산불피해유형에 따른 토양의 수리 특성 변화 및 수문 영향 = Changes in soil hydraulic properties by different types of forest fire damage and its influence on hydrologic responses

이기문 2022년
논문상세정보
' 산불피해유형에 따른 토양의 수리 특성 변화 및 수문 영향 = Changes in soil hydraulic properties by different types of forest fire damage and its influence on hydrologic responses' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 과수원, 과일들, 수목
  • 강우-유출량
  • 산불피해유형
  • 원격탐사
  • 유출곡선지수
  • 토양 발수성
  • 포화수리전도도
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
526 0

0.0%

' 산불피해유형에 따른 토양의 수리 특성 변화 및 수문 영향 = Changes in soil hydraulic properties by different types of forest fire damage and its influence on hydrologic responses' 의 참고문헌

  • 확률밀도함수와 KOMPSAT-3A를 활용한 산불피 해강도 분류
    이승민 정종철 대한원격탐사학회지 35, 1341–1350 [2019]
  • 홍수량 산정 표준지침
    환경부 환경부. 52 p [2009]
  • 한국형 산불피해강도지수(KCBI)의 개발 및 검증
    원명수 이상우 이주미 이현주 한국산림과학회지 101, 163–174 [2006]
  • 포화 수리전도도와 불투수층 깊이에 따른 우리나라 토양의 수문 학적 토양군 분류
  • 투수속도 측정에 기반한 수문학적 토양유형의 분류
    박찬원 손연규 정강호 정석재 하상건 허승오 수문학적 토양유형의 효율적 활용을 위한 워크샵 [2007]
  • 토양의 용적밀도에 따른 포화수리전도도 및 음이온의 용출양상
    김필주 이도경 정덕영 韓國土壤肥料學會誌30, 234–241 [1997]
  • 토양 수분함량 및 포화수리전도도 예측 모형 작성에 관한 연구. 高麗大學校大學院
    허승오 서울 [2012]
  • 초기토양조건에 대한 분포형모형 유출민감도 분석
    박진혁 허영택 大韓土木學會論文集28, 375–381 [2008]
  • 주요답토양의 삼투속도에 관한 조사연구
    오재섭 農事試驗硏究報 告16, 27–34 [1974]
  • 자동 기계학습(AutoML) 기술 동 향
    문용혁 민옥기 신익희 이용주 전자통신동향분석 34, 32–42 [2019]
  • 인공강우장치를 이용한 산불발생지의 지표유출 특 성에 관한 연구
    이헌호 주재덕 韓國林學會誌95, 350–357 [2006]
  • 인공강우실험을 이용한 산불피해 토양의 지표유출, 토양침식, 총 유기탄소 농도 변화 분석
    김태현 임상준 산림공학기술 17, 143– 152 [2020]
  • 위성영상을 이용한 산불재해 분 석
    강준묵 김민규 박준규 장천 한국측량학회지 28, 21–28 [2010]
  • 위성영상 피복분류에 대한 CN값 산정(I): - CN값 산정
    배덕효 이병주 정일원 韓國水資源學會論文集36, 985–997 [2003]
  • 위성영상 자료에서 요인분석에 의한 산 불 피해 지역 추출
    김동희 이석군 최승필 한국지형공간정보학회지 14, 13–19 [2006]
  • 원격탐사 기반 산불피해등급 최적 분류 방법에 관한 연구.
    김보미 대구 경북대학교 대학원 [2021]
  • 우리나라 밭토양의 수분침투속도에 관하 여
    류관식 임정남 정영상 韓國土壤肥料學會誌13, 1–6 [1980]
  • 우리나라 대표토양의 물리성에 관한 연구 : 토입 자의 크기가 보수력에 미치는 영향에 관하여
    오재섭 임정남 農事試驗硏究報告 10, 1–7 [1967]
  • 양양 산불지역 지표유출 및 토양 침식에 대한 식생회복의 영향
    박상덕 신승숙 이규송 조재웅 대한토목학회논문집 B 28, 393– 403 [2008]
  • 실내 실험을 통한 소나무 재층이 강우 후 산림 토양의 물 이동에 미치는 영향.
    김태현 서울 서울대학교 [2021]
  • 신경망기법 적용에 의한 Landsat 7 ETM+ 영상 해독과 소나무림의 산불피해등급 판정
    김형호 이병두 정주상 한국산림과학 회지 91, 706–713 [2002]
  • 수문학적 토양군의 분류기준에 따른 유출특성. 경상대학교 산업대학원
    윤현찬 진주 [2010]
  • 수문학적 조건 등급에 따른 우리 나라 산림의 유출곡선지수 재산정
    김태웅 박동혁 안재현 유지수 한국수자원학회논문집 50, 653 –660 [2017]
  • 설계홍수량 산정요령
    류재희 윤용남 정종호 소개. 물과 미래 : 한국수자원학회지 46, 55–69 [2013]
  • 석회암 유래 토양에서의 물의 이동특성과 토양 입자 및 유기물과의 관계에 따른 Pedo-Transfer Function의 결정
    김정규 손연규 정강호 하상건 허승오 韓國土壤肥料學會誌42, 132– 138 [2009]
  • 석탄회(Fly ash)처리가 土性이 다른 토양의 飽和 水理傳導度에 미치는 영향
    김재정 홍순달 한국토양비료학회지 32, 279–284 [2020]
  • 산지 소유역 유출 곡선지수
    박수연 오경두 전병호 정성원 조영호 한형근 한국수자원학회논문집 38, 605–616 [2005]
  • 산불피해지역에서 정규산화율지수와 정규식생지수 의 비교분석
    박종선 최승필 한국측량학회지 22, 261–268 [2004]
  • 산불피해지 탐지를 위한 위성기반 산림고사지수 개발 및 2019 년 4 월 강원 산불 사례에의 적용
  • 산불지역의 유출 및 토양침식 민감도. 韓 國水資源學會論文集38, 59–71. https://doi.org/10
    박상덕 신승숙 이규송 3741/JKWRA.2005.38.1.059 [2005]
  • 산불이 토양의 물리ㆍ화학적 특성에 미치는 영향
    박관수 토양환 경 4, 119–126 [1999]
  • 산불발생지의 표면유출수와 토양침식량에 관한 연 구
    마호섭 정원옥 環境復元綠化4, 1–9 [2001]
  • 산불발생지에 있어서 표면유출수량의 장기적인 변 화에 관한 연구
    마호섭 정원옥 韓國林學會誌98, 458–463 [2009]
  • 산불 피해강도의 공간 자기상관성 검증에 관한 연구
    원명수 이상우 이현주 한국산림과학회지 101, 203–212 [2012]
  • 산불 피해강도 분류를 위 한 고해상도 위성 및 무인기 다중분광영상의 활용 가능성 분석
    김태정 박주원 서원우 신정일 우충식 대한원격탐사학회지 35, 1095–1106 [2019]
  • 산불 피해 유형이 산림토양의 특성에 미치는 영향.
    심지연 진주 경상대 학교 대학원 [2021]
  • 산림청, 산불통계연보. 산림청
    대전. pp. 138–149 [2021]
  • 산림청, 2021c
    산림현황. https://www.forest.go.kr/kfsweb/kfi/kfs/cms/cmsView.do?mn=N KFS_01_02_03_01&cmsId=FC_000097 [2021]
  • 산림청, 2021b
    우리나라의 대형산불. https://forest.go.kr/kfsweb/kfi/kfs/cms/cmsView.do?mn=NKFS_0 2_02_01_03_03&cmsId=FC_001157 [2021]
  • 산림소유역에서 산불이 계 류 수량 및 수질에 미치는 영향
    김경하 유재윤 전재홍 정용호 정창기 한국산림과학회지 93, 446–452 [2004]
  • 단일 시기의 Landsat 7 ETM+ 영상을 이용한 산 불피해지도 작성
    원강영 임정호 대한원격탐사학회지 17, 85–97 [2001]
  • 다시기 Sentinel-2A 영상을 활용한 산불피해 변화 탐지 및 NBR 오분류 픽셀 탐지
    윤형진 정종철 대한원격탐사학회지 35, 1107– 1115 [2019]
  • 논의 유출곡선번호 추정
    박승우 임상준 韓國水資源學會論文集 30, 379–387 [1997]
  • 기후변화로 인한 강우패턴 변화와 물관리 시사점
    권현한 김용탁 저널 물 정책 경제 34, 31–49 [2020]
  • 기상자료개방포털
    기상청 https://data.kma.go.kr/cmmn/main.do (accessed 12.31.21) [2021]
  • 기계학습을 이용한 Sentinel-2 산불피해등급 분류
    윤형진 정종철 국토연구 106, 107–117 [2020]
  • 국토교통부, 첨단기술 기반 하천 운영 및 관리 선진화(별권)
    서울 대학교 [2018]
  • 국립산림과학원, 산불피해강도의 정량적 평가기법 개발 및 피해특 성 구명
    연구보고13-37. 204 p [2013]
  • 국립공원내 홍수 피해 저감을 위한 미계측 산림지역의 설계홍수량 추정
    김상민 김형호 마호섭 이상호 임상준 정원옥 한국농공 학회논문집 51, 107–113 [2009]
  • 국내 산악지역의 유출곡선지수 산 정 문제점 평가
    김정호 박무종 유철상 주진걸 한국방재학회논문집 14, 293–298 [2014]
  • 관계부처 합동
    제1차 국가물관리기본계획(2021-2030). 47 p [2021]
  • 고해상도 위성영상과 Fully Convolutional Network를 활용한 산림재해 피 해지 탐지. 한국사진지리학회지 28, 87–101. https://doi.org/10
  • 경사조건에 따른 잣나무 낙엽의 산불행동 특성에 관한 실험적 연구
    김성용 유송 이예은 임상준 Crisisonomy 15, 79– 88 [2019]
  • 경사와 풍속 변화가 소나무림 내 산불행동에 미치는 영향
    권춘근 김성용 안희영 이병두 Crisisonomy 12, 27–36 [2016]
  • 강원도 지역의 산불발생이 홍수량 및 토석 류 발생에 미치는 영향 평가
    김병식 남동호 오청현 한국방재학회논문집 19, 75–86 [2019]
  • 강원도 고성 산화지역의 토양 이화학성 변 화
    남이 민일식 장인수 한국환경생태학회지 14, 38–45 [2000]
  • 강원도 강릉시 일대 산불지역 분 류를 위한 Landsat ETM 영상 분류지수의 활용
    김주용 양동윤 이진영 전공수 한국지구과학회 지 25, 754–763 [2004]
  • 防災理論과 實務. 서울 : 일진사
    변우연 서울 [1993]
  • 建石陸太郞, 식생의 분광 반사특성을 이용한 산불 피해지 분석
    김동희 최승필 한국지형공간정보학회지 14, 89–94 [2006]
  • 山林小流域에서의 流出特性과 單位流量圖에 關한 硏究. 서울大學校大學院
    윤호중 수원 [1995]
  • 土壤의 飽和透水係数測定法比較硏究
    박무언 유순호 韓國土壤 肥料學會誌16, 14–19 [1983]
  • Úbeda, X., and Outeiro, L.R., 2009. Physical and chemical effects of fire on soil, in: Fire Effects on Soils and Restoration Strategies. CRC Press, pp. 121–148.
    [2009]
  • de Blas, E., Rodríguez-Alleres, M., and Almendros, G., 2010. Speciation of lipid and humic fractions in soils under pine and eucalyptus forest in northwest Spain and its effect on water repellency. Geoderma 155, 242–248. https://doi.org/10.1016/j.geoderma.2009.12.007
    [2010]
  • Zhang, F., Kong, R., and Peng, J., 2018. Effects of heating on compositional, structural, and physicochemical properties of loess under laboratory conditions. Applied Clay Science 152, 259–266. https://doi.org/10.1016/j.clay.2017.11.022
    [2018]
  • Zavala, L.M., González, F.A., and Jordán, A., 2009. Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma 152, 361–374. https://doi.org/10.1016/j.geoderma.2009.07.011
    [2009]
  • Zavala, L.M., De Celis, R., and Jordán, A., 2014. How wildfires affect soil properties. A brief review. Cuadernos de Investigación Geográfica 40, 311. https://doi.org/10.18172/cig.2522
    [2014]
  • Xia, L., Song, X., Fu, N., Cui, S., Li, L., Li, H., and Li, Y., 2019. Effects of forest litter cover on hydrological response of hillslopes in the Loess Plateau of China. CATENA 181, 104076. https://doi.org/10.1016/j.catena.2019.104076
    [2019]
  • XAI 설명 가능한 인공지능, 인공지능을 해부하다.
    안재현 파주 위키북스 [2020]
  • Wu, Y., Zhang, N., Slater, G., Waddington, J.M., and de Lannoy, C.-F., 2020. Hydrophobicity of peat soils: Characterization of organic compound changes associated with heat-induced water repellency. Science of The Total Environment 714, 136444. https://doi.org/10.1016/j.scitotenv.2019.136444
    [2020]
  • Woods, S.W., and Balfour, V.N., 2010. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils. Journal of Hydrology 393, 274–286. https://doi.org/10.1016/j.jhydrol.2010.08.025
    [2010]
  • Woods, S.W., Birkas, A., and Ahl, R., 2007. Spatial variability of soil hydrophobicity after wildfires in Montana and Colorado. Geomorphology 86, 465–479. https://doi.org/10.1016/j.geomorph.2006.09.015
    [2007]
  • Wondafrash, T.T., Sancho, I.M., Miguel, V.G., and Serrano, R.E., 2005. RELATIONSHIP BETWEEN SOIL COLOR AND TEMPERATURE IN THE SURFACE HORIZON OF MEDITERRANEAN SOILS: A LABORATORY STUDY. Soil Science 170, 495–503. https://doi.org/10.1097/01.ss.0000175341.22540.93
    [2005]
  • Winkler, R.D., Moore, R.D., Redding, T.E., Spittlehouse, D.L., Smerdon, B.D., and Carlyle-Moses, D.E., 2010. The effects of forest disturbance on hydrologic processes and watershed, in: Compendium of Forest Hydrology and Geomorphology in British Columbia. BC Min. For. Range. Citeseer, p. 179.
    [2010]
  • Wine, M.L., and Cadol, D., 2016. Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction? Environ. Res. Lett. 11, 085006. https://doi.org/10.1088/1748-9326/11/8/085006
    [2016]
  • White, D.A., Balocchi-Contreras, F., Silberstein, R.P., and Ramírez de Arellano, P., 2020. The effect of wildfire on the structure and water balance of a high conservation value Hualo (Nothofagus glauca (Phil.) Krasser.) forest in central Chile. Forest Ecology and Management 472, 118219. https://doi.org/10.1016/j.foreco.2020.118219
    [2020]
  • Whigham, T.L., 1976. The effects of fire on selected physical and chemical properties of soil in a mesquite-tobosagrass community. Texas Tech University.
    [1976]
  • Weighted kappa : Nominal scale agreement provision for scaled disagreement or partial credit .
    Cohen , J. 70 , 213 ? 220 . https : //doi.org/10.1037/h0026256 [1968]
  • Water repellent soils and their relation to wildfire temperatures .
  • Water adsorption on soil humic substances .
    Chen , Y. , and Schnitzer , M. 56 , 521 ? 524 . [1976]
  • Warm fire ? hydrology and watershed report . Richfield , UT : U.S. Department of Agriculture , Forest Service , Intermountain Region
  • Wang, Z., Wu, L., and Wu, Q.J., 2000. Water-entry value as an alternative indicator of soil water-repellency and wettability. Journal of Hydrology 231–232, 76–83. https://doi.org/10.1016/s0022-1694(00)00185-2
    [2000]
  • Wang, R., Zhang, Yulan, Cerdà, A., Cao, M., Zhang, Yongyong, Yin, J., Jiang, Y., and Chen, L., 2017. Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency. Geoderma 289, 161–168. https://doi.org/10.1016/j.geoderma.2016.12.006
    [2017]
  • Wang, C., Wu, Q., Weimer, M., and Zhu, E., 2021. FLAML: A Fast and Lightweight AutoML Library. Proceedings of Machine Learning and Systems 3.
  • Walter, K., Don, A., Tiemeyer, B., and Freibauer, A., 2016. Determining Soil Bulk Density for Carbon Stock Calculations: A Systematic Method Comparison. Soil Science Society of America Journal 80, 579–591. https://doi.org/10.2136/sssaj2015.11.0407
    [2016]
  • Wallis, M.G., and Horne, D.J., 1992. Soil Water Repellency, in: Stewart, B.A. (Ed.), Advances in Soil Science. Springer, New York, NY, pp. 91–146.
    [1992]
  • Vogelmann, E.S., Reichert, J.M., Prevedello, J., Consensa, C.O.B., Oliveira, A.É., Awe, G.O., and Mataix-Solera, J., 2013. Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma 209–210, 177–187. https://doi.org/10.1016/j.geoderma.2013.06.019
    [2013]
  • Vogelmann, E.S., Reichert, J.M., Prevedello, J., Awe, G.O., and Cerdà, A., 2017. Soil moisture influences sorptivity and water repellency of topsoil aggregates in native grasslands. Geoderma 305, 374–381. https://doi.org/10.1016/j.geoderma.2017.06.024
    [2017]
  • Veraverbeke, S., Dennison, P., Gitas, I., Hulley, G., Kalashnikova, O., Katagis, T., Kuai, L., Meng, R., Roberts, D., and Stavros, N., 2018. Hyperspectral remote sensing of fire: State-of-the-art and future perspectives. Remote Sensing of Environment 216, 105–121. https://doi.org/10.1016/j.rse.2018.06.020
    [2018]
  • Varela, M.E., Benito, E., and Blas, E. de, 2005. Impact of wildfires on surface water repellency in soils of northwest Spain. Hydrological Processes 19, 3649–3657. https://doi.org/10.1002/hyp.5850
    [2005]
  • Valzano, F.P., Greene, R.S.B., and Murphy, B.W., 1997. Direct effects of stubble burning on soil hydraulic and physical properties in a direct drill tillage system. Soil and Tillage Research 42, 209 –219. https://doi.org/10.1016/S0167-1987(96)01101-4
    [1997]
  • Use of Ranks in One-Criterion Variance Analysis .
    Kruskal , W.H. , and Wallis , W.A. 47 , 583 ? 621 . https : //doi.org/10.1080/01621459.1952.10483441 [1952]
  • USGS, 2019. USGS EROS Archive - Sentinel-2 - Comparison of Sentinel-2 and Landsat | U.S. Geological Survey [WWW Document]. URL https://www.usgs.gov/centers/eros/science/usgs-eros-archive-se ntinel-2-comparison-sentinel-2-and-landsat?qt-science_center_o bjects=0#qt-science_center_objects (accessed 1.2.22).
    [2019]
  • Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8, 127–150. https://doi.org/10.1016/0034-4257(79)90013-0
    [1979]
  • Translocation of Hydrophobic Substances into Soil by Burning Organic Litter .
    DeBano , L.F. , Mann , L.D. , and Hamilton , D.A. 34 , 130 ? 133 . https : //doi.org/10.2136/sssaj1970.03615995003400010035x [1970]
  • Tran, B.N., Tanase, M.A., Bennett, L.T., and Aponte, C., 2018. Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests. Remote Sensing 10, 1680. https://doi.org/10.3390/rs10111680
    [2018]
  • The surface tension of aqueous solutions of soil humic substances
    Chen , Y. , and Schnitzer , M. 125 , 7 ? 15 [1978]
  • The rate of water entry into dry sand and calculation of the advancing contact angle
  • The influence of liquid surface tension and liquidsolid contact angle on liquid entry into porous media
  • The Measurement of Observer Agreement for Categorical Data
    Landis , J.R. , and Koch , G.G. , 33 , 159 ? 174 . https : //doi.org/10.2307/2529310 [1977]
  • Terefe, T., Mariscal-Sancho, I., Peregrina, F., and Espejo, R., 2008. Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma 143, 273–280. https://doi.org/10.1016/j.geoderma.2007.11.018
    [2008]
  • TESTS OF AQUAPROBE FOR MEASURING SOIL MOISTURE
    Ryu, H.Y. 서울대학교 論文集16, 125–131 [1965]
  • Stoof, C.R., Wesseling, J.G., and Ritsema, C.J., 2010. Effects of fire and ash on soil water retention. Geoderma 159, 276–285. https://doi.org/10.1016/j.geoderma.2010.08.002
    [2010]
  • Stoof, C.R., Vervoort, R.W., Iwema, J., van den Elsen, E., Ferreira, A.J.D., and Ritsema, C.J., 2012. Hydrological response of a small catchment burned by experimental fire. Hydrol. Earth Syst. Sci. 16, 267–285. https://doi.org/10.5194/hess-16-267-2012
    [2012]
  • Stoof, C.R., Moore, D., Ritsema, C.J., and Dekker, L.W., 2011. Natural and Fire-Induced Soil Water Repellency in a Portuguese Shrubland. Soil Science Society of America Journal 75, 2283– 2295. https://doi.org/10.2136/sssaj2011.0046
    [2011]
  • Stoof, C.R., Gevaert, A.I., Baver, C., Hassanpour, B., Morales, V.L., Zhang, W., Martin, D., Giri, S.K., and Steenhuis, T.S., 2016. Can pore-clogging by ash explain post-fire runoff? International Journal of Wildland Fire 25, 294. https://doi.org/10.1071/WF15037
    [2016]
  • Soulis, K.X., 2018. Estimation of SCS Curve Number variation following forest fires. Hydrological Sciences Journal 63, 1332– 1346. https://doi.org/10.1080/02626667.2018.1501482
    [2018]
  • Soto, B., and Diaz-Fierros, F., 1993. Interactions Between Plant Ash Leachates and Soil. International Journal of Wildland Fire 3, 207–216. https://doi.org/10.1071/WF9930207
    [1993]
  • Some effects of plant ash on the chemical properties of soils and aqueous suspensions
    Raison , R.J. , and McGarity , J.W. 55 , 339 ? 352 . https : //doi.org/10.1007/BF02182695 [1980]
  • Some effects of fire and ash on the infiltration capacity of soils
    Burgy , R.H. , and Scott , V.H. 33 , 405 ? 416 [1952]
  • Soil attributes related to water repellency and the utility of soil survey for predicting its occurrence .
    Harper , R.J. , and Gilkes , R.J. 32 , 1109 ? 1124 . https : //doi.org/10.1071/SR9941109 [1994]
  • Soil Water Repellency Index Prediction Using the Molarity of Ethanol Droplet Test .
    Moody , D.R. , and Schlossberg , M.J. , 9 , 1046 ? 1051 . https : //doi.org/10.2136/vzj2009.0119 [2010]
  • Smiraglia, D., Filipponi, F., Mandrone, S., Tornato, A., and Taramelli, A., 2020. Agreement Index for Burned Area Mapping: Integration of Multiple Spectral Indices Using Sentinel-2 Satellite Images. Remote Sensing 12, 1862.
    [2020]
  • Slope and Fuel Load Effects on Fire Behavior : Laboratory Experiments in Pine Needles Fuel Beds
    Dupuy , J.L. 5 , 153 ? 164 . https : //doi.org/10.1071/wf9950153 [1995]
  • Shen, Z.Y., Gong, Y.W., Li, Y.H., Hong, Q., Xu, L., and Liu, R.M., 2009. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agricultural Water Management 96, 1435– 1442. https://doi.org/10.1016/j.agwat.2009.04.017
    [2009]
  • Shantz, H.L., and Piemeisel, R.L., 1917. Fungus fairy rings in eastern Colorado and their effect on vegetation. Journal of Agricultural Research 11, 191–245.
  • Shakesby, R.A., and Doerr, S.H., 2006. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews 74, 269–307. https://doi.org/10.1016/j.earscirev.2005.10.006
    [2006]
  • Shakesby, R.A., Doerr, S.H., and Walsh, R.P.D., 2000. The erosional impact of soil hydrophobicity: current problems and future research directions. Journal of Hydrology 231–232, 178–191. https://doi.org/10.1016/S0022-1694(00)00193-1
    [2000]
  • Shakesby, R.A., 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews 105, 71–100. https://doi.org/10.1016/j.earscirev.2011.01.001
    [2011]
  • Sentinel-2 영상과 클러스터링 기법을 이용한 산불 피해강도 분류 - 2020년 안동 산불을 사례로
    김대선 이양원 기후연구 15, 173– 185 [2020]
  • Sentinel-2 영상 기반의 FBI (Fire Burn Index) 개발 및 우리나라 산불피해지역 탐지 실 험
    김광진 김영호 김지원 이수진 이양원 한국사진지리학회지 27, 187–202 [2017]
  • Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지
    강유진 권춘근 김성용 김우혁 심성문 이재세 임정호 대한원 격탐사학회지 36, 1109–1123 [2020]
  • Scott, D.F., and Van Wyk, D.B., 1990. The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment. Journal of Hydrology 121, 239–256. https://doi.org/10.1016/0022-1694(90)90234-O
    [1990]
  • Scott, A.C., 2000. The Pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology 164, 281– 329. https://doi.org/10.1016/S0031-0182(00)00192-9
    [2000]
  • Schreiner, O., and Shorey, E.C., 1910. Chemical nature of soil organic matter. US Government Printing Office.
  • SPOT5영상과 현장조사자료를 융합한 대 형산불지역의 피해강도 분석
    김경하 원명수 이상우 한국농림기상학회지 16, 114–124 [2014]
  • SCS-CN 산정을 위한 수치세부정밀토양도 활용과 괴산군 소수면 소유역의 물 유출량 평가
    김이현 손연규 장민원 정강호 최철웅 하상건 홍석영 韓國土壤肥料學會誌43, 363–373 [2010]
  • SAR 위성의 왜곡보정을 통한 산불 피해지역 분석의 정확 도 향상에 관한 연구. 성균관대학교 일반대학원
    이효진 서울 [2020]
  • Roy, D.P., Huang, H., Boschetti, L., Giglio, L., Yan, L., Zhang, H.H., and Li, Z., 2019. Landsat-8 and Sentinel-2 burned area mapping - A combined sensor multi-temporal change detection approach. Remote Sensing of Environment 231, 111254. https://doi.org/10.1016/j.rse.2019.111254
    [2019]
  • Rothermel, 1972. A mathematical model for predicting fire spread in wildland fuels. Res. Pap. INT-115. Ogden, UT: U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station.
    [1972]
  • Roteta, E., Bastarrika, A., Padilla, M., Storm, T., and Chuvieco, E., 2019. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sensing of Environment 222, 1–17. https://doi.org/10.1016/j.rse.2018.12.011
    [2019]
  • Rodríguez-Alleres, M., Varela, M.E., and Benito, E., 2012. Natural severity of water repellency in pine forest soils from NW Spain and influence of wildfire severity on its persistence. Geoderma 191, 125–131. https://doi.org/10.1016/j.geoderma.2012.02.006
    [2012]
  • Robinson, J.M., 1991. Fire from space: Global fire evaluation using infrared remote sensing. International Journal of Remote Sensing 12, 3–24. https://doi.org/10.1080/01431169108929628
    [1991]
  • Robichaud, P.R., and Hungerford, R.D., 2000. Water repellency by laboratory burning of four northern Rocky Mountain forest soils. Journal of Hydrology 231–232, 207–219. https://doi.org/10.1016/S0022-1694(00)00195-5
    [2000]
  • Robichaud, P.R., Wagenbrenner, J.W., Pierson, F.B., Spaeth, K.E., Ashmun, L.E., and Moffet, C.A., 2016. Infiltration and interrill erosion rates after a wildfire in western Montana, USA. CATENA 142, 77–88. https://doi.org/10.1016/j.catena.2016.01.027
    [2016]
  • Robichaud, P.R., 2000. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. Journal of Hydrology 231–232, 220–229. https://doi.org/10.1016/S0022-1694(00)00196-7
    [2000]
  • Rashid, G.H., 1987. Effects of fire on soil carbon and nitrogen in a Mediterranean oak forest of Algeria. Plant and Soil 103, 89– 93. https://doi.org/10.1007/BF02370672
    [1987]
  • Random search for hyper-parameter optimization
  • QuickBird 화상을 이용한 산불 삼림교란도 작성
    김천 대한원격탐 사학회지 25, 85–94 [2009]
  • Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory
    Wieting , C. , Ebel , B.A. , and Singha , K. 13 , 43 ? 57 . https : //doi.org/10.1016/j.ejrh.2017.07.006 [2017]
  • Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio ( dNBR )
    Miller , J.D. , and Thode , A.E. 109 , 66 ? 80 . https : //doi.org/10.1016/j.rse.2006.12.006 [2007]
  • Poon, P.K., and Kinoshita, A.M., 2018. Spatial and temporal evapotranspiration trends after wildfire in semi-arid landscapes. Journal of Hydrology 559, 71–83. https://doi.org/10.1016/j.jhydrol.2018.02.023
    [2018]
  • Piccolo, A., Spaccini, R., Haberhauer, G., and Gerzabek, M.H., 1999. Increased Sequestration of Organic Carbon in Soil by Hydrophobic Protection. Naturwissenschaften 86, 496–499. https://doi.org/10.1007/s001140050662
    [1999]
  • Petropoulos, G.P., Kontoes, C., and Keramitsoglou, I., 2011. Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using Support Vector Machines. International Journal of Applied Earth Observation and Geoinformation 13, 70–80. https://doi.org/10.1016/j.jag.2010.06.008
    [2011]
  • Pereira, P., Úbeda, X., and Francos, M., 2019. Laboratory fire simulations: plant litter and soils, in: Pereira, P., Mataix-Solera, J., Úbeda, X., Rein, G., Cerdà, A. (Eds.), Fire Effects on Soil Properties.
    [2019]
  • Peng, X., Zhang, B., Zhao, Q., Horn, R., and Hallett, P.D., 2003. Influence of types of restorative vegetation on the wetting properties of aggregates in a severely degraded clayey Ultisol in subtropical China. Geoderma 115, 313–324. https://doi.org/10.1016/S0016-7061(03)00085-5
    [2003]
  • Pekárová, P., Pekár, J., and Lichner, Ľ., 2015. A new method for estimating soil water repellency index. Biologia 70, 1450–1455. https://doi.org/10.1515/biolog-2015-0178
    [2015]
  • Paudel, M., Nelson, E.J., and Scharffenberg, W., 2009. Comparison of Lumped and Quasi-Distributed Clark Runoff Models Using the SCS Curve Number Equation. Journal of Hydrologic Engineering 14, 1098–1106. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000100
    [2009]
  • Parsons, A., Robichaud, P.R., Lewis, S.A., Napper, C., and Clark, J.T., 2010. Field guide for mapping post-fire soil burn severity. Gen. Tech. Rep. RMRS-GTR-243. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 49 p. 243. https://doi.org/10.2737/RMRS-GTR-243
    [2010]
  • Parks, S., Dillon, G., and Miller, C., 2014. A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio. Remote Sensing 6, 1827–1844. https://doi.org/10.3390/rs6031827
    [2014]
  • Parks, D.S., and Cundy, T.W., 1989. Soil hydraulic characteristics of a small southwest Oregon watershed following high-intensity wildfires. In: Berg, Neil H. tech. coord. Proceedings of the Symposium on Fire and Watershed Management: October 26-28, 1988, Sacramento, California. Gen. Tech. Rep. PSW-109. Berkeley, Calif.: U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: 63-67 109.
  • Papierowska, E., Matysiak, W., Szatyłowicz, J., Debaene, G., Urbanek, E., Kalisz, B., and Łachacz, A., 2018. Compatibility of methods used for soil water repellency determination for organic and organo-mineral soils. Geoderma 314, 221–231. https://doi.org/10.1016/j.geoderma.2017.11.012
    [2018]
  • Pallozzi, E., Lusini, I., Cherubini, L., Hajiaghayeva, R.A., Ciccioli, P., and Calfapietra, C., 2018. Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning. Environmental Pollution 234, 457–467. https://doi.org/10.1016/j.envpol.2017.11.080
    [2018]
  • Onda, Y., Dietrich, W.E., and Booker, F., 2008. Evolution of overland flow after a severe forest fire, Point Reyes, California. CATENA 72, 13–20. https://doi.org/10.1016/j.catena.2007.02.003
    [2008]
  • On the Logarithmic Frequency Distribution and the Semi-Logarithmic Correlation Surface
    Yuan , P.-T. 4 , 30 ? 74 [1933]
  • Nyman, P., Sheridan, G., and Lane, P.N.J., 2010. Synergistic effects of water repellency and macropore flow on the hydraulic conductivity of a burned forest soil, south-east Australia. Hydrological Processes 24, 2871–2887. https://doi.org/10.1002/hyp.7701
    [2010]
  • Novák, V., Lichner, Ľ., Zhang, B., and Kňava, K., 2009. The impact of heating on the hydraulic properties of soils sampled under different plant cover. Biologia 64, 483–486. https://doi.org/10.2478/s11756-009-0099-2
    [2009]
  • Neary, D.G., and Ffolliott, P.F., 2005. Part B—The Water Resource: Its Importance, Characteristics, and General Responses to Fire, in: Neary, D.G., Ryan, K.C., DeBano, L.F. (Eds.), Wildland Fire in Ecosystems: Effects of Fire on Soils and Water. pp. 95– 106.
    [2005]
  • Neary, D.G., Ryan, K.C., and DeBano, L.F., 2005. Wildland fire in ecosystems: effects of fire on soils and water. Gen. Tech. Rep. RMRS-GTR-42-vol. 4. Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 250 p. 42, 1–18. https://doi.org/10.2737/RMRS-GTR-42-V4
    [2005]
  • Neary, D.G., Klopatek, C.C., DeBano, L.F., and Ffolliott, P.F., 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management 122, 51–71. https://doi.org/10.1016/S0378-1127(99)00032-8
    [1999]
  • Neary, D.G., Ice, G.G., and Jackson, C.R., 2009. Linkages between forest soils and water quality and quantity. Forest Ecology and Management 258, 2269–2281. https://doi.org/10.1016/j.foreco.2009.05.027
    [2009]
  • Neary, D.G., 2011. Impacts of wildfire severity on hydraulic conductivity in forest, woodland, and grassland soils, in: Elango, L. (Ed.), Hydraulic Conductivity—Issues, Determination, and Application. InTech Publishers, Rijeka, Croatia. pp. 123– 142.
    [2011]
  • Nearing, M.A., Liu, B.Y., Risse, L. m., and Zhang, X., 1996. Curve Numbers and Green-Ampt Effective Hydraulic Conductivities1. JAWRA Journal of the American Water Resources Association 32, 125–136. https://doi.org/10.1111/j.1752-1688.1996.tb03440.x
    [1996]
  • Navarro, G., Caballero, I., Silva, G., Parra, P.-C., Vázquez, Á., and Caldeira, R., 2017. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. International Journal of Applied Earth Observation and Geoinformation 58, 97–106. https://doi.org/10.1016/j.jag.2017.02.003
    [2017]
  • Nakaya, N., Motomura, S., and Yokoi, H., 1977. Some aspects on water repellency of soils. Soil Science and Plant Nutrition 23, 409–415. https://doi.org/10.1080/00380768.1977.10433060
    [1977]
  • NRCS-CN 방법을 이용한 유효우량 산정 기법의 비교분석: 가중평균방법과 경사도 도입을 중심으로
    김태웅 문건우 유지영 대한 토목학회논문집 34, 1171–1180 [2014]
  • NRCS-CN 방법을 이용한 유역 평균 유효우량 산정기법의 비교 분석
    김태웅 문건우 안재현 유지영 대한토목학회논문집 34, 493–503 [2014]
  • Morgan, P., Hardy, C.C., Swetnam, T.W., Rollins, M.G., and Long, D.G., 2001. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. International Journal of Wildland Fire 10, 329–342. https://doi.org/10.1071/WF01032
    [2001]
  • Moody, J.A., and Martin, D.A., 2009. Forest fire effects on geomorphic processes, in: Fire Effects on Soils and Restoration Strategies. CRC Press, pp. 57–96.
    [2009]
  • Moody, J.A., and Martin, D.A., 2001. Post-fire, rainfall intensity–peak discharge relations for three mountainous watersheds in the western USA. Hydrological Processes 15, 2981–2993. https://doi.org/10.1002/hyp.386
    [2001]
  • Moody, J.A., and Ebel, B.A., 2014. Infiltration and runoff generation processes in fire-affected soils. Hydrological Processes 28, 3432 –3453. https://doi.org/10.1002/hyp.9857
    [2014]
  • Moody, J.A., Shakesby, R.A., Robichaud, P.R., Cannon, S.H., and Martin, D.A., 2013. Current research issues related to post-wildfire runoff and erosion processes. Earth-Science Reviews 122, 10–37. https://doi.org/10.1016/j.earscirev.2013.03.004
    [2013]
  • Moody, J.A., Kinner, D.A., and Úbeda, X., 2009. Linking hydraulic properties of fire-affected soils to infiltration and water repellency. Journal of Hydrology 379, 291–303. https://doi.org/10.1016/j.jhydrol.2009.10.015
    [2009]
  • Moody, J.A., Ebel, B.A., Nyman, P., Martin, D.A., Stoof, C., and McKinley, R., 2016. Relations between soil hydraulic properties and burn severity. International Journal of Wildland Fire 25, 279–293. https://doi.org/10.1071/WF14062
    [2016]
  • Miyata, S., Kosugi, K., Gomi, T., Onda, Y., and Mizuyama, T., 2007. Surface runoff as affected by soil water repellency in a Japanese cypress forest. Hydrological Processes 21, 2365–2376. https://doi.org/10.1002/hyp.6749
    [2007]
  • Mishra, S.K., and Singh, V.P., 2003. SCS-CN Method, in: Soil Conservation Service Curve Number (SCS-CN) Methodology. Springer Netherlands, Dordrecht, pp. 84–146.
    [2003]
  • Miller, W.P., and Miller, D.M., 1987. A micro‐pipette method for soil mechanical analysis. Communications in Soil Science and Plant Analysis 18, 1–15. https://doi.org/10.1080/00103628709367799
    [1987]
  • Merzlyak, M.N., Gitelson, A.A., Chivkunova, O.B., and Rakitin, V.Y., 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum 106, 135–141. https://doi.org/10.1034/j.1399-3054.1999.106119.x
    [1999]
  • Meng, R., and Zhao, F., 2017. Remote sensing of fire effects: A review for recent advances in burned area and burn severity mapping. Remote Sensing of Hydrometeorological Hazards 261 –283.
    [2017]
  • McNabb, D.H., Gaweda, F., and Froehlich, H.A., 1989. Infiltration, water repellency, and soil moisture content after broadcast burning a forest site in southwest Oregon. Journal of Soil and Water Conservation 44, 87–90.
    [1989]
  • McCaw, W.L., Smith, R.H., and Neal, J.E., 1997. Prescribed Burning of Thinning Slash in Regrowth Stands of Karri (Eucalyptus diversicolor) .1. Fire Characteristics, Fuel Consumption and Tree Damage. Int. J. Wildland Fire 7, 29–40. https://doi.org/10.1071/wf9970029
    [1997]
  • McCarley, T.R., Smith, A.M.S., Kolden, C.A., and Kreitler, J., 2018. Evaluating the Mid-Infrared Bi-spectral Index for improved assessment of low-severity fire effects in a conifer forest. International Journal of Wildland Fire 27, 407–412. https://doi.org/10.1071/WF17137
    [2018]
  • Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., and Zavala, L.M., 2011. Fire effects on soil aggregation: A review. Earth-Science Reviews 109, 44–60. https://doi.org/10.1016/j.earscirev.2011.08.002
    [2011]
  • Mao, J., Nierop, K.G.J., Dekker, S.C., Dekker, L.W., and Chen, B., 2019. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. Journal of Soils and Sediments 19, 171–185. https://doi.org/10.1007/s11368-018-2195-9
    [2019]
  • Mallinis, G., and Koutsias, N., 2012. Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data. International Journal of Remote Sensing 33, 4408–4433. https://doi.org/10.1080/01431161.2011.648284
    [2012]
  • Mallinis, G., Mitsopoulos, I., and Chrysafi, I., 2018. Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GIScience & Remote Sensing 55, 1–18. https://doi.org/10.1080/15481603.2017.1354803
    [2018]
  • Mallik, A.U., Gimingham, C.H., and Rahman, A.A., 1984. Ecological Effects of Heather Burning: I. Water Infiltration, Moisture Retention and Porosity of Surface Soil. Journal of Ecology 72, 767–776. https://doi.org/10.2307/2259530
    [1984]
  • Madsen, M.D., Zvirzdin, D.L., Petersen, S.L., Hopkins, B.G., Roundy, B.A., and Chandler, D.G., 2011. Soil Water Repellency within a Burned Piñon–Juniper Woodland: Spatial Distribution, Severity, and Ecohydrologic Implications. Soil Science Society of America Journal 75, 1543–1553. https://doi.org/10.2136/sssaj2010.0320
    [2011]
  • MacDonald, L.H., and Huffman, E.L., 2004. Post‐fire Soil Water Repellency. Soil Science Society of America Journal 68, 1729– 1734. https://doi.org/10.2136/sssaj2004.1729
    [2004]
  • Ma, Q., Bales, R.C., Rungee, J., Conklin, M.H., Collins, B.M., and Goulden, M.L., 2020. Wildfire controls on evapotranspiration in California’s Sierra Nevada. Journal of Hydrology 590, 125364. https://doi.org/10.1016/j.jhydrol.2020.125364
    [2020]
  • Lundberg, S.M., and Lee, S.-I., 2017. A unified approach to interpreting model predictions. Presented at the Proceedings of the 31st international conference on neural information processing systems, pp. 4768–4777.
    [2017]
  • Lucas-Borja, M.E., Plaza-Álvarez, P.A., Gonzalez-Romero, J., Sagra, J., Alfaro-Sánchez, R., Zema, D.A., Moya, D., and de las Heras, J., 2019. Short-term effects of prescribed burning in Mediterranean pine plantations on surface runoff, soil erosion and water quality of runoff. Science of The Total Environment 674, 615–622. https://doi.org/10.1016/j.scitotenv.2019.04.114
  • Livingston, R.K., Earles, T.A., and Wright, K.R., 2005. Los Alamos Post-Fire Watershed Recovery: A Curve-Number-Based Evaluation, in: Managing Watersheds for Human and Natural Impacts. pp. 1–11.
    [2005]
  • Little, I.P., 1992. The relationship between soil pH measurements in calcium chloride and water suspensions. Soil Research 30, 587 –592. https://doi.org/10.1071/SR9920587
    [1992]
  • Lichner, L., Rodný, M., Marschner, B., Chen, Y., Nadav, I., Tarchitzky, J., and Schacht, K., 2017. Comparison of various techniques to estimate the extent and persistence of soil water repellency. Biologia 72. https://doi.org/10.1515/biolog-2017-0112
    [2017]
  • LiDAR 자료 및 SPOT-4 위성영상을 활용 한 산불피해 분석
    손홍규 송영선 이석우 大韓土木學會論文集26, 527–534 [2006]
  • Lewis, S.A., Wu, J.Q., and Robichaud, P.R., 2006. Assessing burn severity and comparing soil water repellency, Hayman Fire, Colorado. Hydrological Processes 20, 1–16. https://doi.org/10.1002/hyp.5880
    [2006]
  • Letey, J., Osborn, J., and Pelishek, R.E., 1962b. The influence of the water-solid contact angle on water movement in soil. Hydrological Sciences Journal 7, 75–81.
  • Letey, J., Osborn, J., and Pelishek, R.E., 1962a. Measurement of liquid-solid contact angles in soil and sand. Soil Science 93, 149–153.
  • Letey, J., 2001. Causes and consequences of fire-induced soil water repellency. Hydrological Processes 15, 2867–2875. https://doi.org/10.1002/hyp.378
    [2001]
  • Lentile, L.B., Holden, Z.A., Smith, A.M.S., Falkowski, M.J., Hudak, A.T., Morgan, P., Lewis, S.A., Gessler, P.E., and Benson, N.C., 2006. Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire 15, 319–345. https://doi.org/10.1071/WF05097
    [2006]
  • Leighton-Boyce, G., Doerr, S.H., Shakesby, R.A., and Walsh, R.P.D., 2007. Quantifying the impact of soil water repellency on overland flow generation and erosion: a new approach using rainfall simulation and wetting agent onin situ soil. Hydrological Processes 21, 2337–2345. https://doi.org/10.1002/hyp.6744
    [2007]
  • Larsen, I.J., and MacDonald, L.H., 2007. Predicting postfire sediment yields at the hillslope scale: Testing RUSLE and Disturbed WEPP. Water Resources Research 43. https://doi.org/10.1029/2006WR005560
    [2007]
  • Larsen, I.J., MacDonald, L.H., Brown, E., Rough, D., Welsh, M.J., Pietraszek, J.H., Libohova, Z., Benavides-Solorio, J. de D., and Schaffrath, K., 2009. Causes of Post-Fire Runoff and Erosion: Water Repellency, Cover, or Soil Sealing? Soil Science Society of America Journal 73, 1393–1407. https://doi.org/10.2136/sssaj2007.0432
  • Lanorte, A., Danese, M., Lasaponara, R., and Murgante, B., 2013. Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. International Journal of Applied Earth Observation and Geoinformation, Earth Observation and Geoinformation for Environmental Monitoring 20, 42–51. https://doi.org/10.1016/j.jag.2011.09.005
    [2013]
  • Landsat 영상으로부터 정규탄화지수 추출과 산불피해지역 및 피해강도의 정량적 분석
    구교상 원명수 이명보 한국지리정보 학회지 10, 80–92 [2007]
  • Landsat TM 영상자료를 활용한 삼척 대형산불 피해지의 비이산화탄소 온실가스 배출량 추정
    구교상 손영모 원명수 이명보 한 국농림기상학회지 10, 17–24 [2008]
  • Kunze, M.D., and Stednick, J.D., 2006. Streamflow and suspended sediment yield following the 2000 Bobcat fire, Colorado. Hydrological Processes 20, 1661–1681. https://doi.org/10.1002/hyp.5954
    [2006]
  • Koutsias, N., and Karteris, M., 2000. Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image. International Journal of Remote Sensing 21, 673–687. https://doi.org/10.1080/014311600210506
    [2000]
  • Koutsias, N., and Karteris, M., 1998. Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping. International Journal of Remote Sensing 19, 3499–3514. https://doi.org/10.1080/014311698213777
    [1998]
  • Koutsias, N., Karteris, M., Fernández-Palacios, A., Navarro, C., Jurado, J., Navarro, R., and Lobo, A., 1999. Burnt land mapping at local scale, in: Chuvieco, E. (Ed.), Remote Sensing of Large Wildfires: In the European Mediterranean Basin. Springer, Berlin, Heidelberg, pp. 157–187. https://doi.org/10.1007/978-3-642-60164-4_9
  • Kinoshita, A.M., Hogue, T.S., and Napper, C., 2014. Evaluating Preand Post-Fire Peak Discharge Predictions across Western U.S. Watersheds. JAWRA Journal of the American Water Resources Association 50, 1540–1557. https://doi.org/10.1111/jawr.12226
    [2014]
  • Kinner, D.A., and Moody, J.A., 2010. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes. Journal of Hydrology 381, 322–332. https://doi.org/10.1016/j.jhydrol.2009.12.004
    [2010]
  • Key, C.H., and Benson, N.C., 2006. Landscape assessment (LA). In: Lutes, Duncan C.; Keane, Robert E.; Caratti, John F.; Key, Carl H.; Benson, Nathan C.; Sutherland, Steve; Gangi, Larry J. 2006. FIREMON: Fire effects monitoring and inventory system. Gen. Tech. Rep. RMRS-GTR-164-CD. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. LA-1-55 164.
  • Ketterings, Q.M., Bigham, J.M., and Laperche, V., 2000. Changes in Soil Mineralogy and Texture Caused by Slash-and-Burn Fires in Sumatra, Indonesia. Soil Science Society of America Journal 64, 1108–1117. https://doi.org/10.2136/sssaj2000.6431108x
    [2000]
  • Kean, J.W., Staley, D.M., and Cannon, S.H., 2011. In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions. Journal of Geophysical Research: Earth Surface 116. https://doi.org/10.1029/2011JF002005
    [2011]
  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y., 2017. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems 30, 3146–3154.
    [2017]
  • Kawamoto, K., Moldrup, P., Komatsu, T., de Jonge, L.W., and Oda, M., 2007. Water Repellency of Aggregate Size Fractions of a Volcanic Ash Soil. Soil Science Society of America Journal 71, 1658–1666. https://doi.org/10.2136/sssaj2006.0284
    [2007]
  • Jordán, A., Zavala, L.M., Mataix-Solera, J., and Doerr, S.H., 2013. Soil water repellency: Origin, assessment and geomorphological consequences. CATENA 108, 1–5. https://doi.org/10.1016/j.catena.2013.05.005
    [2013]
  • Jordán, A., Zavala, L.M., Mataix-Solera, J., Nava, A.L., and Alanís, N., 2011. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. CATENA 84, 136–147. https://doi.org/10.1016/j.catena.2010.10.007
    [2011]
  • Jiménez-Morillo, N.T., Spangenberg, J.E., Miller, A.Z., Jordán, A., Zavala, L.M., González-Vila, F.J., and González-Pérez, J.A., 2017. Wildfire effects on lipid composition and hydrophobicity of bulk soil and soil size fractions under Quercus suber cover (SW-Spain). Environmental Research 159, 394–405. https://doi.org/10.1016/j.envres.2017.08.022
  • Jain, P., Coogan, S.C.P., Subramanian, S.G., Crowley, M., Taylor, S., and Flannigan, M.D., 2020. A review of machine learning applications in wildfire science and management. Environmental Reviews 28, 478–505. https://doi.org/10.1139/er-2020-0019
    [2020]
  • In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation
    Buschmann , C. , and Nagel , E. 14 , 711 ? 722 . https : //doi.org/10.1080/01431169308904370 [1993]
  • Imeson, A.C., Verstraten, J.M., van Mulligen, E.J., and Sevink, J., 1992. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. CATENA 19, 345 –361. https://doi.org/10.1016/0341-8162(92)90008-Y
    [1992]
  • Im, S., Lee, J., Kuraji, K., Lai, Y.-J., Tuankrua, V., Tanaka, N., Gomyo, M., Inoue, H., and Tseng, C.-W., 2020. Soil conservation service curve number determination for forest cover using rainfall and runoff data in experimental forests. Journal of Forest Research 25, 204–213. https://doi.org/10.1080/13416979.2020.1785072
    [2020]
  • IKONOS 화상 기반의 산불피해등급도 작성을 위한 정규산 불피해비율(NBR) 평가
    김천 대한원격탐사학회지 24, 195–203 [2008]
  • Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire
    Moody , J.A. , and Ebel , B.A. 93 , 58 ? 63 . https : //doi.org/10.1016/j.catena.2012.01.006 [2012]
  • Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain .
    Mataix-Solera , J. , and Doerr , S.H. 118 , 77 ? 88 . https : //doi.org/10.1016/S0016-7061 ( 03 ) 00185-X [2004]
  • Huffman, E.L., MacDonald, L.H., and Stednick, J.D., 2001. Strength and persistence of fire-induced soil hydrophobicity under ponderosa and lodgepole pine, Colorado Front Range. Hydrological Processes 15, 2877–2892. https://doi.org/10.1002/hyp.379
    [2001]
  • Hubbert, K.R., Wohlgemuth, P.M., Beyers, J.L., Narog, M.G., and Gerrard, R., 2012. Post-Fire Soil Water Repellency, Hydrologic Response, and Sediment Yield Compared between Grass-Converted and Chaparral Watersheds. fire ecol 8, 143– 162. https://doi.org/10.4996/fireecology.0802143
    [2012]
  • Higginson, B., and Jarnecke, J., 2007. Salt Creek BAER—2007 Burned Area Emergency Response. Specialist Report. Provo, UT: Uinta National Forest. 11 p.
    [2007]
  • Heydari, M., Rostamy, A., Najafi, F., and Dey, D.C., 2017. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. Journal of Forestry Research 28, 95–104. https://doi.org/10.1007/s11676-016-0299-x
    [2017]
  • Heward, H., Smith, A.M.S., Roy, D.P., Tinkham, W.T., Hoffman, C.M., Morgan, P., and Lannom, K.O., 2013. Is burn severity related to fire intensity? Observations from landscape scale remote sensing. International Journal of Wildland Fire 22, 910–918. https://doi.org/10.1071/WF12087
    [2013]
  • He, Y., DeSutter, T., Prunty, L., Hopkins, D., Jia, X., and Wysocki, D.A., 2012. Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma 185–186, 12–17. https://doi.org/10.1016/j.geoderma.2012.03.022
    [2012]
  • Hawkins, R.H., and Barreto-Munoz, A., 2016. Wildcat5 for Windows, a rainfall-runoff hydrograph model: user manual and documentation. Gen. Tech. Rep. RMRS-GTR-334. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 68 p. 334.
    [2016]
  • Hawkins, R.H., Hjelmfelt Jr, A.T., and Zevenbergen, A.W., 1985. Runoff probability, storm depth, and curve numbers. Journal of Irrigation and Drainage Engineering 111, 330–340.
    [1985]
  • Hallema, D.W., Sun, G., Bladon, K.D., Norman, S.P., Caldwell, P.V., Liu, Y., and McNulty, S.G., 2017. Regional patterns of postwildfire streamflow response in the Western United States: The importance of scale-specific connectivity. Hydrological Processes 31, 2582–2598. https://doi.org/10.1002/hyp.11208
    [2017]
  • Gómez, I., and Martín, M.P., 2011. Prototyping an artificial neural network for burned area mapping on a regional scale in Mediterranean areas using MODIS images. International Journal of Applied Earth Observation and Geoinformation 13, 741–752. https://doi.org/10.1016/j.jag.2011.05.002
    [2011]
  • Granged, A.J.P., Jordán, A., Zavala, L.M., Muñoz-Rojas, M., and Mataix-Solera, J., 2011. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 167–168, 125–134. https://doi.org/10.1016/j.geoderma.2011.09.011
    [2011]
  • Goodrich, D.C., Canfield, H.E., Burns, I.S., Semmens, D.J., Miller, S.N., Hernandez, M., Levick, L.R., Guertin, D.P., and Kepner, W.G., 2005. Rapid Post-Fire Hydrologic Watershed Assessment using the AGWA GIS-Based Hydrologic Modeling Tool, in: Managing Watersheds for Human and Natural Impacts. pp. 1– 12.
    [2005]
  • González-Pérez, J.A., González-Vila, F.J., Almendros, G., and Knicker, H., 2004. The effect of fire on soil organic matter—a review. Environment International 30, 855–870. https://doi.org/10.1016/j.envint.2004.02.003
    [2004]
  • Gitelson, A.A., Keydan, G.P., and Merzlyak, M.N., 2006. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letters 33. https://doi.org/10.1029/2006GL026457
    [2006]
  • Giovannini, G., Lucchesi, S., and Givachetti, M., 1988. Effect of Heating on Some Physical and Chemical Parameters Related to Soil Aggregation and Erodibility. Soil Science 146, 255–261.
    [1988]
  • Geurts, P., Ernst, D., and Wehenkel, L., 2006. Extremely randomized trees. Machine Learning 63, 3–42. https://doi.org/10.1007/s10994-006-6226-1
    [2006]
  • García-Corona, R., Benito, E., Blas, E. de, Varela, M.E., García-Corona, R., Benito, E., Blas, E. de, and Varela, M.E., 2004. Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils. Int. J. Wildland Fire 13, 195–199. https://doi.org/10.1071/WF03068
  • GIS와 RS를 이용한 2000년 삼척 산불 행동 특성 분석 및 산불확산예측모델 개발 (PhD)
    이병두 [2005]
  • Fox, D.M., Darboux, F., and Carrega, P., 2007. Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrological Processes 21, 2377–2384. https://doi.org/10.1002/hyp.6758
    [2007]
  • Forgeard, F., and Frenot, Y., 1996. Effects of Burning on Heathland Soil Chemical Properties: An Experimental Study on the Effect of Heating and Ash Deposits. Journal of Applied Ecology 33, 803–811. https://doi.org/10.2307/2404950
    [1996]
  • Forests and Water Yield : A Synthesis of Disturbance Effects on Streamflow and Snowpack in Western Coniferous Forests .
    Goeking , S.A. , and Tarboton , D.G. 118 , 172 ? 192 . https : //doi.org/10.1093/jofore/fvz069 [2020]
  • Foltz, R.B., Robiochaud, P.R., and Rhee, H., 2009. A synthesis of post-fire road treatments for BAER teams: methods, treatment effectiveness, and decisionmaking tools for rehabilitation.
    [2009]
  • Flanagan, D., and Nearing, M., 1991. Sensitivity analysis of the WEPP hillslope profile model. Am. Soc. Agric. Eng. Paper.
    [1991]
  • Fisher, R.A., 1939. Statistical methods for research workers, 5th ed. Oliver & Boyd, Edinburgh.
    [1939]
  • Fire-Induced Changes in Soil and Implications on Soil Sorption Capacity and Remediation Methods .
    Ngole-Jeme , V.M. 9 , 3447 . [2019]
  • Fernández-Manso, A., Fernández-Manso, O., and Quintano, C., 2016. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. International Journal of Applied Earth Observation and Geoinformation 50, 170–175. https://doi.org/10.1016/j.jag.2016.03.005
    [2016]
  • Fernández-García, V., Marcos, E., Fernández-Guisuraga, J.M., Taboada, A., Suárez-Seoane, S., and Calvo, L., 2019. Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire. International Journal of Wildland Fire 28, 354–364. https://doi.org/10.1071/wf18103
    [2019]
  • Fenn, D.B., Gogue, G.J., and Burge, R.E., 1976. Effects of campfires on soil properties. Department of the Interior, National Park Service.
    [1976]
  • Exploitation of Sentinel-2 Time Series to Map Burned Areas at the National Level : A Case Study on the 2017 Italy Wildfires
    Filipponi , F. 11 , 622 [2019]
  • Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications
    Chen , J.M. 22 , 229 ? 242https : //doi.org/10.1080/07038992.1996.10855178 [1996]
  • Estes, B.L., Knapp, E.E., Skinner, C.N., Miller, J.D., and Preisler, H.K., 2017. Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere 8, e01794. https://doi.org/10.1002/ecs2.1794
    [2017]
  • Enderlin, H.C., and Markowitz, E.M., 1962. The classification of the soil and vegetative cover types of California watersheds according to their influence on synthetic hydrographs. ESA, 2021. Sentinel-2 - Missions - Sentinel Online. URL https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed 12.31.21).
    [1962]
  • Elhakeem, M., and Papanicolaou, A.N., 2012. Runoff curve number and saturated hydraulic conductivity estimation via direct rainfall simulator measurements. Journal of Water Management Modeling.
    [2012]
  • Effects of wildfire and laboratory heating on soil aggregate stability of pine forests in Galicia : The role of lithology , soil organic matter content and water repellency
    Varela , M.E. , Benito , E. , and Keizer , J.J. 83 , 127 ? 134 . https : //doi.org/10.1016/j.catena.2010.08.001 [2010]
  • Effects of heat and brush burning on the physical properties of certain upland soils that influence infiltration
    Scott , V.H. , and Burgy , R.H. 82 , 63 ? 70 . [1956]
  • Effect of soil water-repellent layer depth on post-wildfire hydrological processes
  • Effect of Orientation of Spatially Distributed Curve Numbers in Runoff Calculations1 .
    Moglen , G.E. 36 , 1391 ? 1400 . https : //doi.org/10.1111/j.1752-1688.2000.tb05734.x [2000]
  • Ebel, B.A., and Moody, J.A., 2017. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils. Hydrological Processes 31, 324–340. https://doi.org/10.1002/hyp.10998
    [2017]
  • Ebel, B.A., and Martin, D.A., 2017. Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment. Hydrological Processes 31, 3682–3696. https://doi.org/10.1002/hyp.11288
    [2017]
  • Ebel, B.A., Moody, J.A., and Martin, D.A., 2022. Post-fire temporal trends in soil-physical and -hydraulic properties and simulated runoff generation: Insights from different burn severities in the 2013 Black Forest Fire, CO, USA. Science of The Total Environment 802, 149847. https://doi.org/10.1016/j.scitotenv.2021.149847
  • Ebel, B.A., Moody, J.A., and Martin, D.A., 2012. Hydrologic conditions controlling runoff generation immediately after wildfire. Water Resources Research 48. https://doi.org/10.1029/2011WR011470
    [2012]
  • Easterbrook, R., 2006. Predicting Post-Wildfire Watershed Runoff Using ArcGIS Modelbuilder. Given at ESRI Federal User Conferences, 2006. 35 p.
    [2006]
  • Dore, S., Montes-Helu, M., Hart, S.C., Hungate, B.A., Koch, G.W., Moon, J.B., Finkral, A.J., and Kolb, T.E., 2012. Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand-replacing fire. Global Change Biology 18, 3171–3185. https://doi.org/10.1111/j.1365-2486.2012.02775.x
    [2012]
  • Doerr, S.H., and Thomas, A.D., 2000. The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. Journal of Hydrology 231–232, 134–147. https://doi.org/10.1016/S0022-1694(00)00190-6
    [2000]
  • Doerr, S.H., and Santín, C., 2016. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences 371, 20150345. https://doi.org/10.1098/rstb.2015.0345
    [2016]
  • Doerr, S.H., Shakesby, R.A., and Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews 51, 33–65. https://doi.org/10.1016/s0012-8252(00)00011-8
    [2000]
  • Doerr, S.H., Shakesby, R.A., and Walsh, R.P.D., 1998. Spatial Variability of Soil Hydrophobicity in Fire-prone Eucalyptus and Pine Forests, Portugal. Soil Science 163, 313–324.
    [1998]
  • Doerr, S.H., Shakesby, R.A., and Walsh, R.P.D., 1996. Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Águeda Basin, Portugal. CATENA 27, 25–47. https://doi.org/10.1016/0341-8162(96)00007-0
    [1996]
  • Doerr, S.H., Shakesby, R.A., and MacDonald, L.H., 2009. Soil water repellency: a key factor in post-fire erosion, in: Fire Effects on Soils and Restoration Strategies. CRC Press, pp. 213–240.
    [2009]
  • Doerr, S.H., Shakesby, R.A., Dekker, L.W., and Ritsema, C.J., 2006. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. European Journal of Soil Science 57, 741– 754. https://doi.org/10.1111/j.1365-2389.2006.00818.x
    [2006]
  • Doerr, S.H., Llewellyn, C.T., Douglas, P., Morley, C.P., Mainwaring, K.A., Haskins, C., Johnsey, L., Ritsema, C.J., Stagnitti, F., Allinson, G., Ferreira, D., Keizer, J.J., Ziogas, A.K., and Diamantis, J., 2005. Extraction of compounds associated with water repellency in sandy soils of different origin. Soil Research 43, 225–237. https://doi.org/10.1071/SR04091
  • Doerr, S.H., Blake, W.H., Shakesby, R.A., Stagnitti, F., Vuurens, S.H., Humphreys, G.S., and Wallbrink, P., 2004. Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures. International Journal of Wildland Fire 13, 157–163. https://doi.org/10.1071/wf03051
    [2004]
  • Doerr, S.H., 1998. On standardizing the ‘Water Drop Penetration Time’ and the ‘Molarity of an Ethanol Droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surface Processes and Landforms 23, 663–668. https://doi.org/10.1002/(sici)1096-9837(199807)23:7<663::Aid-esp9 09>3.0.Co;2-6
    [1998]
  • Diehl, D., 2013. Soil water repellency: Dynamics of heterogeneous surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 432, 8–18. https://doi.org/10.1016/j.colsurfa.2013.05.011
    [2013]
  • Dekker, L.W., and Ritsema, C.J., 1994. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resources Research 30, 2507–2517. https://doi.org/10.1029/94wr00749
    [1994]
  • Dekker, L.W., Oostindie, K., and Ritsema, C.J., 2005. Exponential increase of publications related to soil water repellency. Soil Research 43, 403–441. https://doi.org/10.1071/SR05007
    [2005]
  • Dekker, L.W., Doerr, S.H., Oostindie, K., Ziogas, A.K., and Ritsema, C.J., 2001. Water Repellency and Critical Soil Water Content in a Dune Sand. Soil Science Society of America Journal 65, 1667 –1674. https://doi.org/10.2136/sssaj2001.1667
    [2001]
  • Debano, L.F., Savage, S.M., and Hamilton, D.A., 1976. The Transfer of Heat and Hydrophobic Substances During Burning. Soil Science Society of America Journal 40, 779–782. https://doi.org/10.2136/sssaj1976.03615995004000050043x
    [1976]
  • DeByle, N.V., 1973. Broadcast burning of logging residues and the water repellency of soils. Northwest science.
    [1973]
  • DeBano, L.F., and Letey, J. (Eds.), 1969. Proceedings of the symposium on water-repellent soils. University of California, Riverside.
    [1969]
  • DeBano, L.F., Osborn, J.F., Krammes, J.S., and Letey, J., 1967. Soil wettability and wetting agents . . . our current knowledge of the problem. U.S. Forest Serv. Res. Paper PSW-RP-43Berkeley, Calif., Pacific SW. Forest & Range Exp. Sta. 13 pp. 043.
    [1967]
  • DeBano, L.F., Neary, D.G., and Ffolliott, P.F., 2005. Soil physical properties, in: Neary, D.G., Ryan, K.C., DeBano, L.F. (Eds.), Wildland Fire in Ecosystems: Effects of Fire on Soils and Water. pp. 29–52.
    [2005]
  • DeBano, L.F., Neary, D.G., and Ffolliott, P.F., 1998. Fire effects on ecosystems. John Wiley & Sons.
    [1998]
  • DeBano, L.F., 2000b. Water repellency in soils: a historical overview. Journal of Hydrology 231–232, 4–32. https://doi.org/10.1016/S0022-1694(00)00180-3
  • DeBano, L.F., 2000a. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology 231, 195–206. https://doi.org/10.1016/s0022-1694(00)00194-3
  • DeBano, L.F., 1981. Water repellent soils: a state-of-the-art.
    [1981]
  • DeBano, L., and Neary, D., 2005. Part A—the soil resource: its importance, characteristics, and general responses to fire. Wildland Fire in Ecosystems: Effects of Fire on Soil and Water. Gen. Tech. Rep. RMRS-GTR-42-vol 4, 21–28.
    [2005]
  • De Santis, A., and Chuvieco, E., 2009. GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sensing of Environment 113, 554–562. https://doi.org/10.1016/j.rse.2008.10.011
    [2009]
  • Crockford, H., Topalidis, S., and Richardson, D.P., 1991. Water repellency in a dry sclerophyll eucalypt forest — measurements and processes. Hydrological Processes 5, 405–420. https://doi.org/10.1002/hyp.3360050408
    [1991]
  • Criteria for determining the hydrophilicityhydrophobicity of soils . Zeitschrift f ? r pflanzenern ?
    Tschapek , M. 147 , 137 ? 149 . [1984]
  • Constantine, C.R., Naftaly, N.E., and Frye, J.S., 2010. Fire effects on rainfall-runoff in the Santa Barbara area. Southwest Hydrology 9, 10–11.
    [2010]
  • Collins, L., McCarthy, G., Mellor, A., Newell, G., and Smith, L., 2020. Training data requirements for fire severity mapping using Landsat imagery and random forest. Remote Sensing of Environment 245, 111839. https://doi.org/10.1016/j.rse.2020.111839
    [2020]
  • Collins, L., Griffioen, P., Newell, G., and Mellor, A., 2018. The utility of Random Forests for wildfire severity mapping. Remote Sensing of Environment 216, 374–384. https://doi.org/10.1016/j.rse.2018.07.005
    [2018]
  • Chuvieco, E., Martín, M.P., and Palacios, A., 2002. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing 23, 5103–5110. https://doi.org/10.1080/01431160210153129
    [2002]
  • Chief, K., Young, M.H., and Shafer, D.S., 2012. Changes in Soil Structure and Hydraulic Properties in a Wooded-Shrubland Ecosystem following a Prescribed Fire. Soil Science Society of America Journal 76, 1965–1977. https://doi.org/10.2136/sssaj2011.0072
  • Chen, T., and Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System.
    [2016]
  • Characterizing the Interception Capacity of Floor Litter with Rainfall Simulation Experiments
  • Chapman, H.D., 1965. Cation-Exchange Capacity, in: Methods of Soil Analysis. pp. 891–901.
    [1965]
  • Certini, G., 2005. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10. https://doi.org/10.1007/s00442-004-1788-8
    [2005]
  • Cerrelli, G.A., 2005. FIRE HYDRO: A Simplified Method for Predicting Peak Discharges to Assist in the Design of Flood Protection Measures for Western Wildfires, in: Managing Watersheds for Human and Natural Impacts. pp. 1–7.
    [2005]
  • Cerdà, A., and Doerr, S.H., 2005. Influence of vegetation recovery on soil hydrology and erodibility following fire: an 11-year investigation. Int. J. Wildland Fire 14, 423–437. https://doi.org/10.1071/WF05044
    [2005]
  • Cawson, J.G., Nyman, P., Smith, H.G., Lane, P.N.J., and Sheridan, G.J., 2016. How soil temperatures during prescribed burning affect soil water repellency, infiltration and erosion. Geoderma 278, 12–22. https://doi.org/10.1016/j.geoderma.2016.05.002
    [2016]
  • Canopy and litter interception of rainfall by hardwoods of eastern United States
    Helvey , J.D. , and Patric , J.H. 1 , 193 ? 206 . https : //doi.org/10.1029/wr001i002p00193 [1965]
  • Cannon, S.H., and Gartner, J.E., 2005. Wildfire-related debris flow from a hazards perspective, in: Debris-Flow Hazards and Related Phenomena. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 363–385.
    [2005]
  • Cannon, S.H., Boldt, E.M., Laber, J.L., Kean, J.W., and Staley, D.M., 2011. Rainfall intensity–duration thresholds for postfire debris-flow emergency-response planning. Nat Hazards 59, 209 –236. https://doi.org/10.1007/s11069-011-9747-2
    [2011]
  • Burch, G.J., Moore, I.D., and Burns, J., 1989. Soil hydrophobic effects on infiltration and catchment runoff. Hydrological Processes 3, 211–222. https://doi.org/10.1002/hyp.3360030302
    [1989]
  • Buczko, U., Bens, O., and Hüttl, R.F., 2005. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma 126, 317–336. https://doi.org/10.1016/j.geoderma.2004.10.003
    [2005]
  • Brye, K.R., 2006. Soil physiochemical changes following 12 years of annual burning in a humid–subtropical tallgrass prairie: a hypothesis. Acta Oecologica 30, 407–413. https://doi.org/10.1016/j.actao.2006.06.001
    [2006]
  • Bryant, R., Doerr, S.H., and Helbig, M., 2005. Effect of oxygen deprivation on soil hydrophobicity during heating. International Journal of Wildland Fire 14, 449–455. https://doi.org/10.1071/WF05035
    [2005]
  • Brook, A., and Wittenberg, L., 2016. Ash-soil interface: Mineralogical composition and physical structure. Science of The Total Environment 572, 1403–1413. https://doi.org/10.1016/j.scitotenv.2016.02.123
    [2016]
  • Breiman, L., 2001. Random Forests. Machine Learning 45, 5–32. https://doi.org/10.1023/A:1010933404324
    [2001]
  • Boschetti, M., Stroppiana, D., and Brivio, P.A., 2010. Mapping Burned Areas in a Mediterranean Environment Using Soft Integration of Spectral Indices from High-Resolution Satellite Images. Earth Interactions 14, 1–20. https://doi.org/10.1175/2010EI349.1
    [2010]
  • Bodí, M.B., Martin, D.A., Balfour, V.N., Santín, C., Doerr, S.H., Pereira, P., Cerdà, A., and Mataix-Solera, J., 2014. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews 130, 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007
    [2014]
  • Bodí, M.B., Doerr, S.H., Cerdà, A., and Mataix-Solera, J., 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 191, 14–23. https://doi.org/10.1016/j.geoderma.2012.01.006
    [2012]
  • Blanco-Canqui, H., Gantzer, C.J., Anderson, S.H., Alberts, E.E., and Ghidey, F., 2002. Saturated Hydraulic Conductivity and Its Impact on Simulated Runoff for Claypan Soils. Soil Science Society of America Journal 66, 1596–1602. https://doi.org/10.2136/sssaj2002.1596
    [2002]
  • Blake, W.H., Theocharopoulos, S.P., Skoulikidis, N., Clark, P., Tountas, P., Hartley, R., and Amaxidis, Y., 2010. Wildfire impacts on hillslope sediment and phosphorus yields. Journal of Soils and Sediments 10, 671–682.
    [2010]
  • Blake, W.H., Droppo, I.G., Humphreys, G.S., Doerr, S.H., Shakesby, R.A., and Wallbrink, P.J., 2007. Structural characteristics and behavior of fire-modified soil aggregates. Journal of Geophysical Research: Earth Surface 112. https://doi.org/10.1029/2006JF000660
    [2007]
  • Bisdom, E.B.A., Dekker, L.W., and Schoute, J.F.Th., 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, International Workshop on Methods of Research on Soil Structure/Soil Biota Interrelationships 56, 105–118. https://doi.org/10.1016/0016-7061(93)90103-R
    [1993]
  • Birth, G.S., and McVey, G.R., 1968. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer1. Agronomy Journal 60, 640–643. https://doi.org/10.2134/agronj1968.00021962006000060016x
    [1968]
  • Barnes, E.M., Clarke, T.R., Richards, S.E., Colaizzi, P.D., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., and Thompson, T., 2000. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. Presented at the Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA.
  • Bar, S., Parida, B.R., and Pandey, A.C., 2020. Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sensing Applications: Society and Environment 18, 100324. https://doi.org/10.1016/j.rsase.2020.100324
    [2020]
  • Balfour, V.N., Doerr, S.H., and Robichaud, P.R., 2014. The temporal evolution of wildfire ash and implications for post-fire infiltration. Int. J. Wildland Fire 23, 733. https://doi.org/10.1071/WF13159
    [2014]
  • Badía, D., and Martí, C., 2003. Effect of simulated fire on organic matter and selected microbiological properties of two contrasting soils. Arid Land Research and Management 17, 55 –69.
    [2003]
  • Badía, D., López-García, S., Martí, C., Ortíz-Perpiñá, O., Girona-García, A., and Casanova-Gascón, J., 2017. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Science of The Total Environment 601–602, 1119–1128. https://doi.org/10.1016/j.scitotenv.2017.05.254
  • BAIS2 : Burned Area Index for Sentinel-2 .
    Filipponi , F. 2 , 364. https : //doi.org/10.3390/ecrs-2-05177 [2018]
  • Arend, J.L., 1941. Infiltration rates of forest soils in the Missouri ozarks as affected by woods burning and litter removal. J. For. 39, 726–728.
  • Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zornoza, R., Mayoral, A.M., and Morales, J., 2007. Factors controlling the water repellency induced by fire in calcareous Mediterranean forest soils. European Journal of Soil Science 58, 1254–1259. https://doi.org/10.1111/j.1365-2389.2007.00917.x
    [2007]
  • An examination of the Degtjareff method for determining soil organic matter , and a proposed modification of the chromic acid titration method
    Walkley , A. , and Black , I.A. 37 , 29 ? 38 . https : //doi.org/10.1097/00010694-193401000-00003 [1934]
  • Amos, C., Petropoulos, G.P., and Ferentinos, K.P., 2019. Determining the use of Sentinel-2A MSI for wildfire burning & severity detection. International Journal of Remote Sensing 40, 905–930. https://doi.org/10.1080/01431161.2018.1519284
    [2019]
  • Alcañiz, M., Outeiro, L., Francos, M., and Úbeda, X., 2018. Effects of prescribed fires on soil properties: A review. Science of The Total Environment 613–614, 944–957. https://doi.org/10.1016/j.scitotenv.2017.09.144
    [2018]
  • Alagna, V., Iovino, M., Bagarello, V., Mataix‐Solera, J., and Lichner, L., 2019. Alternative analysis of transient infiltration experiment to estimate soil water repellency. Hydrological Processes 33, 661–674. https://doi.org/10.1002/hyp.13352
    [2019]
  • Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., and Lichner, Ľ., 2017. Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils. Journal of Hydrology and Hydromechanics 65, 254–263. https://doi.org/10.1515/johh-2017-0009
    [2017]
  • Ahn, S., 2008. Formation of soil water repellency by laboratory burning and its effects on soil evaporation. Seoul National University, Seoul.
    [2008]
  • Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes
    Tietje , O. , and Hennings , V. 69 , 71 ? 84 . [1996]
  • A regional estimate of postfire streamflow change in California .
    Bart , R.R. 52 , 1465 ? 1478 . https : //doi.org/10.1002/2014WR016553 [2016]
  • 2019년 강원도 대형산불지역의 열 해 피해로 인한 피해강도 변화 탐색
    원명수 윤석희 이훈택 장근창 대한원격탐사학회지 35, 1083–1093 [2019]