DNA Nanostructures Using Solution-Processed Oxide Thin-Film Transistors. ACS Applied Materials & Interfaces 2013, 5, 10715.
  • [74] Jeong, H. S.; Park, M. J.; Kwon, S. H.; Joo, H. J.; Kwon, H. I. Highly sensitive and selective room-temperature NO2 gas-sensing characteristics of SnOX-based p-type thin-film transistor. Sensors and Actuators B: Chemical 2019, 288, 625.
    [2019]
  • [73] Wang, Z.; Nayak, P. K.; Caraveo‐Frescas, J. A.; Alshareef, H. N. Recent developments in p‐Type oxide semiconductor materials and devices. Advanced Materials 2016, 28 (20), 3831-3892.
    [2016]
  • [72] Nomura, K.; Kamiya, T.; Hosono, H. Ambipolar oxide thin‐film transistor. Advanced Materials 2011, 23 (30), 3431-3434.
    [2011]
  • [71] Hagemark, K.; Chacka, L. Electrical transport properties of Zn doped ZnO. Journal of Solid State Chemistry 1975, 15 (3), 261-270.
    [1975]
  • [70] Nayak, P. K.; Busani, T.; Elamurugu, E.; Barquinha, P.; Martins, R.; Hong, Y.; Fortunato, E. Zinc concentration dependence study of solution processed amorphous indium gallium zinc oxide thin film transistors using high-k dielectric. Applied Physics Letters 2010, 97 (18), 183504.
    [2010]
  • [6] Chabinyc, M. L.; Salleo, A. Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays. Chemistry of Materials 2004, 16, 4509.
    [2004]
  • [69] Jeong, S.; Ha, Y. G.; Moon, J.; Facchetti, A.; Marks, T. J. Role of gallium doping in dramatically lowering amorphous‐oxide processing temperatures for solution‐derived indium zinc oxide thin‐film transistors. Advanced Materials 2010, 22 (12), 1346-1350.
    [2010]
  • [68] Kim, G. H.; Jeong, W. H.; Kim, H. J. Electrical characteristics of solution‐processed InGaZnO thin film transistors depending on Ga concentration. Physica Status Solidi (a) 2010, 207 (7), 1677-1679.
    [2010]
  • [67] Kim, G. H.; Du Ahn, B.; Shin, H. S.; Jeong, W. H.; Kim, H. J.; Kim, H. J. Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors. Applied Physics Letters 2009, 94 (23), 233501.
    [2009]
  • [65] Kim, S. J.; Yoon, S.; Kim, H. J. Review of solution-processed oxide thin-film transistors. Japanese Journal of Applied Physics 2014, 53 (2S), 02BA02.
    [2014]
  • [64] Fortunato, E; Barquinha, P.; Martins, R. Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Advanced Materials 2012, 24 (22), 2945-2986.
    [2012]
  • [63] Hoffman, R.; Norris, B. J.; Wager, J. ZnO-based transparent thin-film transistors. Applied Physics Letters 2003, 82 (5), 733-735.
    [2003]
  • [62] Prins, M.; Grosse‐Holz, K. O.; Müller, G.; Cillessen, J.; Giesbers, J.; Weening, R.; Wolf, R. A ferroelectric transparent thin‐film transistor. Applied physics letters 1996, 68 (25), 3650-3652.
    [1996]
  • [61] Wang, Y.; Chen, C.; Zou,T.; Yan, L.; Liu, C.; Du, X.; Zhang, S.; Zhou, H. Spin-On- Patterning of Sn–Pb Perovskite Photodiodes on IGZO Transistor Arrays for Fast Active-Matrix Near-Infrared Imaging. Advanced Materials Technologies 2019, 5, 1900752.
    [2019]
  • [60] Oh, H.; Yoon, S. M.; Ryu, M. K.; Hwang, C. S.; Yang, S. ; Ko Park, S. H., Applied Physics Letters 2010, 97, 183502.
    [2010]
  • [5] Jang, K.; Kim, Y.; Phong, P. D.; Lee, Y.; Park, J.; Yi, J. Improvement of Electrical Performance in P-Channel LTPS Thin-Film Transistor with a-Si:H Surface Passivation. Materials 2019, 12, 161.
    [2019]
  • [59] Kamiya, T.; Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Materials 2010, 2 (1), 15.
    [2010]
  • [58] Rim, Y. S.; Chen, H.; Zhu, B.; Bae, S. H.; Zhu, S.; Li, P. J.; Wang, I. C.; Yang, Y. Interface Engineering of Metal Oxide Semiconductors for Biosensing Applications. Advanced Materials Interfaces 2017, 4, 1700020.
    [2017]
  • [57] Park, J. W.; Kang, B. H.; Kim, H. J. A Review of Low-Temperature Solution- Processed Metal Oxide Thin-Film Transistors for Flexible Electronics. Advanced Functional Materials 2019, 30, 1904632.
    [2019]
  • [56] Yang, J.; Kwak, H.; Lee, Y.; Kang, Y. S.; Cho, M. H.; Cho, J. H.; Kim, Y. S.; Jeong, S. J.; Park, S.; Lee, H. J.; Kim, H. MoS2−InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity. ACS Applied Materials & Interfaces 2016, 8, 8576-8582.
  • [55] Ahn, C. H.; Kim, Y. K.; Kang, W. J.; Kim, K. S.; Cho, H. K. High Photosensitivity and Wide Operation Voltage in Two-Dimensional CdS Nano-Crystal Layer Embedded a- InGaZnO Hybrid Phototransistors. Journal of Alloys and Compounds 2017, 725, 891- 898.
    [2017]
  • [54] Yu, J.; Shin, S. W. Visible-Light Phototransistors based on InGaZnO and Silver Nanoparticles. Journal of Vacuum Science & Technology B 2015, 33, 061211.
    [2015]
  • [53] Zhai, Y.; Chen, G.; Ji, J.; Wu, Z.; Li, Y.; Wang, Q. Investigation of Photocurrent Transient Variation in Au Nanoparticles-Decorated IGZO Phototransistor. Physica E: Low-dimensional Systems and Nanostructures 2019, 113, 92-96.
    [2019]
  • [52] Pei, Z.; Lai, H. C.; Wang, J. Y.; Chiang, W. H.; Chen, C. H. High-Responsivity and High-Sensitivity Graphene Dots/a-IGZO Thin-Film Phototransistor. IEEE Electron Device Letters 2015, 36, 44.
    [2015]
  • [51] Cha, S.; Jeong, S.; Kim, B. J.; Kang, S. J.; Kim, Y. D.; Han, I. K. Multi-Photoactive Quantum-Dot Channels for Zinc Oxide Phototransistors by a Surface-Engineering Patterning Process. Current Applied Physics 2019, 19, 992-997.
    [2019]
  • [50] Xu, X.; Yan, L.; Zou, T.; Qiu, R.; Liu, C.; Dai, Q.; Chen, J.; Zhang, S.; Zhou, H. Enhanced Detectivity and Suppressed Dark Current of Perovskite−InGaZnO Phototransistor via a PCBM Interlayer. ACS Applied Materials & Interfaces 2018, 10, 44144-44151.
    [2018]
  • [4] Gao, X.; Lin, L.; Liu, Y.; Huang, X. LTPS TFT process on polyimide substrate for flexible AMOLED Journal of Display Technology 2015, 11, 666.
    [2015]
  • [49] Du, S.; Li, G.; Cao, X.; Wang, Y.; Lu, H.; Zhang, S.; Liu, C.; Zhou, H. Oxide Semiconductor Phototransistor with Organolead Trihalide Perovskite Light Absorber. Advanced Electroninc Materials 2017, 3, 1600325.
    [2017]
  • [48] Na, H. J.; Cho, N. K.; Park, J.; Lee, S. E.; Lee, E. G.; Im, C.; Kim, Y. S. A Visible Light Detector Based on a Heterojunction Phototransistor with a Highly Stable Inorganic CsPbIxBr3-x Perovskite and In–Ga–Zn–O Semiconductor Double-Layer. Journal of Materials Chemistry C 2019, 7, 14223-14231.
  • [47] Tak, Y. J.; Kim, D. J.; Kim, W. G.; Lee, J. H.; Kim, S. J.; Kim, J. H.; Kim, H. J. Boosting Visible Light Absorption of Metal-Oxide-Based Phototransistors via Heterogeneous In−Ga−Zn−O and CH3NH3PbI3 Films. ACS Applied Materials & Interfaces 2018, 10, 12854-12861.
  • [46] Bhatnagar, A. K.; Reddy, K. V.; Srivastava, V. Optical Energy Gap of Amorphous Selenium: Effect of Annealing. Journal of Physics D: Applied Physcis 1985, 18, L149- L153.
    [1985]
  • [45] Kim, D. H.; Choi, S. H.; Cho, N. G.; Chang, Y.; Kim, H. G.; Hong, J. M.; Kim, I-D. High Stability InGaZnO4 Thin-Film Transistors Using Sputter-Deposited PMMA Gate Insulators and PMMA Passivation Layers. Electrochemical and Solid-State Letters 2009, 12, H296–H298.
    [2009]
  • [44] Choi, U. H.; Yoon, S.; Yoon, D. H.; Tak, Y. J.; Kim. Y. G.; Ahn, B. D.; Park, J.; Kim, H. J. Electrical Stability Enhancement of GeInGaO Thin-Film Transistors by Solution- Processed Li-doped Yttrium Oxide Passivation. Journal of Physics D: Applied Physcis 2016, 49, 285103.
  • [43] Seo, H. S.; Bae, J. U.; Kim D. H.; Park. Y.; Kim, C. D.; Kang, I. B.; Chung, I. J.; Choi, J. H.; Myoung, J. M. Reliable Bottom Gate Amorphous Indium–Gallium–Zinc Oxide Thin-Film Transistors with TiOx Passivation Layer. Electrochemical and Solid-State Letters 2009, 12, 9, H348-H351.
  • [42] Park, J. S.; Kim, T. S.; Son, K. S.; Lee, K. H.; Maeng, W. J.; Kim, H. S.; Kim, E. S.; Park, K. B.; Seon, J. B.; Choi, W. Ryu, M. K.; Lee, S. Y. The Influence of SiOx and SiNx Passivation on the Negative Bias Stability of Hf–In–Zn–O Thin Film Transistors Under Illumination. Applied Physics Letters 2010, 96, 262109.
  • [41] Tomlinson, S. K.; Ghita, O. R.; Hooper, R. M.; Evans, K. E. The use of Near-Infrared Spectroscopy for the Cure Monitoring of an Ethyl Cyanoacrylate Adhesive. Vibrational Spectroscopy 2006, 40, 133-141.
    [2006]
  • [40] Chung, J.; Tak, Y. J.; Kim, W. G.; Kang, B. H.; Kim, H. J. Artificially Fabricated Subgap States for Visible-Light Absorption in Indium−Gallium−Zinc Oxide Phototransistor with Solution-Processed Oxide Absorption Layer. ACS Applied Materials & Interfaces 2019, 11, 38964-38972.
    [2019]
  • [3] Wong, W. S.; Ready, S. E.; Lu, P. J.; Streen, R. A. Hydrogenated amorphous silicon thin-film transistor arrays fabricated by digital lithography. IEEE Electron Device Letters 2003, 24, 577.
    [2003]
  • [39] Kang, B. H.; Kim. W. G.; Chung, J.; Lee, J. H.; Kim, H. J. Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection. ACS Applid Materials & Interfaces 2018, 10, 7223-7230.
    [2018]
  • [38] Zan, H. W.; Chen, W. T.; Hsueh, H. W.; Kao, S. C.; Ku, M. C.; Tsai, C. C.; Meng, H. F. Amorphous Indium-Gallium-Zinc-Oxide Visible-Light Phototransistor with a Polymeric Light Absorption Layer. Applied Physics Letters 2010, 97, 203506.
    [2010]
  • [37] Hwang, I.; Kim, J.; Lee, M.; Lee, M. W.; Kim, H. J.; Kwon, H. I.; Hwang, D. K.; Kim, M.; Yoon, H.; Kim. Y. H.; Park, S. K. Wide-Spectral/Dynamic-Range Skin- Compatible Phototransistors Enabled by Floated Heterojunction Structures with Surface Functionalized SWCNTs and Amorphous Oxide Semiconductors. Nanoscale 2017, 9, 16711-16721.
  • [36] Ruan, D. B.; Liu, P. T.; Chen, Y. H.; Chiu, Y. C.; Chien, T. C.; Yu, M. C.; Gan, K. J.; Sze, S. M. Photoresponsivity Enhancement and Extension of the Detection Spectrum for Amorphous Oxide Semiconductor Based Sensors. Advanced Electroninc Matererials 2019, 5, 1800824.
  • [35] Kim, J.; Kwon, S. M.; Jo, C.; Heo, J. –S.; Kim. W. B.; Jung, H. S.; Kim, Y. –H.; Kim, M. –G.; Park, S. K. Highly Efficient Photo-Induced Charge Separation Enabled by Metal−Chalcogenide Interfaces in Quantum-Dot/Metal-Oxide Hybrid Phototransistors. ACS Applied Mateirlas & Interfaces 2020, 12, 16620-16629.
  • [34] Guan, X.; Wang, Z.; Hota, M. K.; Alshareef. H. N.; Wu, T. P-Type SnO Thin Film Phototransistor with Perovskite-Mediated Photogating. Advanced Electronic Materials 2019, 5, 1800538.
    [2019]
  • [33] Liu, H. –Y.; Hunag, R. –C. All-Transparent Zinc Oxide-Based Phototransistor by Mist Atmospheric Pressure Chemical Vapor Deposition. IEEE Electron Device Letters 2019, 40, 243-246.
    [2019]
  • [32] Luo, L. –B.; Wu, G. –A.; Gao, Y.; Liang, L.; Xie, C.; Zhang, Z. –X.; Tong, X. –W.; Wang, T.; Liang, F. –X. A Highly Sensitive Perovskite/Organic Semiconductor Heterojunction Phototransistor and Its Device Optimization Utilizing the Selective Electron Trapping Effect. Advanced Optical Materials 2019, 7, 1900272.
  • [31] Loi, H. –L.; Cao, J.; Guo, X.; Liu, C. –K.; Wang, N.; Song, J.; Tang, G.; Zhu, Y.; Yang, F. Gradient 2D/3D Perovskite Films Prepared by Hot-Casting for Sensitive Photodetectors. Advanced Science 2020, 7, 2000776.
    [2020]
  • [30] Liu, X.; Yu, D.; Cao, F.; Li, X.; Ji, J.; Chen, J.; Song, X.; Zeng, H. Low-Voltage Photodetectors with High Responsivity Based on Solution-Processed Micrometer- Scale All-Inorganic Perovskite Nanoplatelets. Small 2017, 13, 1700364.
    [2017]
  • [2] Nathan, A.; Kumar, A; Sakariya, K.; Servati, P.; Sambandan, S.; Striakhilev, D. Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic. IEEE Journal of Solid-State Circuits 2004, 39, 1477.
    [2004]
  • [29] Han, T.; Sun, L.; Feng, Q.; Cao, K.; Ding, S.; Jin, G.; Jiang, C.; Huang, X. The Mechanism of Photogenerated Minority Carrier Movement in Organic Phototransistors. Journal of Materials Chemistry C 2020, 8, 12284.
    [2020]
  • [28] Jiang, X.; LU, J.; Xue, D.;Wie, Y.; Zhang, Y.; Zhang, J.; Wang, Z.; Huang, L.; Chi, L. High Performance Near-infrared Phototransistors via Enhanced Electron Trapping Effect. Chemical Communications 2021, 57, 12123-12126.
    [2021]
  • [27] Han, H.; Lee, C.;, Kim, H.; Seo, J.; Song, M.; Nam, S.; Kim, Y. Strong Composition Effects in All-Polymer Phototransistors with Bulk Heterojunction Layers of p‑type and n‑type Conjugated Polymers. ACS Applied Materials & Interfaces 2017, 9, 628- 635.
    [2017]
  • [26] Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Hybrid 2D–0D MoS2 –PbS Quantum Dot Photodetectors. Advanced Materials 2015, 27, 176-180.
    [2015]
  • [25] Ra, H. –S.; Kwak, D. –H.; Lee, J. –S. A hybrid MoS2 nanosheet–CdSe nanocrystal phototransistor with a fast photoresponse. Nanoscale 2016, 8, 17223.
    [2016]
  • [24] Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. –B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; Kim, S. High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Advanced Materials 2012, 24, 5832- 5836.
    [2012]
  • [23] Chang, T. H.; Chiu, C. J.; Weng, W. Y.; Chang, S. J.; Tsai, T. Y.; Huang, Z. D. High Responsivity of Amorphous Indium Gallium Zinc Oxide Phototransistor with Ta2O5 Gate Dielectric. Applied Physics Letters 2012, 101, 261112.
    [2012]
  • [22] Wang, H.; Xia, Y.; Chen, Z.; Xu, W.; Long, M.; Xu, J. B. Solution-Processed PCDTBT Capped Low-Voltage InGaZnOx Thin Film Phototransistors for Visible-Light Detection Applied Physics Letters 2015, 106, 242102.
    [2015]
  • [21] Knobelspies, S.; Daus, A.; Cantarella, G.; Petti, L.; Münzenrieder, N.; Tröster, G.; Salvatore, G. A. Flexible a-IGZO Phototransistor for Instantaneous and Cumulative UV-Exposure Monitoring for Skin Health. Advanced Electronic Materials 2016, 2, 1600273.
    [2016]
  • [20] Yoo, H.; Lee, I. S.; Jung, S.; Rho, S. M.; Kang, B. H.; Kim, H. J. A Review of Phototransistors Using Metal Oxide Semiconductors: Research Progress and Future Directions. Advanced Materials 2021, 2006091.
    [2021]
  • [1] Bardeen, J.; Brattain, W. H. The transistor, a semi-conductor triode. Physical Review Journals Archive 1948, 74, 230.
    [1948]
  • [19] Tak, Y. J.; Keene, S. T.; Kang, B. H.; Kim, W. G.; Kim, S. J.; Salleo, A.; Kim, H. J. Multifunctional, room-temperature processable, heterogeneous organic passivation layer for oxide semiconductor thin-film transistors. ACS Applied Materials & Interfaces 2019, 2, 2615-2624.
    [2019]
  • [18] Jeong, J. K.; Yang, H. W.; Jeong, J. H.; Mo, Y. G.; Kim, H. D. Origin of Threshold Voltage Instability in Indium-Gallium-Zinc Oxide Thin Film Transistors. Applied Physics Letters 2008, 93, 123508
    [2008]
  • [17] Chen, T. C.; Chang, T. C.; Hsieh, T. Y.; Tsai, C. T.; Chen, S. C.; Lin, C. S.; Hung, M. C.; Tu, C. H.; Chang, J. J.; Chen, P. L. Light-induced Instability of an InGaZnO Thin Film Transistor with and without SiOx Passivation Layer Formed by Plasma- Enhanced-Chemical-Vapor-Deposition. Applied Physics Letters 2010, 97, 192103
  • [16] Liu, P. T.; Chou, Y. T.; Teng, L. F. Environment-Dependent Metastability of Passivation-Free Indium Zinc Oxide Thin Film Transistor after Gate Bias Stress. Applied Physics Letters 2009, 95, 233504.
    [2009]
  • [160] Yao, J. D.; Zheng, Z. Q.; Shao, J. M.; Yang, G. W. Stable, Highly-Responsive and Broadband Photodetection based on Large-Area Multilayered WS2 Films Grown by Pulsed-Laser Deposition. Nanoscale 2015, 7, 14974-14981.
    [2015]
  • [15] Yoo, H.; Tak, Y. J.; Kim, W. G.; Kim, Y. G.; Kim, H. J. A selectively processible instant glue passivation layer for indium gallium zinc oxide thin-film transistors fabricated at low temperature. Journal of Materials Chemistry C 2018, 6, 6187.
    [2018]
  • [159] Yu, J.; Javaid, K.; Liang, L.; Wu, W.; Liang, Y.; Song, A.; Zhang, H.; Shi, W.; Chang, T. –C.; Cao, H. High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p−n Heterojunction. ACS Applied Materials & Interfaces 2018, 10, 8102-8109.
    [2018]
  • [158] Saleh, M. H.; Ershaidat, N. M.; Ahmad, M. J. A.; Bulos, B. N.; Abdul-Gader Jafar, M. M. Evaluation of Spectral Dispersion of Optical Constants of a-Se Films from their Normal-Incidence Transmittance Spectra using Swanepoel Algebraic Envelope Approach. Optical Review 2017, 24, 260-277.
    [2017]
  • [157] Budiman, M. F.; Hu, W.; Igarashi, M.; Tsukamoto, R.; Isoda, T.; Itoh, K. M.; Yamashita, I.; Murayama, A.; Okada, Y.; Samukawa, S. Control of Optical Bandgap Energy and Optical Absorption Coefficient by Geometric Parameters in Sub-10 nm Silicon-Nanodisc Array Structure. Nanotechnology 2012, 23, 065302.
  • [156] Abdul-Gader, M. M.; Al-Basha, M. A.; Wishah, K. A. Temperature Dependence of DC Conductivity of as-Deposited and Annealed Selenium Films. International Journal of Electronics 1998, 85, 21-41.
    [1998]
  • [155] Dukstiene, N.; Tatariskinaite, L.; Andrulevicius, M. Characterization of Electrochemically Deposited Thin Mo–O–C–Se Film Layers. Materials Science- Poland 2010, 28, 93.
    [2010]
  • [154] Shyam, P.; Chaturvedi, S.; Karmakar, K.; Bhattacharya, A.; Singh, S.; Kulkarni, S. Structural and Magnetic Investigations on a Wet Chemically Synthesized Nanoscale S = 1/2 Spin Chain Compound – CuSe2O5. Journal of Materials Chemistry C 2016, 4, 611-621.
    [2016]
  • [153] Han, K. –L.; Han, J. –H.; Kum, B. –S.; Jeong, H. –J.; Choi, J. –M.; Ghang, J. –E.; Oh, S.; Park, J. –S. Organic/Inorganic Hybrid Buffer in InGaZnO Transistors under Repetitive Bending Stress for High Electrical and Mechanical Stability. ACS Applied Materials & Interfaces 2020, 12, 3784-3791.
  • [152] Abliz, A.; Wang, J. L.; Xu, L.; Wan, D.; Liao, L.; Ye, C.; Liu, C. S.; Jiang, C. Z.; Chen, H. P.; Guo, T. L. Boost up the Electrical Performance of InGaZnO Thin Film Transistors by Inserting an Ultrathin InGaZnO:H Layer. Applied Physics Letters 2016, 108, 213501.
  • [151] Kim, J.; Bang, S.; Lee, S.; Shin, S.; Park, J.; Seo, H.; Jeon, H. A. Study on H2 Plasma Treatment Effect on a-IGZO Thin Film Transistor. Journal of Materials Research 2012, 27, 2318−2325.
    [2012]
  • [150] Padding, J. T.; Briels, W. J. Time and Length Scales of Polymer Melts Studied by Coarse-Grained Molecular Dynamics Simulations. Journal of Chemical Physics 2002, 117, 2, 925-943.
    [2002]
  • [14] Lee, I. S.; Tak, Y. J.; Kang, B. H.; Yoo, H.; Jung, S.; Kim, H. J. Mechanochemical and thermal treatment for surface functionalization to reduce the activation temperature of In-Ga-Zn-O thin-film transistors. ACS Applied Materiarls & Interfaces 2020, 12, 19123.
    [2020]
  • [149] Nomura, K.; Kamiya, T.; Hosono, H. Effects of Diffusion of Hydrogen and Oxygen on Electrical Properties of Amorphous Oxide Semiconductor, In-Ga-Zn-O. ECS Journal of Solid State Science and Technology 2013, 2, P5-P8.
    [2013]
  • [148] Kim, Y. -H.; Heo, J. -S.; Kim, T. -H.; Park, S.; Yoon, M.-H; Kim, J; Oh, M. S.; Yi, G. -R.; Noh, Y. -Y.; Park, S. K. Flexible Metal-Oxide Devices Made by Room- Temperature Photochemical Activation of Sol-Gel Films. Nature, 2012, 489, 128- 132.
  • [147] Kim, J.; Rim, Y. S.; Chen, H.; Cao, H. H.; Nakatsuka, N.; Hinton, H. L.; Zhao, C.; Andrews, A. M.; Yang, Y.; Weiss, P. S. Fabrication of High-Performance Ultrathin In2O3 Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. ACS Nano, 2015, 9, 4, 4572-4582.
  • [146] Raja, J.; Jang, K.; Balaji, N.; Yi, J. Suppression of Temperature Instability in InGaZnO Thin-Film Transistors by in situ Nitrogen Doping. Semiconductor Science and Technology 2013, 28, 115010.
    [2013]
  • [145] Raja, J.; Jang, K.; Balaji, N.; Choi, W.; Thuy Trinh, T.; Yi, J. Negative Gat Bias Temperature Stability of N-doped InGaZnO Active Layer Thin Film Transistors. Applied Physics Letters 2013, 102, 083505.
    [2013]
  • [144] Chien, J. -F.; Chen, C. -H.; Shyue, J. -J.; Chen, M. -J. Local Electronic Structures and Electrical Characteristics of Well-Controlled Nitrogen-Doped ZnO Thin Films Prepared by Remote Plasma in situ Atomic Layer Doping. ACS Applied Materials & Interfaces 2012, 4, 3471−3475.
    [2012]
  • [143] Abliz, A.; Gao, Q.; Wan, D.; Liu, X.; Xu, L.; Liu, C.; Jiang, C.; Li, X.; Chen, H.; Guo, T.; Li, J.; Liao, L. Effects of Nitrogen and Hydrogen Codoping on the Electrical Performance and Reliabilty of InGaZnO Thin-Film Transistors. ACS Applied Materials & Interfaces 2017, 9, 10798-10804.
  • [142] Kingsley, C. R.; Whitaker, T. J.; Wee, A. T. S.; Jackman, R. B.; Foord, J. S. Development of Chemical Beam Epitaxy for the Deposition of Gallium Nitride. Materials Science and Engineering: B. 1995, 29, 78-82.
    [1995]
  • [141] Kumar, M.; Kumar, S.; Chauhan, N.; Kumar. D. S.; Kumar, V.; Singh, R. Study of GaN Nanowires Converted from β-Ga2O3 and Photoconduction in a Single Nanowire. Semiconductor Science Technology 2017, 32, 085012.
    [2017]
  • [140] Kim, J.; Jeong, S. M.; Jeong, J. Transparent Thin-Film Transistor and Diode Circuit Using Graphene and Amorphous Indium–Gallium–Zinc-Oxide Active Layer. Electronics Letters 2015, 51, 24, 2047-2049.
    [2015]
  • [13] Min, W. K.; Park, S. P.; Kim, H. J.; Lee, J. H.; Park, K.; Kim, D.; Kim, K. W.; Kim, H. J. Switching Enhancement via a Back-Channel Phase-Controlling Layer for p-Type Copper Oxide Thin-Film Transistors. ACS Applied Matererials & Interfaces 2020, 12, 24929.
    [2020]
  • [139] Dong, C.; Shi, J.; Wu, J.; Chen, Y.; Zhou, D.; Hu, Z.; Xie, H.; Zhan, R.; Zou, Z. Improvements in Passivation Effect of Amorphous InGaZnO Thin Film Transistors. Materials Science in Semiconductor Processing 2014, 20, 7-11.
    [2014]
  • [138] Masuda, S.; Kitamura, K.; Okumura, Y.; Miyatake, S. Transparent Thin Film Transistors Using ZnO as an Active Channel Layer and Their Electrical Properties. Journal of Applied Physics 2003, 93, 1624−1630.
    [2003]
  • [137] Du Ahn, B.; Shin, H. S.; Kim, H. J.; Park, J.-S.; Jeong, J. K. Comparison of the Effects of Ar and H2 Plasmas on the Performance of Homojunctioned Amorphous Indium Gallium Zinc Oxide Thin Film Transistors. Applied Physics Letters 2008, 93, 203506.
    [2008]
  • [136] Hwang, S. Y.; Lee, J. H.; Woo, C. H.; Lee, J. Y.; Cho, H. K. Effect of Annealing Temperature on the Electrical Performances of Solution-processed InGaZnO Thin Film Transistors. Thin Solid Films 2011, 519, 5146-5149.
    [2011]
  • [135] Nomura, K.; Kamiya, T.; Ohta, H.; Ueda, K.; Hirano, M.; Hosono, H. Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films. Applied Physics Letters 2004, 85, 11.
    [2004]
  • [134] Kim, C. H.; Rim, Y. S.; Kim, H. J. The Effect of a Zinc–Tin-Oxide Layer Used as an Etch-Stopper Layer on the Bias Stress Stability of Solution-Processed Indium– Gallium–Zinc-Oxide Thin-Film Transistors. Journal of Physics D: Applied Physics 2014, 47, 385104.
    [2014]
  • [133] Briggs, D.; Seah, M. Practical surface analysis: by auger and x-ray photoelectron spectroscopy, Wiley: 2003.
    [2003]
  • [132] Martins, R.; Fortunato, E. Dark Current-Voltage Characteristics of Transverse Asymmetric Hydrogenated Amorphous Silicon Diodes Journal of Applied Physics 1995, 78, 3481-3487.
    [1995]
  • [131] Barquinha, P.; Pereira, L.; Gonçalves, G.; Martins, R.; Fortunato, E. The Effect of Deposition Conditions and Annealing on the Performance of High-Mobility GIZO TFTs ElectroChem. Solid-State Letters 2008, 11, H248-251.
    [2008]
  • [130] Xu, W.; Li, H.; Xu, J. –B.; Wang, L. Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors ACS Applied Materials & Interfaces 2018, 10, 25878- 25901.
    [2018]
  • [12] Ruan, D. B.; Liu, P. T.; Yu, M. C.; Chien, T. C.; Chiu, Y. C.; Gan, K. J.; Sze, S. M. Performance Enhancement for Tungsten-Doped Indium Oxide Thin Film Transistor by Hydrogen Peroxide as Cosolvent in Room-Temperature Supercritical Fluid Systems. ACS Applied Matererials & Interfaces 2019,11, 22521.
  • [129] Jeon, S.; Ahn, S. E.; Song, I.; Kim, C. J.; Chung, U. I.; Lee, E.; Yoo, I.; Nathan, A.; Lee, S.; Ghaffarzadeh, K.; Robertson, J.; Kim, K. Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nature Materials 2012, 11, 301.
  • [128] Jang, J.; Kang, Y.; Cha, D.; Bae, J.; Lee, S. Crystals, 2019, 9, 192.
    [2019]
  • [127] Ghaffazadeh, K.; Nathan, A.; Robertson, J.; Kim, S.; Jeon, S.; Kim, C.; Chung, U. I.; Lee, J. H. Persistent photoconductivity in Hf–In–Zn–O thin film transistors. Applied Physics Letters 2010, 97, 143510.
    [2010]
  • [126] Kim, D.; Kim, Y. –G.; Kang, B. H.; Lee, J. H.; Chung, J.; Kim, H. J. Fabrication of indium gallium zinc oxide phototransistors via oxide-mesh insertion for visible light detection. Journal of Materials Chemistfy C 2020, 8, 165-172.
    [2020]
  • [125] Chen, Z.; Sheleg, G.; Shekhar, H.; Tessler, N. Structure−Property Relation in Organic−Metal Oxide Hybrid Phototransistors. ACS Applied Materials & Interfaces 2020, 12, 15430-15438.
    [2020]
  • [124] Pak, S. W.; Chu, D.; Song, D. Y.; Lee, S. K.; Kim, E. K. Enhancement of Near- Infrared Detectability from InGaZnO Thin Film Transistor with MoS2 Light Absorbing Layer. Nanotechnology 2017, 28, 475206.
    [2017]
  • [123] Konstantatos, G.; Sargent, E. H. PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain. Applied Physics Letters 2007, 91, 173505.
    [2007]
  • [122] Nian, L.; Zhang, W.; Zhu, N.; Liu, L.; Xie, Z.; Wu, H.; Würthner, F.; Ma, Y. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. Journal of the American Chemical Society 2015, 137, 6995.
    [2015]
  • [121] Zhang, Y.; Hellebusch, D. J.; Bronstein, N. D.; Ko, C.; Ogletree, D. F.; Salmeron, M.; Alivisatos, A. P. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport. Nature Communications 2016, 7, 11924.
    [2016]
  • [120] Konstantatos, G.; Fischer, A.; Klem, E.; Clifford, J.; Hoogland, S.; Sargent, E. H.; Levina, L.; Howard, I. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180.
    [2006]
  • [11] Sheng, J.; Park, E. J.; Shong, B.; Park, J. S. Atomic Layer Deposition of an Indium Gallium Oxide Thin Film for Thin-Film Transistor Applications. ACS Applied Matererials & Interfaces 2017, 9, 23934.
    [2017]
  • [119] Zhou, X.; Yang, D.; Ma, D.; Vadim, A.; Ahamad, T.; Alshehri, S. M. Ultrahigh Gain Polymer Photodetectors with Spectral Response from UV to Near-Infrared Using ZnO Nanoparticles as Anode Interfacial Layer. Advanced Functional Materials 2016, 26, 6619.
    [2016]
  • [118] R. H. Bube, Photoconductivity of solids, John Wiley & Sons, Inc., New York 1960.
    [1960]
  • [117] Ahmadi, M.; Wu, T.; Hu. B. A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Advanced Materials 2017, 29, 1605242.
    [2017]
  • [116] Fang, Y.; Armin, A.; Meredith, P.; Huang, J. Accurate characterization of nextgeneration thin-film photodetectors. Nature Photonics 2019, 13, 1.
    [2019]
  • [115] Xu, Y.; Berger, P. R.; Wilson, J. N.; Bunz, U. H. F. Photoresponsivity of polymer thinfilm transistors based on polyphenyleneethynylene derivative with improved hole injection. Applied Physics Letters 2004, 85, 4219.
    [2004]
  • [114] Kang, H. S.; Choi, C. S.; Choi, W. Y.; Kim, D. H.; Seo, K. S. Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors. Applied Physics Letters 2004, 84, 3780.
    [2004]
  • [113] Choi, C. S.; Kang, H. S.; Choi, W. Y.; Kim, H. J. Choi, W. J.; Kim, D. H.; Jang, K. C.; Seo, K. S. High optical responsivity of InAlAs-InGaAs metamorphic highelectron mobility transistor on GaAs substrate with composite channels. IEEE Photonics Technology Letters 2003, 15, 846.
  • [112] Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, Wiley-Interscience, New Jersey 2007.
    [2007]
  • [111] Seeds, A. J.; Desalles, A. A. A. Optical control of microwave semiconductor devices. IEEE Transactions on Microwave Theory and Techniques 1990, 38, 577.
    [1990]
  • [110] Romero, M. A.; Martinez, M. A. G.; Herczfeld, P. R. An analytical model for the photodetection mechanisms in high-electron mobility transistors. IEEE Transactions on Microwave Theory and Techniques 1996, 44, 2279.
    [1996]
  • [10] Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Roomtemperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488.
    [2004]
  • [109] Yun, M. G.; Kim, Y. K.; Ahn, C. H.; Cho, S. W.; Kang, W. J.; Cho, H. K.; Kim, Y. H. Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process. Scientific Reports 2016, 6, 31991.
    [2016]
  • [108] Lee, H.; Kim, J.; Kim, S. K.; Lee, Y.; Kim, J. Y.; Jang, J. T.; Park, J.; Choi, S. J.; Kim, D. H.; Kim, D. M. Investigation of Infrared Photo-Detection Through Subgap Densityof- States in a-InGaZnO Thin-Film Transistors. IEEE Electron Device Letters 2017, 38, 584.
  • [107] Ahn, S. E.; Jeon, S.; Jeon, Y. W.; Kim, C.; Lee, M. J.; Lee, C. W.; Park, J.; Song, I.; Nathan, A.; Lee, S.; Chung, U. I. High-Performance Nanowire Oxide Photo-Thin Film Transistor. Advanced Materials 2013, 25, 5549.
    [2013]
  • [106] Xiang, D.; Han, C.; Zhang, J.; Chen, W. Gap States Assisted MoO3 Nanobelt Photodetector with Wide Spectrum Response. Scientific Reports 2014, 4, 4891.
    [2014]
  • [105] S. O. Kasap, Principles of Electronic Materials and Devices, McGraw-Hill Education, New York 2006.
    [2006]
  • [104] Wakayama, Y.; Hayakawa, R.; Seo, H. S. Recent progress in photoactive organic field-effect transistors. Science and Technology of Advanced Materials 2014, 15, 024202.
    [2014]
  • [103] Li, N.; Lan, Z.; Cai, L.; Zhu, F.; Advances in solution-processable near-infrared phototransistors. Journal of Materials Chemistry C 2019, 7, 3711.
    [2019]
  • [102] Agostinelli, T.; Caironi, M.; Natali, D.; Sampietro, M.; Biagioni, P.; Finazzi, M.; Duo, L. Space charge effects on the active region of a planar organic photodetector. Journal of Applied Physics 2007, 101, 114504.
    [2007]
  • [101] Saran, R.; Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nature Photonics 2016, 10, 81.
    [2016]
  • [100] Baeg, K.; Binda J. M.; Natali, D.; Caironi, M.; Noh, Y. Y. Organic Light Detectors: Photodiodes and Phototransistors. Advanced Materials 2013, 25, 4267.
    [2013]
  • Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application
    Hosono, H. 352 (9-20), 851-858 [2006]