자기 포화와 공간 고조파를 고려한 영구자석 동기 전동기의 자속과 토크 추정 = Identification of Flux-Linkage and Torque for Permanent Magnet Synchronous Motor Considering Magnetic Saturation and Spatial Harmonics

이주현 2022년
논문상세정보
' 자기 포화와 공간 고조파를 고려한 영구자석 동기 전동기의 자속과 토크 추정 = Identification of Flux-Linkage and Torque for Permanent Magnet Synchronous Motor Considering Magnetic Saturation and Spatial Harmonics' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 응용 물리
  • 공간 고조파
  • 교차 결합
  • 비선형 자기 모델
  • 영구자석 동기 전동기
  • 자기 포화
  • 자속맵 추정
  • 전동기 구동 시뮬레이션
  • 토크 리플 추정
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
4,682 0

0.0%

' 자기 포화와 공간 고조파를 고려한 영구자석 동기 전동기의 자속과 토크 추정 = Identification of Flux-Linkage and Torque for Permanent Magnet Synchronous Motor Considering Magnetic Saturation and Spatial Harmonics' 의 참고문헌

  • 영구자석 동기전동기 센서레스 제어의 운전 영역 확장에 관한 연구, 박사 학위 논문
    장지훈 서울대학교 [2006]
  • 분수 슬롯 집중권을 가지는 매입형 영구자석 동기 전동기의 인덕턴스 분석 및 수식화, 박사 학위 논문
    권용철 서울대학교 [2017]
  • [9] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, "Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame," in IEEE Trans. on Ind. Appl., vol. 38, no. 4, pp. 1054-1061, Jul.-Aug. 2002.
    [2002]
  • [82] Y. C. Kwon, S. Kim and S. K. Sul, "Six-step operation of PMSM with instantaneous current control," in IEEE Trans. on Ind. Appl.,, vol. 50, no. 4, pp. 2614-2625, Jul.-Aug. 2014.
    [2014]
  • [81] J. M. Kim and S. K. Sul, "Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation," in IEEE Trans. on Ind. Appl., vol. 33, no. 1, pp. 43-48, Jan.-Feb. 1997.
    [1997]
  • [80] T. Kollo and D. von Rosen, Advanced Multivariate Statistics with Matrices, Springer, 2005.
    [2005]
  • [7] S. D. Wilson, G. W. Jewell and P. G. Stewart, "Resistance estimation for temperature determination in PMSMs through signal injection," IEEE International Conference on Electric Machines and Drives, 2005, pp. 735-740.
    [2005]
  • [79] H. J. Cho, J. Lee, Y. C. Kwon and S. K. Sul, "Torque-sensorless identification of IPMSM torque map," 2021 IEEE Energy Conversion Congress and Exposition (ECCE), 2021.
  • [78] B. H. Bae and S. K. Sul, "A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives," in IEEE Trans. on Ind. Appl., vol. 39, no. 3, pp. 802-810, May-Jun. 2003.
    [2003]
  • [77] J. Yoo, H. S. Kim and S. K. Sul, "Design of frequency-adaptive flux observer in PMSM drives robust to discretization error," in IEEE Trans. on Ind. Electron., Early Access, doi: 10.1109/TIE.2021.3075854.
  • [76] R. B. Sepe and J. H. Lang, "Implementation of discrete-time field-oriented current control," in IEEE Trans. on Ind. Appl., vol. 30, no. 3, pp. 723-728, May-Jun. 1994.
    [1994]
  • [75] D. Kim, Y. Kwon, S. Sul, J. Kim and R. Yu, "Suppression of injection voltage disturbance for high-frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple," in IEEE Trans. on Ind. Appl., vol. 52, no. 1, pp. 302-312, Jan.-Feb. 2016.
    [2016]
  • [74] N. Bedetti, S. Calligaro and R. Petrella, "Self-commissioning of inverter dead-time compensation by multiple linear regression based on a physical model," in IEEE Trans. on Ind. Appl., vol. 51, no. 5, pp. 3954-3964, Sep.-Oct. 2015.
    [2015]
  • [73] G. Pellegrino, R. I. Bojoi, P. Guglielmi and F. Cupertino, "Accurate inverter error compensation and related self-commissioning scheme in sensorless induction motor drives," in IEEE Trans. on Ind. Appl., vol. 46, no. 5, pp. 1970-1978, Sep.-Oct. 2010.
    [2010]
  • [72] Y. Park and S. Sul, "A novel method utilizing trapezoidal voltage to compensate for inverter nonlinearity," in IEEE Trans. on Power Electron., vol. 27, no. 12, pp. 4837- 4846, Dec. 2012.
    [2012]
  • [71] Y. Kwon and S. Sul, "Reduction of injection voltage in signal injection sensorless drives using a capacitor-integrated inverter," in IEEE Trans. on Power Electron., vol. 32, no. 8, pp. 6261-6274, Aug. 2017.
    [2017]
  • [70] A. V. Oppenhiem and R. W. Schafer, Discrete-Time Signal Processing, Pearson, 2009.
    [2009]
  • [6] D. D. Reigosa, D. Fernandez, H. Yoshida, T. Kato and F. Briz, "Permanent-magnet temperature estimation in PMSMs using pulsating high-frequency current injection," in IEEE Trans. on Ind. Appl., vol. 51, no. 4, pp. 3159-3168, Jul.-Aug. 2015.
    [2015]
  • [69] S. A. Khajehoddin, M. Karimi-Ghartemani, P. K. Jain and A. Bakhshai, "A Resonant controller with high structural robustness for fixed-point digital implementations," in IEEE Trans. on Power Electron., vol. 27, no. 7, pp. 3352-3362, Jul. 2012.
    [2012]
  • [68] M. Liserre, R. Teodorescu and F. Blaabjerg, "Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame," in IEEE Trans. on Power Electron., vol. 21, no. 3, pp. 836-841, May 2006.
    [2006]
  • [67] D. N. Zmood, D. G. Holmes and G. H. Bode, "Frequency-domain analysis of three-phase linear current regulators," in IEEE Trans. on Ind. Appl., vol. 37, no. 2, pp. 601-610, Mar.- Apr. 2001.
    [2001]
  • [66] J. Lee, Y. C. Kwon and S. K. Sul, "Identification of IPMSM flux-linkage map for highaccuracy simulation of IPMSM drives," in IEEE Trans. on Power Electron., vol. 36, no. 12, pp. 14257-14266, Dec. 2021.
  • [65] H. J. Cho, Y. C. Kwon and S. K. Sul, "Torque ripple-minimizing control of IPMSM with optimized current trajectory," in IEEE Trans. on Ind. Appl., vol. 57, no. 4, pp. 3852-3862, Jul.-Aug. 2021.
  • [64] J. Lee and J. Ha, "Harmonic torque reduction using adaptive sector-based torque feedforward method for PMSM," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 5473-5478.
    [2018]
  • [63] P. Mattavelli, L. Tubiana and M. Zigliotto, "Torque-ripple reduction in PM synchronous motor drives using repetitive current control," in IEEE Trans. on Power Electron., vol. 20, no. 6, pp. 1423-1431, Nov. 2005.
    [2005]
  • [62] S. J. Park, H. W. Park, M. H. Lee and F. Harashima, "A new approach for minimumtorque- ripple maximum-efficiency control of BLDC motor," in IEEE Trans. on Ind. Electron., vol. 47, no. 1, pp. 109-114, Feb. 2000.
    [2000]
  • [61] C. Lai, G. Feng, K. Mukherjee, V. Loukanov and N. C. Kar, "Torque ripple modeling and minimization for interior PMSM considering magnetic saturation," in IEEE Trans. on Power Electron., vol. 33, no. 3, pp. 2417-2429, Mar. 2018.
    [2018]
  • [60] G. Feng, C. Lai, and N. C. Kar, “An analytical solution to optimal stator current design for PMSM torque ripple minimization with minimal machine losses,” in IEEE Trans. on Ind. Electron., vol. 64, no. 10, pp. 7655-7665, Oct. 2017.
    [2017]
  • [5] D. D. Reigosa, D. Fernandez, T. Tanimoto, T. Kato and F. Briz, "Permanent-magnet temperature distribution estimation in permanent-magnet synchronous machines using back electromotive force harmonics," in IEEE Trans. on Ind. Appl., vol. 52, no. 4, pp. 3093-3103, Jul.-Aug. 2016.
    [2016]
  • [59] N. Nakao and K. Akatsu, "Suppressing pulsating torques: torque ripple control for synchronous motors," in IEEE Ind. Appl. Magazine, vol. 20, no. 6, pp. 33-44, Nov.-Dec. 2014.
    [2014]
  • [57] S. Li, D. Han, and B. Sarlioglu, “Modeling of interior permanent magnet machine considering saturation, cross coupling, spatial harmonics, and temperature effects,” in IEEE Trans. on Transport. Electrific., vol. 3, no. 3, pp. 682–693, Sep. 2017.
    [2017]
  • [56] H. Woodson and J. Melcher, Electromechanical Dynamics, Wiley, 1968.
    [1968]
  • [55] Y. Zuo, S. N. Afrasiabi and C. Lai, "A novel two-step flux linkage identification for PMSMs considering magnetic saturation and spatial harmonics," 2021 IEEE International Magnetic Conference (INTERMAG), pp. 1-5, 2021.
  • [54] A. Kundu, A. Balamurali, G. Feng and N. C. Kar, "Differential evolution based stator flux linkage estimation considering saturation, inverter non-linearity and saliency in PMSM," 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, pp. 1711-1717, 2019.
    [2019]
  • [53] L. Ortombina, F. Tinazzi and M. Zigliotto, "Magnetic modeling of synchronous reluctance and internal permanent magnet motors using radial basis function networks," in IEEE Trans. on Ind. Electron., vol. 65, no. 2, pp. 1140-1148, Feb. 2018.
    [2018]
  • [52] K. Liu, J. Feng, S. Guo, L. Xiao and Z. Zhu, "Identification of flux linkage map of permanent magnet synchronous machines under uncertain circuit resistance and inverter nonlinearity," in IEEE Trans. on Ind. Informatics, vol. 14, no. 2, pp. 556-568, Feb. 2018.
    [2018]
  • [51] E. Armando, P. Guglielmi, G. Pellegrino and R. Bojoi, "Flux linkage maps identification of synchronous AC motors under controlled thermal conditions," 2017 IEEE International Electric Machines and Drives Conference (IEMDC), 2017, pp. 1-8.
    [2017]
  • [50] D. Hu, Y. M. Alsmadi and L. Xu, "High-fidelity nonlinear IPM modeling based on measured stator winding flux linkage," in IEEE Trans. on Ind. Appl., vol. 51, no. 4, pp. 3012-3019, Jul.-Aug. 2015.
    [2015]
  • [4] P. H. Mellor, R. Wrobel and D. Holliday, "A computationally efficient iron loss model for brushless AC machines that caters for rated flux and field weakened operation," 2009 IEEE International Electric Machines and Drives Conference, 2009, pp. 490-494.
    [2009]
  • [49] E. Armando, R. I. Bojoi, P. Guglielmi, G. pellegrino, and M. Pastorlli “Experimental identification of the magnetic model of synch machines”, in IEEE Trans. on Ind. Appl., vol. 49, no. 5 pp. 2116–2125, Sep.-Oct. 2013.
    [2013]
  • [48] K. M. Rahman and S. Hiti, "Identification of machine parameters of a synchronous motor," in IEEE Trans. on Ind. Appl., vol. 41, no. 2, pp. 557-565, Mar.-Apr. 2005.
    [2005]
  • [47] L. Ortombina, D. Pasqualotto, F. Tinazzi and M. Zigliotto, "Magnetic model identification of synchronous motors considering speed and load transients," in IEEE Trans. on Ind. Appl., vol. 56, no. 5, pp. 4945-4954, Sep.-Oct. 2020.
    [2020]
  • [46] S. Hall, F. J. Márquez-Fernández and M. Alaküla, "Dynamic magnetic model identification of permanent magnet synchronous machines," in IEEE Trans. on Energy Convers., vol. 32, no. 4, pp. 1367-1375, Dec. 2017.
    [2017]
  • [45] G. Pellegrino, B. Boazzo and T. M. Jahns, "Magnetic model self-identification for pm synchronous machine drives," in IEEE Trans. on Ind. Appl., vol. 51, no. 3, pp. 2246- 2254, May-Jun. 2015.
    [2015]
  • [44] B. Shuang and Z. Q. Zhu, "A novel method for estimating the high frequency incremental dq-axis and cross-coupling inductances in interior permanent magnet synchronous machines," in IEEE Trans. on Ind. Appl., vol. 57, no. 5, pp. 4913-4923, Sep.-Oct. 2021.
  • [43] Q. Wang, G. Wang, N. Zhao, G. Zhang, Q. Cui and D. Xu, "An impedance model-based multiparameter identification method of pmsm for both offline and online conditions," in IEEE Trans. on Power Electron., vol. 36, no. 1, pp. 727-738, Jan. 2021.
  • [42] S. A. Odhano, R. Bojoi, S. G. Rosu, and A. Tenconi, “Identification of the magnetic model of permanent-magnet synchronous machines using DC-biased low-frequency AC signal injection”, in IEEE Trans. on Ind. Appl., vol. 51, no. 4, pp. 3208–3215, Jul.-Aug. 2015.
    [2015]
  • [41] G. Wang, L. Qu, H. Zhan, J. Xu, L. Ding, G. Zhang, and D. Xu, “Synchronous machine drives at standstill considering inverter nonlinearities”, in IEEE Trans. on Power Electron., vol. 29, no. 12, pp. 6615–6627, Dec. 2014.
    [2014]
  • [40] M. Hinkkanen, P. Pescetto, E. Mölsä, S. E. Saarakkala, G. Pellegrino and R. Bojoi, "Sensorless Self-commissioning of synchronous reluctance motors at standstill without rotor locking," in IEEE Trans. on Ind. Appl., vol. 53, no. 3, pp. 2120-2129, May-Jun. 2017.
    [2017]
  • [3] X. Chen, J. Wang, B. Sen, P. Lazari, and T. Sun, "A high-fidelity and computationally efficient model for interior permanent-magnet machines considering the magnetic saturation, spatial harmonics, and iron loss effect”, in IEEE Trans. on Ind. Appl., vol. 62, no. 7, pp. 4044-4055, Jul. 2015.
    [2015]
  • [39] B. Stumberger, G. Stumberger, D. Dolinar, A. Hamler and M. Trlep, "Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor," in IEEE Trans. on Ind. Appl., vol. 39, no. 5, pp. 1264-1271, Sep.-Oct. 2003.
    [2003]
  • [38] M. Fasil, C. Antaloae, N. Mijatovic, B. B. Jensen and J. Holboll, "Improved dq-Axes Model of PMSM Considering Airgap Flux Harmonics and Saturation," in IEEE Trans. on Applied Superconductivity, vol. 26, no. 4, pp. 1-5, Jun. 2016.
    [2016]
  • [37] G. Luo, R. Zhang, Z. Chen, W. Tu, S. Zhang and R. Kennel, "A novel nonlinear modeling method for permanent-magnet synchronous motors," in IEEE Trans. on Ind. Electron., vol. 63, no. 10, pp. 6490-6498, Oct. 2016.
    [2016]
  • [36] Y. Kano, K. Watanabe, T. Kosaka and N. Matsui, "A novel approach for circuit-fieldcoupled time-stepping electromagnetic analysis of saturated interior pm motors," in IEEE Trans. on Ind. Appl., vol. 45, no. 4, pp. 1325-1333, Jul.-Aug. 2009.
    [2009]
  • [35] O. A. Mohammed, S. Liu and Z. Liu, "Physical modeling of PM synchronous motors for integrated coupling with Machine drives," in IEEE Trans. on Magn., vol. 41, no. 5, pp. 1628-1631, May 2005.
    [2005]
  • [34] Y. Huangfu, S. Wang, J. Qiu, H. Zhang, G. Wang, and J. Zhu, ‘‘Transient performance analysis of induction motor using field-circuit coupled finite-element method,’’ in IEEE Trans. on Magn., vol. 50, no. 2, pp. 873–876, Feb. 2014.
    [2014]
  • [33] L. Di Leonardo, F. Parasiliti, M. Tursini, and M. Villani, “Transient analysis of PM synchronous motor drives by finite element model cosimulation,” in Proc. IEEE IECON, 2013, pp. 6834–6840.
    [2013]
  • [32] K. Akatsu and R. D. Lorenz, "Comparing coupled analysis with experimental results for an interior pm machine," in IEEE Trans. on Ind. Appl., vol. 45, no. 1, pp. 178-185, Jan.- feb. 2009.
    [2009]
  • [31] P. Zhou, D. Lin, W. N. Fu, B. Ionescu and Z. J. Cendes, "A general cosimulation approach for coupled field-circuit problems," in IEEE Trans. on Magn., vol. 42, no. 4, pp. 1051-1054, April 2006.
    [2006]
  • [30] R. Dutta, M. F. Rahman, and L. Chong, “Winding inductances of an interior permanent magnet (IPM) machine with fractional slot concentrated winding,” in IEEE Trans. on Magn., vol. 48, no. 12, pp. 4842–4849, Dec. 2012.
    [2012]
  • [2] P. Rasilo, M. Lemesle, A. Belahcen, A. Arkkio and M. Hinkkanen, "Comparison of finite-element-based state-space models for pm synchronous machines," in IEEE Trans. on Energy Convers., vol. 29, no. 2, pp. 535-543, Jun. 2014.
    [2014]
  • [29] Q. Li, T. Fan, and X. Wen, “Armature-reaction magnetic field analysis for interior permanent magnet motor based on winding function theory,” in IEEE Trans. on Magn., vol. 49, no. 3, pp. 1193–1201, Mar. 2013.
    [2013]
  • [28] M. Farshadnia, M. A. M. Cheema, R. Dutta and J. E. Fletcher, "Analytical modeling of armature reaction air-gap flux density considering the non-homogeneously saturated rotor in a fractional-slot concentrated-wound IPM machine," in IEEE Trans. on Magn., vol. 53, no. 2, pp. 1-12, Feb. 2017.
    [2017]
  • [27] G. Dajaku and D. Gerling, “Stator slotting effect on the magnetic field distribution of salient pole synchronous permanent-magnet machines,” in IEEE Trans. on Magn., vol. 46, no. 11, pp. 3676–3683, Sept. 2010.
    [2010]
  • [26] T. Lubin, S. Mezani and A. Rezzoug, "2-D exact analytical model for surface-mounted permanent-magnet motors with semi-closed slots," in IEEE Trans. on Magn., vol. 47, no. 2, pp. 479-492, Feb. 2011.
    [2011]
  • [25] Z. Q. Zhu, D. Howe and C. C. Chan, "Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines," in IEEE Trans. on Magn., vol. 38, no. 1, pp. 229-238, Jan. 2002.
    [2002]
  • [24] D. Zarko, D. Ban and T. A. Lipo, "Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative airgap permeance," in IEEE Trans. on Magn., vol. 42, no. 7, pp. 1828-1837, July 2006.
    [2006]
  • [23] N. Bianchi and S. Bolognani, "Magnetic models of saturated interior permanent magnet motors based on finite element analysis," Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting, 1998, pp. 27-34 vol.1.
    [1998]
  • [21] J. S. Lee, C. Choi, J. Seok and R. D. Lorenz, "Deadbeat-direct torque and flux control of interior permanent magnet synchronous machines with discrete time stator current and stator flux linkage observer," in IEEE Trans. on Ind. Appl., vol. 47, no. 4, pp. 1749-1758, Jul.-Aug. 2011.
    [2011]
  • [20] J. Yoo, H. S. Kim and S. K. Sul, "Design of frequency-adaptive flux observer in PMSM drives robust to discretization error," in IEEE Trans. on Ind. Electron., vol. 69, no. 4, pp. 3334-3344, Apr. 2022.
    [2022]
  • [1] S. K. Sul, Control of Electric Machine Drive Systems, Wiley, 2011
    [2011]
  • [19] T. Wang et al., "An EMF observer for PMSM sensorless drives adaptive to stator resistance and rotor flux linkage," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1899-1913, Sept. 2019.
    [2019]
  • [18] G. Zhang, G. Wang, D. Xu, R. Ni and C. Jia, "Multiple-AVF cross-feedback-networkbased position error harmonic fluctuation elimination for sensorless IPMSM drives," in IEEE Trans. on Ind. Electron., vol. 63, no. 2, pp. 821-831, Feb. 2016.
    [2016]
  • [17] L. Ben-Brahim and A. Kawamura, "A fully digitized field-oriented controlled induction motor drive using only current sensors," in IEEE Trans. on Ind. Electron., vol. 39, no. 3, pp. 241-249, June 1992.
    [1992]
  • [16] J. Holtz and Juntao Quan, "Drift and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors," in IEEE Trans. on Ind. Appl., vol. 39, no. 4, pp. 1052-1060, Jul.-Aug. 2003.
    [2003]
  • [15] Y. Kwon, J. Lee and S. Sul, "Extending operational limit of IPMSM in signal-injection sensorless control by manipulation of convergence point," in IEEE Trans. on Ind. Appl., vol. 55, no. 2, pp. 1574-1586, Mar.-Apr. 2019.
    [2019]
  • [14] H. Kim, S. Sul, H. Yoo and J. Oh, "Distortion-minimizing flux observer for IPMSM based on frequency-adaptive observers," in IEEE Trans. on Power Electron., vol. 35, no. 2, pp. 2077-2087, Feb. 2020.
    [2020]
  • [13] L. Qu, W. Qiao and L. Qu, "An Enhanced Linear Active Disturbance Rejection Rotor Position Sensorless Control for Permanent Magnet Synchronous Motors," in IEEE Trans. on Power Electron., vol. 35, no. 6, pp. 6175-6184, Jun. 2020.
    [2020]
  • [12] G. Wang, H. Zhan, G. Zhang, X. Gui and D. Xu, "Adaptive compensation method of position estimation harmonic error for EMF-based observer in sensorless IPMSM drives," in IEEE Trans. on Power Electron., vol. 29, no. 6, pp. 3055-3064, Jun. 2014.
    [2014]
  • [11] S. Jung, H. Kobayashi, S. Doki and S. Okuma, "An improvement of sensorless control performance by a mathematical modelling method of spatial harmonics for a SynRM," The 2010 International Power Electronics Conference - ECCE ASIA -, 2010, pp. 2010- 2015.
  • [10] S. Wang, J. Kang, M. Degano, A. Galassini and C. Gerada, "An accurate wide-speed range control method of IPMSM considering resistive voltage drop and magnetic saturation," in IEEE Trans. on Ind. Electron., vol. 67, no. 4, pp. 2630-2641, Apr. 2020.
    [2020]
  • Interior permanent magnet synchronous motor minimum current harmonics torque ripple suppression strategy based on magnetic co-energy model
    P. Yi , X. Wang , and Z . Sun vol . 14 , no . 2 , pp . 234-244 , [2020]