벼 도열병균의 발달과 병원성에 대한 수모화의 기능 구명 = SUMOylation for fungal development and pathogenicity in the rice blast fungus, Magnaporthe oryzae

임유진 2022년
논문상세정보
' 벼 도열병균의 발달과 병원성에 대한 수모화의 기능 구명 = SUMOylation for fungal development and pathogenicity in the rice blast fungus, Magnaporthe oryzae' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 농학과 관계공학
  • magnaporthe oryzae
  • pathogenicity
  • post-translational modification
  • rice blast disease
  • sumoylation
  • ubiquitination
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,989 0

0.0%

' 벼 도열병균의 발달과 병원성에 대한 수모화의 기능 구명 = SUMOylation for fungal development and pathogenicity in the rice blast fungus, Magnaporthe oryzae' 의 참고문헌

  • von Delbrück, M., Kniss, A., Rogov, V.V., Pluska, L., Bagola, K., Löhr, F., Güntert, P., Sommer, T., and Dötsch, V. 2016. The CUE domain of Cue1 aligns growing ubiquitin chains with Ubc7 for rapid elongation. Mol. Cell. 62:918- 928.
    [2016]
  • Zhou, Z., Li, G., Lin, C., and He, C. 2009. Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. MPMI. 22:402-410.
    [2009]
  • Zhou, Z., Li, G., Lin, C. and He, C. 2009. Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. Mol. Plant Microbe Interact. 22:402-410.
    [2009]
  • Zhou, B. and Zeng, L. 2017. Conventional and unconventional ubiquitination in plant immunity. Mol. Plant Pathol. 18:1313-1330.
    [2017]
  • Zheng, H., Chen, S., Chen, X., Liu, S., Dang, X., Yang, C., Giraldo, M.C., Oliveira- Garcia, E., Zhou, J., Wang, Z., and Valent, B. 2016. The Small GTPase MoSec4 is involved in vegetative development and pathogenicity by regulating the extracellular protein secretion in Magnaporthe oryzae. Front. Plant Sci. 7:1458.
  • Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M. and Yao, T. P. 2005. Regulation of MEF2 by histone deacetylase 4-and SIRT1 deacetylase-mediated lysine modifications. Mol. Cell. Biol. 25:8456-8464.
    [2005]
  • Zhao, X., Mehrabi, R. and Xu, J.-R. 2007. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot. Cell. 6:1701-1714.
    [2007]
  • Zhao, Q., Xie, Y., Zheng, Y., Jiang, S., Liu, W., Mu, W., Liu, Z., Zhao, Y., Xue, Y. nad Ren, J. 2014. GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res. 42:W325-W330.
    [2014]
  • Zhao, J. 2007. Sumoylation regulates diverse biological processes. Cell Mol. Life Sci. 64:3017-3033.
    [2007]
  • Zhang, Z., Li, J., Liu, H., Chong, K. and Xu, Y. 2015. Roles of ubiquitinationmediated protein degradation in plant responses to abiotic stresses. Environ. Exp. Bot. 114:92-103.
    [2015]
  • Zhang, Y. and Zeng, L. 2020. Crosstalk between ubiquitination and other posttranslational protein modifications in plant immunity. Plant Communications, 1:100041.
    [2020]
  • Zhang, W., Qin, Z., Zhang, X. and Xiao, W. 2011. Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett. 585:2786-2794.
    [2011]
  • Ze’ev, A. R. 2016. Monoubiquitination in proteasomal degradation. Proc. Natl. Acad. Sci. U.S.A. 113:8894-8896.
    [2016]
  • Yun, S.-H. 1998. Molecular genetics and manipulation of pathogenicity and mating determinants in Mycosphaerella zeae-maydis and Cochliobolus heterostrophus. Cornell University, Jan.
    [1998]
  • Yu, H., Wu, J., Xu, N., and Peng, M. 2007. Roles of F-box Proteins in Plant Hormone Responses. Acta Biochim. Biophys. Sin. 39:915-922.
    [2007]
  • Yochem, J., and Byers, B. 1987. Structural comparison of the yeast cell division cycle gene CDC4 and a related pseudogene. J. Mol. Biol. 195:233-245.
    [1987]
  • Yi, M., Chi, M.-H., Khang, C.H., Park, S.-Y., Kang, S., Valent, B., and Lee, Y.-H. 2009. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. Plant Cell. 21:681-695.
    [2009]
  • Yang, Y., He, Y., Wang, X., Liang, Z., He, G., Zhang, P., Zhu, H., Xu, N. and Liang, S. 2017. Protein SUMOylation modification and its associations with disease. Open Biol. 7: 170167.
    [2017]
  • Yang, J., Zhao, X., Sun, J., Kang, Z., Ding, S., Xu, J.-R., and Peng, Y.-L. 2010. A novel protein Com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae. MPMI. 23:112-123
    [2010]
  • Yang, J., Zhao, X., Sun, J., Kang, Z., Ding, S., Xu, J.-R. and Peng, Y. L. 2010. A novel protein Com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae. Mol. Plant Microbe Interact. 23:112-123.
    [2010]
  • Yang, J., Chen, D., Matar, K. A. O., Zheng, T., Zhao, Q., Xie, Y., Gao, X., Li, M., Wang, B. and Lu, G. D. 2020. The deubiquitinating enzyme MoUbp8 is required for infection-related development, pathogenicity, and carbon catabolite repression in Magnaporthe oryzae. Appl. Microbiol. Biotechnol. 104:5081-5094.
  • Yan, M., Nie, X., Wang, H., Gao, N., Liu, H. and Chen, J. 2015. SUMOylation of Wor1 by a novel SUMO E3 ligase controls cell fate in Candida albicans. Mol. Microbiol. 98:69-89.
    [2015]
  • Xu, G., Ma, H., Nei, M., and Kong, H. 2009. Evolution of F-box genes in plants: Different modes of sequence divergence and their relationships with functional diversification. Proc. Natl. Acad. Sci. U.S.A. 106:835-840.
    [2009]
  • Xie, W., and Ng, D.T.W. 2010. ERAD substrate recognition in budding yeast. Semin. Cell Dev. Biol. 21:533-539.
    [2010]
  • Wong, K. H., Todd, R. B., Oakley, B. R., Oakley, C. E., Hynes, M. J. and Davis, M. A. 2008. Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging. Fungal Genet. Biol. 45:728-737.
    [2008]
  • Wilson, V.G., and Heaton, P.R. 2008. Ubiquitin proteolytic system: focus on SUMO. Expert Rev. Proteomic. 5:121-135.
    [2008]
  • Wilson, V. G. and Heaton, P. R. 2008. Ubiquitin proteolytic system: focus on SUMO. Expert Rev. Proteom. 5:121-135.
    [2008]
  • Watts, F. Z. 2013. Starting and stopping SUMOylation. What regulates the regulator? Chromosoma. 122:451-463.
    [2013]
  • Wang, Z., Zhang, H., Liu, C., Xing, J. and Chen, X. L. 2018. A deubiquitinating enzyme Ubp14 is required for development, stress response, nutrient utilization, and pathogenesis of Magnaporthe oryzae. Front. Microbiol. 9: 769.
    [2018]
  • Wang, H. L., Kim, S. H., Siu, H. and Breuil, C. 1999. Transformation of sapstaining fungi with hygromycin B resistance plasmids pAN 7-1 and pCB1004. Mycol. Res. 103:77-80.
    [1999]
  • Wang, C. Y. and She, J. X. 2008. SUMO4 and its role in type 1 diabetes pathogenesis. Diabetes/Metab. Res. Rev. 24:93-102.
    [2008]
  • Wagner, K., Kunz, K., Piller, T., Tascher, G., Holper, S., Stehmeier, P., Keiten- Schmitz, J., Schick, M., Keller, U. and Müller, S. 2019. The SUMO isopeptidase SENP6 functions as a rheostat of chromatin residency in genome maintenance and chromosome dynamics. Cell Rep. 29:480-494.
    [2019]
  • Verma, V., Croley, F. and Sadanandom, A. 2018. Fifty shades of SUMO: its role in immunity and at the fulcrum of the growth-defence balance. Mol. Plant Pathol. 19:1537-1544.
    [2018]
  • Valent, B., Farrall, L. and Chumley, F. G. 1991. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics. 127:87-101.
    [1991]
  • Valent, B. 1990. Rice blast as a model system for plant pathology. Phytopathology. 80:33-36.
    [1990]
  • Truong, K., Lee, T. D., Li, B. and Chen, Y. 2012. Sumoylation of SAE2 C terminus regulates SAE nuclear localization. J. Biol. Chem. 287:42611-42619.
    [2012]
  • Trujillo, K. M., Tyler, R. K., Ye, C., Berger, S. L. and Osley, M. A. 2011. A genetic and molecular toolbox for analyzing histone ubiquitylation and sumoylation in yeast. Methods, 54:296-303.
    [2011]
  • Transcription regulation by histone methylation : interplay between different covalent modifications of the core histone tails
    Zhang , Y. and Reinberg , D. 15:2343-2360 [2001]
  • Tomanov, K., Zeschmann, A., Hermkes, R., Eifler, K., Ziba, I., Grieco, M., Novatchkova, M., Hofmann, K., Hesse, H. and Bachmair, A. 2014. Arabidopsis PIAL1 and 2 promote SUMO chain formation as E4-type SUMO ligases and are involved in stress responses and sulfur metabolism. Plant Cell. 26:4547-4560.
    [2014]
  • Thomas, D., Kuras, L., Barbey, R., Cherest, H., Blaiseau, P.-L., and Surdin-Kerjan, Y. 1995. Met30p, a yeast transcriptional inhibitor that responds to Sadenosylmethionine, is an essential protein with WD40 repeats. Mol. Cell. Biol. 15:6526-6534.
    [1995]
  • The roles of post-translational modifications in the context of protein interaction networks .
    Duan , G. and Walther , D. 11 : e1004049 . [2015]
  • The fast-growing business of SUMO chains
    Ulrich , H. D. 32:301- 305 [2008]
  • The endosomal sorting complex required for transport ( ESCRT ) is required for the sensitivity of yeast cells to nickel ions in Saccharomyces cerevisiae
  • The endoplasmic reticulum-associated degradation pathways of budding yeast
    Thibault , G. , and Ng , D.T.W 4 : a013193 . [2012]
  • The Saccharomyces genome database : a tool for discovery
    Cherry , J. M. pdb top083840 [2015]
  • Tatham, M. H., Kim, S., Jaffray, E., Song, J., Chen, Y. and Hay, R. T. 2005. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nature Struct. Mol. Biol. 12:67-74.
    [2005]
  • Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H. and Hay, R. T. 2001. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276:35368-35374.
    [2001]
  • Tanaka, K., Nishide, J., Okazaki, K., Kato, H., Niwa, O., Nakagawa, T., Matsuda, H., Kawamukai, M. and Murakami, Y. 1999. Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol. Cell. Biol. 19:8660-8672.
  • Tanaka, K. 2009. The proteasome: overview of structure and functions. Proc. Jpn. Acad., Ser. B. 85:12-36.
    [2009]
  • Takahashi, Y., Kahyo, T., Toh-e, A., Yasuda, H. and Kikuchi, Y. 2001. Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J. Biol. Chem. 276:48973-48977.
    [2001]
  • Su, S., Zhang, Y. and Liu, P. 2020. Roles of Ubiquitination and SUMOylation in DNA Damage Response. Curr. Issues Mol. Biol. 35:59-84.
    [2020]
  • Stamatakis A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
    [2014]
  • Sriramachandran, A. M. and Dohmen, R. J. 2014. SUMO-targeted ubiquitin ligases. Biochim. Biophys. Acta. 1843:75-85.
    [2014]
  • Spandl, J., Lohmann, D., Kuerschner, L., Moessinger, C., and Thiele, C. 2011. Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region. J. Biol. Chem. 286:5599-5606.
    [2011]
  • Skp1 independent function of Cdc53/Cul1 in F-box protein homeostasis .
  • Shnaiderman, C., Miyara, I., Kobiler, I., Sherman, A., and Prusky, D. 2013. Differential activation of ammonium transporters during the accumulation of ammonia by Colletotrichum gloeosporioides and its effect on appressoria formation and pathogenicity. MPMI, 26:345-355.
    [2013]
  • Shin, E. J., Shin, H. M., Nam, E., Kim, W. S., Kim, J. -H., Oh, B. -H. and Yun, Y. 2012. DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Rep. 13:339-346.
    [2012]
  • Shi, H.-B., Chen, N., Zhu, X.-M., Liang, S., Li, L., Wang, J.-Y., Lu, J.-P., Lin, F.-C., and Liu, X.-H. 2019. F‐box proteins MoFwd1, MoCdc4 and MoFbx15 regulate development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Environ. Microbiol. 21: 3027-3045.
  • Shi, H.-B., Chen, G.-Q., Chen, Y.-P., Dong, B., Lu, J.-P., Liu, X.-H. and Lin F.-C. 2016. MoRad6‐mediated ubiquitination pathways are essential for development and pathogenicity in Magnaporthe oryzae. Environ. Microbiol. 18:4170-4187.
    [2016]
  • Shi, H. B., Chen, N., Zhu, X. M., Liang, S., Li, L., Wang, J. Y., Lu, J. P., Lin, F. C. and Liu, X. H. 2019. F‐box proteins MoFwd1, MoCdc4 and MoFbx15 regulate development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Environ. Microbiol. 21:3027-3045.
    [2019]
  • Shi, H. B., Chen, G. Q., Chen, Y. P., Dong, B., Lu, J. P., Liu, X. H. and Lin, F. C. 2016. MoRad6‐mediated ubiquitination pathways are essential for development and pathogenicity in Magnaporthe oryzae. Environ. Miicrobiol. 18:4170-4187.
    [2016]
  • Shayeghi, M., Doe, C. L., Tavassoli, M. and Watts, F. Z. 1997. Characterisation of Schizosaccharomyces pombe rad31, a UBA-related gene required for DNA damage tolerance. Nucleic Acids Res. 25:1162-1169.
    [1997]
  • Seufert, W., Futcher, B. and Jentsch, S. 1995. Role of a ubiquitin-conjugating enzyme in degradation of S-and M-phase cyclins. Nature. 373:78-81.
    [1995]
  • Segal, L.M., and Wilson, R.A. 2018. Reactive oxygen species metabolism and plantfungal interactions. Fungal Genet. Biol. 110:1-9.
    [2018]
  • Schwarz, S. E., Matuschewski, K., Liakopoulos, D., Scheffner, M. and Jentsch, S. 1998. The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc. Natl. Acad. Sci. U.S.A. 95:560-564.
    [1998]
  • Schwarz, D.S., and Blower, M.D. 2016. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell. Mol. Life Sci. 73:79-94.
    [2016]
  • Schulz, S., Chachami, G., Kozaczkiewicz, L., Winter, U., Stankovic‐Valentin, N., Haas, P., Hofmann, K., Urlaub, H., Ovaa, H., Wittbrodt, J., Meulmeester, E. and Melchior, F. 2012. Ubiquitin‐specific protease‐like 1 (USPL1) is a SUMO isopeptidase with essential, non‐catalytic functions. EMBO Rep. 13:930-938.
  • Schmidt, D. and Müller, S. 2002. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl. Acad. Sci. U.S.A. 99:2872-2877.
    [2002]
  • Sato, Y., Tsuchiya, H., Yamagata, A., Okatsu, K., Tanaka, K., Saeki, Y. and Fukai, S. 2019. Structural insights into ubiquitin recognition and Ufd1 interaction of Npl4. Nat. Commun. 10:1-13.
    [2019]
  • Saracco, S. A., Miller, M. J., Kurepa, J. and Vierstra, R. D. 2007. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol. 145:119-134.
    [2007]
  • Sahu, M. S., Patra, S., Kumar, K. and Kaur, R. 2020. SUMOylation in Human Pathogenic Fungi: Role in Physiology and Virulence. J. Fungi. 6:32.
    [2020]
  • SUMOylation is required for fungal development and pathogenicity in the rice blast fungus Magnaporthe oryzae
  • SUMO-targeted ubiquitin ligases
  • Ruggiano, A., Foresti, O., and Carvalho, P. 2014. ER-associated degradation: Protein quality control and beyond. J. Cell Biol. 204:869-879.
    [2014]
  • Rosonina, E., Akhter, A., Dou, Y., Babu, J. and Sri Theivakadadcham, V. S. 2017. Regulation of transcription factors by sumoylation. Transcription. 8:220-231
    [2017]
  • Road to ruin : Targeting proteins for degradation in the endoplasmic reticulum
  • Raorane, M. L., Mutte, S. K., Varadarajan, A. R., Pabuayon, I. M. and Kohli, A. 2013. Protein SUMOylation and plant abiotic stress signaling: in silico case study of rice RLKs, heat-shock and Ca2+-binding proteins. Plant Cell Rep. 32:1053-1065.
    [2013]
  • Que, Y., Xu, Z., Wang, C., Lv, W., Yue, X., Xu, L., Tang, S., Dai, H. and Wang, Z. 2020. The putative deubiquitinating enzyme MoUbp4 is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Curr. Genet. 66, 561-576.
    [2020]
  • Qi, Z., Liu, M., Dong, Y., Zhu, Q., Li, L., Li, B., Yang, J., Li, Y., Ru, Y., Zhang, H., Zheng, X., Wang, P., and Zhang, Z. 2016. The syntaxin protein (MoSyn8) mediates intracellular trafficking to regulate conidiogenesis and pathogenicity of rice blast fungus. New Phytol. 209:1655-1667.
  • Purification and characterization of laccase from the rice blast fungus , Magnaporthe grisea
    Iyer , G. and Chattoo , B . B 227:121- 126 [2003]
  • Pungaliya, P., Kulkarni, D., Park, H.-J., Marshall, H., Zheng, H., Lackland, H., Saleem, A., and Rubin, E.H. 2007. TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins. J. Proteome Res. 6:3918-3923.
    [2007]
  • Prakash, C., Manjrekar, J. and Chattoo, B. B. 2016. Skp1, a component of E3 ubiquitin ligase, is necessary for growth, sporulation, development and pathogenicity in rice blast fungus (Magnaporthe oryzae). Mol. Plant Pathol. 17:903-919.
    [2016]
  • Praefcke, G. J., Hofmann, K. and Dohmen, R. J. 2012. SUMO playing tag with ubiquitin. Trends Biochem. Sci. 37:23-31.
    [2012]
  • Pham, K.T.M., Inoue, Y., Van Vu, B., Nguyen, H.H., Nakayashiki, T., Ikeda, K.-I., and Nakayashiki, H. 2015. MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae) regulates global gene expression during infectionrelated morphogenesis. PLoS Genet. 11:e1005385.
    [2015]
  • Paulussen, C., Hallsworth, J. E., Alvarez-Perez, S., Nierman, W. C., Hamill, P. G., Blain, D., Rediers, H. and Lievens, B. 2017. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb. Biotechnol. 10:296-322.
    [2017]
  • Pasupala, N., Easwaran, S., Hannan, A., Shore, D. and Mishra, K. 2012. The SUMO E3 ligase Siz2 exerts a locus-dependent effect on gene silencing in Saccharomyces cerevisiae. Eukaryot. Cell. 11:452-462.
    [2012]
  • Parker, J. L. and Ulrich, H. D. 2012. A SUMO-interacting motif activates budding yeast ubiquitin ligase Rad18 towards SUMO-modified PCNA. Nucleic Acids Res. 40:11380-11388.
    [2012]
  • Park, H. J., Kim, W. Y., Park, H. C., Lee, S. Y., Bohnert, H. J. and Yun, D. J. 2011. SUMO and SUMOylation in plants. Mol. Cells. 32:305.
    [2011]
  • Park, H. J., Kim, W. Y., Park, H. C., Lee, S. Y., Bohnert, H. J. and Yun, D. J. 2011. SUMO and SUMOylation in plants. Mol. Cells. 32:305-316.
    [2011]
  • Papouli, E., Chen, S., Davies, A. A., Huttner, D., Krejci, L., Sung, P. and Ulrich, H. D. 2005. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell. 19:123-133.
    [2005]
  • Orosa, B., Yates, G., Verma, V., Srivastava, A. K., Srivastava, M., Campanaro, A., Vega, D. D., Fernandes, A., Zhang, C., Lee, J., Bennett, M. J. and Sadanandom, A. 2018. SUMO conjugation to the pattern recognition receptor FLS2 triggers intracellular signalling in plant innate immunity. Nat. Commun. 9:1-12.
  • Ohkuni, K., Takahashi, Y., Fulp, A., Lawrimore, J., Au, W. C., Pasupala, N., Levy- Myers, R., Warren, J., Strunnikov, A., Baker, R. E., Kerscher, O., Bloom, K. and Basrai, M. A. 2016. SUMO-targeted ubiquitin ligase (STUbL) Slx5 regulates proteolysis of centromeric histone H3 variant Cse4 and prevents its mislocalization to euchromatin. Mol. Biol. Cell. 27:1500-1510.
  • Oh, Y., Franck, W. L., Han, S. O., Shows, A., Gokce, E., Muddiman, D. C. and Dean, R. A. 2012. Polyubiquitin is required for growth, development and pathogenicity in the rice blast fungus Magnaporthe oryzae. PLoS One. 7:e42868.
    [2012]
  • Odenbach, D., Breth, B., Thines, E., Weber, R.W.S., Anke, H., and Foster, A.J. 2007. The transcription factor Con7p is a central regulator of infection‐related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol. Microbiol. 64:293-307.
    [2007]
  • Odenbach, D., Breth, B., Thines, E., Weber, R. W., Anke, H. and Foster, A. J. 2007. The transcription factor Con7p is a central regulator of infection‐related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol. Microbiol. 64:293-307.
    [2007]
  • Nowak, M. and Hammerschmidt, M. 2006. Ubc9 regulates mitosis and cell survival during zebrafish development. Mol. Biol. Cell. 17:5324-5336.
    [2006]
  • Nishimura, T., Mochizuki, S., Ishii-Minami, N., Fujisawa, Y., Kawahara, Y., Yoshida, Y., Okada, K., Ando, S., Matsumura, H., Terauchi, R., Minami, E., and Nishizawa, Y. 2016. Magnaporthe oryzae glycine-rich secretion protein, Rbf1 critically participates in pathogenicity through the focal formation of the biotrophic interfacial complex. PLOS Pathog. 12,:e1005921.
  • Nie, X., Yu, S., Qiu, M., Wang, X., Wang, Y., Bai, Y., Zhang, F. and Wang, S. 2016. Aspergillus flavus SUMO contributes to fungal virulence and toxin attributes. J. Agric. Food Chem. 64:6772-6782.
    [2016]
  • Nie, M., Xie, Y., Loo, J. A. and Courey, A. J. 2009. Genetic and proteomic evidence for roles of Drosophila SUMO in cell cycle control, Ras signaling, and early pattern formation. PloS ONE. 4:e5905.
    [2009]
  • Nie, M., Vashisht, A. A., Wohlschlegel, J. A. and Boddy, M. N. 2015. High confidence fission yeast SUMO conjugates identified by tandem denaturing affinity purification. Sci. Rep. 5:1-8.
    [2015]
  • Nie, M., Moser, B. A., Nakamura, T. M. and Boddy, M. N. 2017. SUMO-targeted ubiquitin ligase activity can either suppress or promote genome instability, depending on the nature of the DNA lesion. PLoS Genet. 13:e1006776.
    [2017]
  • Nie, M. and Boddy, M. N. 2016. Cooperativity of the SUMO and ubiquitin pathways in genome stability. Biomolecules, 6:14.
    [2016]
  • Nelson, D.E., Randle, S.J., and Laman, H. 2013. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins. Open Biol. 3:130131.
    [2013]
  • Nayak, A. and Müller, S. 2014. SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol. 15:1-7.
    [2014]
  • Nathan, D., Ingvarsdottir, K., Sterner, D. E., Bylebyl, G. R., Dokmanovic, M., Dorsey, J. A., Whelan, K. A., Krsmanovic, M., Lane, W. S., Meluh, P. B., Johnson, E. S. and Berger, S. L. 2006. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev. 20:966-976.
  • Nacerddine, K., Lehembre, F., Bhaumik, M., Artus, J., Cohen-Tannoudji, M., Babinet, C., Pandolfi, P. P. and Dejean, A. 2005. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell. 9:769-779.
    [2005]
  • Müller, S., Hoege, C., Pyrowolakis, G., and Jentsch, S. 2001. Ubiquitin and proteasomes: Sumo, ubiquitin's mysterious cousin. Nat. Rev. Mol. Cell Biol. 2:202.
    [2001]
  • Müller, S., Hoege, C., Pyrowolakis, G. and Jentsch, S. 2001. SUMO, ubiquitin's mysterious cousin. Nat. Rev. Mol. Cell Biol. 2:202.
    [2001]
  • Murtas, G., Reeves, P. H., Fu, Y. F., Bancroft, I., Dean, C. and Coupland, G. 2003. A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. The Plant Cell. 15:2308-2319.
    [2003]
  • Mullen, J. R., Chen, C. F. and Brill, S. J. 2010. Wss1 is a SUMO-dependent isopeptidase that interacts genetically with the Slx5-Slx8 SUMO-targeted ubiquitin ligase. Mol. Cell. Biol. 30:3737-3748.
    [2010]
  • Mullen, J. R. and Brill, S. J. 2008. Activation of the Slx5–Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates. J. Biol. Chem. 283:19912- 19921.
    [2008]
  • Mosquera, G., Giraldo, M.C., Khang, C.H., Coughlan, S., and Valent, B. 2009. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell. 21:1273-1290.
    [2009]
  • Morrell, R. and Sadanandom, A. 2019. Dealing with stress: a review of plant SUMO proteases. Front. Plant Sci. 10:1122.
    [2019]
  • Miyazaki, T., and Kohno, S. 2014. ER stress response mechanisms in the pathogenic yeast Candida glabrata and their roles in virulence. Virulence. 5:365-370.
    [2014]
  • Miyazaki, T., Yamauchi, S., Inamine, T., Nagayoshi, Y., Saijo, T., Izumikawa, K., Seki, M., Kakeya, H., Yamamoto, Y., Yanagihara, K., Miyazaki, Y., and Kohno, S. 2010. Roles of calcineurin and Crz1 in antifungal susceptibility and virulence of Candida glabrata. Antimicrob. Agents Chemother. 54:1639-1643.
  • Miyazaki, T., Inamine, T., Yamauchi, S., Nagayoshi, Y., Saijo, T., Izumikawa, K., Seki, M., Kakeya, H., Yamamoto, Y., Yanagihara, K., Miyazaki, Y., and Kohno, S. 2010. Role of the Slt2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrata. FEMS Yeast Res. 10:343-352.
  • Miyauchi, Y., Yogosawa, S., Honda, R., Nishida, T., and Yasuda, H. 2002. Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J. Biol. Chem. 7:50131-50136.
    [2002]
  • Mir, A.A., Park, S.-Y., Sadat, M.A., Kim, S., Choi, J., Jeon, J., and Lee, Y.-H. 2015. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae. Sci. Rep. 5:11831.
    [2015]
  • Mendes, A. V., Grou, C. P., Azevedo, J. E. and Pinto, M. P. 2016. Evaluation of the activity and substrate specificity of the human SENP family of SUMO proteases. Biochim. Biophys. Acta Mol. Cell Res. 1863:139-147.
    [2016]
  • Meluh, P. B. and Koshland, D. 1995. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell. 6:793-807.
    [1995]
  • Melchior, F. 2000. SUMO-nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16:591-626.
    [2000]
  • McManus, F. P., Lamoliatte, F. and Thibault, P. 2017. Identification of cross talk between SUMOylation and ubiquitylation using a sequential peptide immunopurification approach. Nat. Protoc. 12:2342-2358.
    [2017]
  • Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., Hay, R. T., Lamond, A. I., Mann, M. and Vertegaal, A. C. O. 2008. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. Proteom. 7:132-144.
  • Martienssen, R. A. and Colot, V. 2001. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science. 293:1070-1074.
    [2001]
  • Malaker, P.K., Barma, N.C.D., Tiwary, T.P., Collis, W.J., Duveiller, E., Singh, P.K., Joshi, A.K., Singh, R.P., Braun, H.-J., Peterson, G.L., Pedley, K.F., Farman, M.L., and Valent, B. 2016. First report of wheat blast caused by Magnaporthe oryzae pathotype triticum in Bangladesh. Plant Dis. 100:2330.
  • Malaker, P. K., Barma, N. C., Tiwary, T. P., Collis, W. J., Duveiller, E. P., Singh, K., Joshi, A. K., Singh, R. P., Braun, H.-J., Peterson, G. L., Pedley, K. F., Farman, M. L. and Valent, B. 2016. First report of wheat blast caused by Magnaporthe oryzae pathotype triticum in Bangladesh. Plant Dis. 100:2330.
  • Luo, K., Zhang, H., Wang, L., Yuan, J., and Lou, Z. 2012. Sumoylation of MDC1 is important for proper DNA damage response. EMBO J. 31:3008-3019.
    [2012]
  • Lomeli, H. and Vazquez, M. 2011. Emerging roles of the SUMO pathway in development. Cell. Mol. Life Sci. 68:4045-4064.
    [2011]
  • Liu, T.-B. and Xue, C. 2011. The ubiquitin-proteasome system and F-box proteins in pathogenic fungi. Mycobiology. 39:243-248.
    [2011]
  • Liu, L., Jiang, Y., Zhang, X., Wang, X., Wang, Y., Han, Y., Coupland, G., Jin, J. B., Searle, I., Fu, Y. –F. and Chen, F. 2017. Two SUMO proteases SUMO PROTEASE RELATED TO FERTILITY1 and 2 are required for fertility in Arabidopsis. Plant Physiol. 175:1703-1719.
  • Liu, C., Li, Z., Xing, J., Yang, J., Wang, Z., Zhang, H., Chen, D., Peng, Y. –L. and Chen, X. -L. 2018. Global analysis of sumoylation function reveals novel insights into development and appressorium-mediated infection of the rice blast fungus. New Phytol. 219:1031-1047.
    [2018]
  • Lim, Y.-J., Kim, K.-T., and Lee, Y.-H. 2018. SUMOylation is required for fungal development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Mol. Plant Pathol. 19:2134-2148.
    [2018]
  • Lim, Y. -J. and Lee, Y. -H. 2020. F-box only and CUE proteins are crucial ubiquitination-associated components for conidiation and pathogenicity in the rice blast fungus, Magnaporthe oryzae. Fungal Genet. Biol. 144:103473.
    [2020]
  • Liebelt, F., Jansen, N. S., Kumar, S., Gracheva, E., Claessens, L. A., Verlaan-de Vries, M., Willemstein, E. and Vertegaal, A. C. O. 2019. The poly-SUMO2/3 protease SENP6 enables assembly of the constitutive centromere-associated network by group deSUMOylation. Nat. Commun. 10:1-18
    [2019]
  • Liang, Y. C., Lee, C. C., Yao, Y. L., Lai, C. C., Schmitz, M. L. and Yang, W. M. 2016. SUMO5, a novel poly-SUMO isoform, regulates PML nuclear bodies. Sci. Rep. 6:1-15.
    [2016]
  • Liang, Q., Deng, H., Li, X., Wu, X., Tang, Q., Chang, T. H., Peng, H., Rauscher III, F. J., Ozato, K. and Zhu, F. 2011. Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J. Immunol. 187:4754-4763.
    [2011]
  • Li, W. and Ye, Y. 2008. Polyubiquitin chains: functions, structures, and mechanisms. Cell. Mol. Life Sci. 65:2397-2406.
    [2008]
  • Li, S. J. and Hochstrasser, M. 2000. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol. 20:2367-2377.
    [2000]
  • Li, G., Qi, X., Sun, G., Rocha, R. O., Segal, L. M., Downey, K. S., Wright, J. D. and Wilson, R. A. 2020. Terminating rice innate immunity induction requires a network of antagonistic and redox‐responsive E3 ubiquitin ligases targeting a fungal sirtuin. New Phytol. 226: 523-540.
    [2020]
  • Li, G. X. H., Vogel, C. and Choi, H. 2018. PTMscape: an open source tool to predict generic post-translational modifications and map modification crosstalk in protein domains and biological processes. Mol. Omics. 14:197-209.
    [2018]
  • Lewicki, M. C., Srikumar, T., Johnson, E. and Raught, B. 2015. The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery. J. Proteom. 118:39-48.
    [2015]
  • Lee, J., Lee, T., Lee, Y.-W., Yun, S.-H.. and Turgeon, B. G. 2003. Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol. Microbiol. 50:145-152.
    [2003]
  • Leach, M. D., Stead, D. A., Argo, E. and Brown, A. J. 2011. Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans. Mol. Biol. Cell. 22:687-702.
    [2011]
  • Leach, M. D., Stead, D. A., Argo, E. and Brown, A. J. 2011. Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans. Mol. Bio. Cell. 22:687-702.
    [2011]
  • Leach, M. D. and Brown, A. J. 2012. Posttranslational modifications of proteins in the pathobiology of medically relevant fungi. Eukaryot. Cell. 11:98-108.
    [2012]
  • Lau, G. W. and Hamer, J. E. 1998. Acropetal: a genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet. Biol. 24:228-239.
    [1998]
  • Landraud, P., Chuzeville, S., Billon-Grande, G., Poussereau, N., and Bruel, C. 2013. Adaptation to pH and role of PacC in the rice blast fungus Magnaporthe oryzae. PLoS One. 8:e69236.
    [2013]
  • Lamoliatte, F., McManus, F. P., Maarifi, G., Chelbi-Alix, M. K. and Thibault, P. 2017. Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nat. Commun. 8:14109.
    [2017]
  • Lambrughi, M., Maiani, E., Aykac Fas, B., Shaw, G. S., Kragelund, B. B., Lindorff- Larsen, K., Teilum, K., Invernizzi, G. and Papaleo, E. 2021. Ubiquitin Interacting Motifs: duality between structured and disordered motifs. Front. Mol. Biosci. 8:494.
  • Kurepa, J., Walker, J. M., Smalle, J., Gosink, M. M., Davis, S. J., Durham, T. L., Sung, D.-Y. and Vierstra, R. D. 2003. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis accumulation of sumo1 and-2 conjugates is increased by stress. J. Biol. Chem. 278:6862-6872.
    [2003]
  • Kumar, R., González-Prieto, R., Xiao, Z., Verlaan-de Vries, M., and Vertegaal, A. C. 2017. The STUbL RNF4 regulates protein group SUMOylation by targeting the SUMO conjugation machinery. Nat. Commun. 8:1809.
    [2017]
  • Krogan, N. J., Dover, J., Wood, A., Schneider, J., Heidt, J., Boateng, M. A., Dean, K., Ryan, O. W., Golshani, A., Johnston, M., Greenblatt, J. F. and Shilatifard, A. 2003. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell. 11:721-729.
  • Krishnan, K., and Askew, D.S. 2014. Endoplasmic reticulum stress and fungal pathogenesis. Fungal Biol. Rev. 28:29-35.
    [2014]
  • Kornitzer, D. 2006. The ubiquitin system and morphogenesis of fungal pathogens. Isr. Med. Assoc. J. 8:243-245.
    [2006]
  • Kong, S., Park, S.-Y. and Lee, Y.-H. 2015. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environ. Microbiol. 17:1425-1443.
    [2015]
  • Kocaturk, N. M. and Gozuacik, D. 2018. Crosstalk between mammalian autophagy and the ubiquitin-proteasome system. Front. Cell Dev. Biol. 6:128.
    [2018]
  • Klug, H., Xaver, M., Chaugule, V. K., Koidl, S., Mittler, G., Klein, F. and Pichler, A. 2013. Ubc9 sumoylation controls SUMO chain formation and meiotic synapsis in Saccharomyces cerevisiae. Mol. Cell. 50:625-636.
    [2013]
  • Kim, S., Park, S.-Y., Kim, K. S., Rho, H.-S., Chi, M.-H., Choi, J., Park, J., Kong, S., Park, J., Goh, J. and Lee, Y.-H. 2009. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet. 5:e1000757.
  • Kim, S., Ahn, I.-P., Rho, H.-S., and Lee, Y.-H. 2005. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol. Microbiol. 57:1224-1237.
    [2005]
  • Khang, C.H., Berruyer, R., Giraldo, M.C., Kankanala, P., Park, S.-Y., Czymmek, K., Kang, S., Valent, B. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell. 22:1388-1403.
    [2010]
  • Kerscher, O., Felberbaum, R. and Hochstrasser, M. 2006. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol, 22:159- 180.
    [2006]
  • Keiten-Schmitz, J., Schunck, K. and Muller, S. 2019. SUMO chains rule on chromatin occupancy. Front. Cell Dev. Biol, 7:343.
    [2019]
  • Katoh, K. and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30:772-780.
    [2013]
  • Kang, S. H., Khang, C. H. and Lee, Y.-H. 1999. Regulation of cAMP-dependent protein kinase during appressorium formation in Magnaporthe grisea. FEMS Microbiol. Lett. 170:419-423.
    [1999]
  • Kaneko, M., Iwase, I., Yamasaki, Y., Takai, T., Wu, Y., Kanemoto, S., Matsuhisa, K., Asada, R., Okuma, Y., Watanabe, T., Imaizumi, K., and Nomura, Y. 2016. Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation. Sci. Rep. 6:30955.
  • Kagey, M. H., Melhuish, T. A. and Wotton, D. 2003. The polycomb protein Pc2 is a SUMO E3. Cell. 113:127-137.
    [2003]
  • Jonkers, W., and Rep, M. 2009. Lessons from fungal F-box proteins. Eukaryot. Cell. 8:677-695.
    [2009]
  • Johnson, E. S., Schwienhorst, I., Dohmen, R. J. and Blobel, G. 1997. The ubiquitinlike protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16:5509-5519.
    [1997]
  • Johnson, E. S. and Gupta, A. A. 2001. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell. 106:735-744.
    [2001]
  • Johnson, E. S. and Blobel, G. 1999. Cell cycle–regulated attachment of the ubiquitinrelated protein SUMO to the yeast septins. J. Cell Biol. 147:981-994.
    [1999]
  • Johnson, E. S. and Blobel, G. 1997. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272:26799-26802.
    [1997]
  • Jeong, H., Mason, S. P., Barabási, A. L. and Oltvai, Z. N. 2001. Lethality and centrality in protein networks. Nature. 411:41.
    [2001]
  • Jeon, J., Choi, J., Lee, G.-W., Park, S.-Y., Huh, A., Dean, R. A., and Lee, Y.-H. 2015. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae. Sci. Rep. 5:1-11.
    [2015]
  • Islam, A., Tebbji, F., Mallick, J., Regan, H., Dumeaux, V., Omran, R. P. and Whiteway, M. 2019. Mms21: a putative SUMO E3 ligase in Candida albicans that negatively regulates invasiveness and filamentation, and is required for the genotoxic and cellular stress response. Genetics. 211:579- 595.
    [2019]
  • Ishida, T., Yoshimura, M., Miura, K. and Sugimoto, K. 2012. MMS21/HPY2 and SIZ1, two Arabidopsis SUMO E3 ligases, have distinct functions in development. PloS ONE. 7: e46897.
    [2012]
  • Isasa, M., Katz, E. J., Kim, W., Yugo, V., Gonzalez, S., Kirkpatrick, D. S., Thomson, T. M., Finley, D, Gygi, S. P. and Crosas, B. 2010. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol. Cell. 38:733- 745.
    [2010]
  • Ihara, M., Stein, P. and Schultz, R. M. 2008. UBE2I (UBC9), a SUMO-conjugating enzyme, localizes to nuclear speckles and stimulates transcription in mouse oocytes. Biol. Reprod. 79:906-913.
    [2008]
  • Hung, S. H., Wong, R. P., Ulrich, H. D. and Kao, C. F. 2017. Monoubiquitylation of histone H2B contributes to the bypass of DNA damage during and after DNA replication. Proc. Natl. Acad. Sci. U.S.A. 114:E2205-E2214.
    [2017]
  • Horio, T., Szewczyk, E., Oakley, C. E., Osmani, A. H., Osmani, S. A. and Oakley, B. R. 2019. SUMOlock reveals a more complete Aspergillus nidulans SUMOylome. Fungal Genet. Biol. 127:50-59.
    [2019]
  • Hoppe, T. 2005. Multiubiquitylation by E4 enzymes: 'one size' doesn't fit all. Trends Biochem. Sci. 30:183-187.
    [2005]
  • Histone H2B mono-ubiquitylation maintains genomic integrity at stalled replication forks
  • Hickey, C. M., Wilson, N. R. and Hochstrasser, M. 2012. Function and regulation of SUMO proteases. Nat. Rev. Mol. Cell Biol. 13:755-766.
    [2012]
  • Hibbert, R. G., Huang, A., Boelens, R. and Sixma, T. K. 2011. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proc. Natl. Acad. Sci. U.S.A. 108:5590-5595.
    [2011]
  • Hermkes, R., Fu, Y. F., Nürrenberg, K., Budhiraja, R., Schmelzer, E., Elrouby, N., Dohmen, R. J., Bachmair, A. and Coupland, G. 2011. Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1. Planta. 233:63-73.
    [2011]
  • Helicase/SUMO-targeted ubiquitin ligase Uls1 interacts with the holliday junction resolvase Yen1 .
  • He, Z., Huang, T., Ao, K., Yan, X. and Huang, Y. 2017. Sumoylation, phosphorylation, and acetylation fine-tune the turnover of plant immunity components mediated by ubiquitination. Front. Plant Sci. 8:1682.
    [2017]
  • Harting, R., Bayram, Ö., Laubinger, K., Valerius, O. and Braus, G. H. 2013. Interplay of the fungal sumoylation network for control of multicellular development. Mol. Microbiol. 90:1125-1145.
    [2013]
  • Harting, R., Bayram, O., Laubinger, K., Valerius, O. and Braus, G. H. 2013. Interplay of the fungal sumoylation network for control of multicellular development. Mol. Microbiol. 90:1125-1145.
    [2013]
  • Han, J., Liu, T., Huen, M. S., Hu, L., Chen, Z. and Huang, J. 2014. SIVA1 directs the E3 ubiquitin ligase RAD18 for PCNA monoubiquitination. J. Cell. Biol. 205:811-827.
    [2014]
  • Gupta, Y. K., Dagdas, Y. F., Martinez-Rocha, A. L., Kershaw, M. J., Littlejohn, G. R., Ryder, L. S., Sklenar, J., Menke, F. and Talbot, N. J. 2015. Septindependent assembly of the exocyst is essential for plant infection by Magnaporthe oryzae. The Plant Cell. 27:3277-3289.
    [2015]
  • Guo, M., Gao, F., Zhu, X., Nie, X., Pan, Y. and Gao, Z. 2015. MoGrr1, a novel Fbox protein, is involved in conidiogenesis and cell wall integrity and is critical for the full virulence of Magnaporthe oryzae. Appl. Microbiol. Biotechnol. 99:8075-8088.
    [2015]
  • Gujjula, R., Veeraiah, S., Kumar, K., Thakur, S. S., Mishra, K. and Kaur, R. 2016. Identification of components of the SUMOylation machinery in Candida glabrata: role of the deSUMOylation peptidase CgUlp2 in virulence. J. Biol. Chem. 291:19573-19589.
    [2016]
  • Gujjula, R., Veeraiah, S., Kumar, K., Thakur, S. S., Mishra, K. and Kaur, R. 2016. Identification of components of the SUMOylation Machinery in Candida glabrata: role of deSUMOylation peptidase CgUlp2 in virulence. J. Biol. Chem. 291:19573-19589.
    [2016]
  • Grosset, M., Desnos-Ollivier, M., Godet, C., Kauffmann-Lacroix, C. and Cazenave- Roblot, F. 2016. Recurrent episodes of Candidemia due to Candida glabrata, Candida tropicalis and Candida albicans with acquired echinocandin resistance. Med. Mycol. Case Rep. 14:20-23.
    [2016]
  • Gong, L., Li, B., Millas, S. and Yeh, E. T. 1999. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrinactivating enzyme complex. FEBS Lett. 448:185-189.
    [1999]
  • Goldstein, G., Scheid, M., Hammerling, U., Schlesinger, D. H., Niall, H. D. and Boyse, E. A. 1975. Isolation of a polypeptide that has lymphocytedifferentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. U.S.A. 72:11-15.
    [1975]
  • Goh, J., Kim, K. S., Park, J., Jeon, J., Park, S.-Y. and Lee, Y.-H. 2011. The cell cycle gene MoCDC15 regulates hyphal growth, asexual development and plant infection in the rice blast pathogen Magnaporthe oryzae. Fungal Genet. Biol. 48:784-792.
    [2011]
  • Goh, J., Jeon, J., and Lee, Y.-H. 2017. ER retention receptor, MoERR1 is required for fungal development and pathogenicity in the rice blast fungus, Magnaporthe oryzae. Sci. Rep. 7:1259.
    [2017]
  • Goh, J., Jeon, J., Kim, K. S., Park, J., Park, S.-Y. and Lee, Y.-H. 2011. The PEX7- mediated peroxisomal import system is required for fungal development and pathogenicity in Magnaporthe oryzae. PLoS ONE. 6:e28220.
    [2011]
  • Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B. M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miquel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W. L., Chen, L., Cooper, B., Park, S., Wood, T. C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R. M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A. and Briggs, S. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 296:92-100.
  • Giraldo, M.C., Dagdas, Y.F., Gupta, Y. K., Mentlak, T. A., Yi, M., Martinez-Rocha, A. L., Saitoh, H., Terauchi, R., Talbot, N.J., and Valent, B. 2013. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat. Commun. 4:1996.
    [2013]
  • Gillies, J., Hickey, C. M., Su, D., Wu, Z., Peng, J. and Hochstrasser, M. 2016. SUMO pathway modulation of regulatory protein binding at the ribosomal DNA locus in Saccharomyces cerevisiae. Genetics. 202:1377-1394.
    [2016]
  • Gill, G. 2004. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18:2046-2059.
    [2004]
  • Geng, L., Huntoon, C. J. and Karnitz, L. M. 2010. RAD18-mediated ubiquitination of PCNA activates the fanconi anemia DNA repair network. J. Cell Biol. 191:249-257.
    [2010]
  • Gene expression profiling during conidiation in the rice blast pathogen Magnaporthe oryzae .
    Kim , K.S. , and Lee , Y.-H. 7 : e43202 . [2012]
  • Garza, R., and Pillus, L. 2013. STUbLs in chromatin and genome stability. Biopolymers. 99:146-154.
    [2013]
  • Garvin, A. J., Densham, R. M., Blair‐Reid, S. A., Pratt, K. M., Stone, H. R., Weekes, D., Lawrence, K. J. and Morris, J. R. 2013. The deSUMOylase SENP7 promotes chromatin relaxation for homologous recombination DNA repair. EMBO Rep. 14:975-983.
    [2013]
  • Garvin, A. J. and Morris, J. R. 2017. SUMO, a small, but powerful, regulator of double-strand break repair. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372:20160281.
    [2017]
  • Gali, H., Juhasz, S., Morocz, M., Hajdu, I., Fatyol, K., Szukacsov, V., Burkovics, P. and Haracska, L. 2012. Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res. 40:6049-6059.
    [2012]
  • Galanty, Y., Belotserkovskaya, R., Coates, J., and Jackson, S. P. 2012. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev. 26:1179-1195.
    [2012]
  • Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3
    Saitoh , H. and Hinchey , J 275:6252- 6258 [2000]
  • Flaishman, M., Hwang, C.-S. and Kolattukudy, P. 1995. Involvement of protein phosphorylation in the induction of appressorium formation in Colletotrichum gloeosporioides by its host surface wax and ethylene. Physiol. Mol. Plant Pathol. 47:103-117.
    [1995]
  • Fernandes, T. R., Segorbe, D., Prusky, D., and Di Pietro, A. 2017. How alkalinization drives fungal pathogenicity. PLOS Pathog. 13:e1006621.
    [2017]
  • Feng, X., Krishnan, K., Richie, D.L., Aimanianda, V., Hartl, L., Grahl, N., Powers- Fletcher, M.V., Zhang, M., Fuller, K.K., Nierman, W.C., Lu, L.J., Latgé, J.- P., Woollett, L., Newman, S.L., Cramer Jr, R.A., Rhodes, J.C., and Askew, D.S. 2011. HacA-independent functions of the ER stress sensor IreA synergize with the canonical UPR to influence virulence traits in Aspergillus fumigatus. PLOS Pathog. 7:e1002330.
  • Feligioni, M. and Nisticò, R. 2013. SUMO: a (oxidative) stressed protein. Neuromol. Med. 15:707-719.
    [2013]
  • Esteras, M., Liu, I. C., Snijders, A. P., Jarmuz, A. and Aragon, L. 2017. Identification of SUMO conjugation sites in the budding yeast proteome. Microb. Cell. 4:331-341.
    [2017]
  • Environmental pH modulation by pathogenic fungi as a strategy to conquer the host .
    Vylkova , S. 13 : e1006149 . [2017]
  • Enserink, J. M. 2015. Sumo and the cellular stress response. Cell Div. 10:1-13.
    [2015]
  • Eisenhardt, N., Chaugule, V. K., Koidl, S., Droescher, M., Dogan, E., Rettich, J., Sutinen, P., Imanishi, S.Y., Hofmann, K., Palvimo, J, J. and Pichler, A. 2015. A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Nat. Struct. Mol. Biol. 22:959-967.
  • Ebbole, D. J. 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annu. Rev. Phytopathol. 45:437-456.
    [2007]
  • Dürr, M., Escobar-Henriques, M., Merz, S., Geimer, S., Langer, T., and Westermann, B. 2006. Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast. Mol. Biol. Cell. 17:3745-3755.
    [2006]
  • Dohmen, R. J. 2004. SUMO protein modification. Biochim. Biophys. Acta. 1695:113-131.
    [2004]
  • Diversity of the SUMOylation machinery in plants
    Lois , L. M. 38 : 60-64 [2010]
  • Dielen, A. S., Badaoui, S., Candresse, T. and German-Retana, S. 2010. The ubiquitin/26S proteasome system in plant–pathogen interactions: a neverending hide‐and‐seek game. Mol. Plant Pathol. 11:293-308.
    [2010]
  • Desterro, J. M., Rodriguez, M. S., Kemp, G. D. and Hay, R. T. 1999. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Bio. Chem. 274:10618-10624.
    [1999]
  • Denison, C., Rudner, A. D., Gerber, S. A., Bakalarski, C. E., Moazed, D. and Gygi, S. P. 2005. A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics. 4:246-254.
    [2005]
  • Dean, R., Van Kan, J. A. L, Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430.
  • Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J.-R., Pan, H., Read, N. D., Lee, Y.-H., Carbone, I., Brown, D., Oh, Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W., Harding, M., Kim, S., Lebrun, M.-H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L.-J., Nicole, R., Purcell, S., Nusbaum, C., Galagan, J. E. and Birren, B. W. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 434:980.
  • Dean, R. A. 1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol. 35:211-234.
    [1997]
  • Dagdas, Y. F., Yoshino, K., Dagdas, G., Ryder, L. S., Bielska, E., Steinberg, G. and Talbot, N. J. 2012. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science. 336:1590-1595.
    [2012]
  • Cuijpers, S. A., Willemstein, E. and Vertegaal, A. C. 2017. Converging small ubiquitin-like modifier (SUMO) and ubiquitin signaling: improved methodology identifies co-modified target proteins. Mol. Cell. Proteom. 16:2281-2295.
    [2017]
  • Cui, Z., Scruggs, S. B., Gilda, J. E., Ping, P. and Gomes, A. V. 2014. Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J. Mol. Cell. Cardiol, 71: 32-42.
    [2014]
  • Colignon, B., Dieu, M., Demazy, C., Delaive, E., Muhovski, Y., Raes, M. and Mauro, S. 2017 Proteomic Study of SUMOylation During Solanum tuberosum- Phytophthora infestans Interactions. Mol. Plant Microbe Interact. 30:855- 865.
    [2017]
  • Colby, T., Matthäi, A., Boeckelmann, A. and Stuible, H. P. 2006. SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis. Plant Physiol. 142:318-332.
    [2006]
  • Choi, J., Chung, H., Lee, G.-W., Koh, S.-K., Chae, S.-K. and Lee, Y.-H. 2015. Genome-wide analysis of hypoxia-responsive genes in the rice blast fungus, Magnaporthe oryzae. PloS ONE. 10:e0134939.
    [2015]
  • Choi, J., Cheong, K., Jung, K., Jeon, J., Lee, G.-W., Kang, S., Kim, S., Lee, Y.-W., and Lee, Y.-H. 2012. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res. 41:714-719.
    [2012]
  • Choi, J., Cheong, K., Jung, K., Jeon, J., Lee, G.-W., Kang, S., Kim, S., Lee, Y.-W. and Lee, Y.-H. 2013. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and oomycetes. Nucleic Acids Res. 41:D714-719.
    [2013]
  • Cheung, P., Tanner, K. G., Cheung, W. L., Sassone-Corsi, P., Denu, J. M. and Allis, C. D. 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell. 5:905-915.
    [2000]
  • Cheon, S.A., Jung, K.-W., Chen, Y.-L., Heitman, J., Bahn, Y.-S., and Kang, H.A. 2011. Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hxl1, for controlling pathogenicity of Cryptococcus neoformans. PLOS Pathog. 7:e1002177.
    [2011]
  • Cheng, C. H., Lo, Y. H., Liang, S. S., Ti, S. C., Lin, F. M., Yeh, C. H., Huang, H.-Y. and Wang, T. F. 2006. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20:2067-2081.
    [2006]
  • Chandrasekharan, M. B., Huang, F. and Sun, Z. W. 2009. Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc. Natl. Acad. Sci. U.S.A. 106:16686-16691.
    [2009]
  • Celen, A. B. and Sahin, U. 2020. Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. FEBS J. 287:3110-3140.
    [2020]
  • Catala, R., Ouyang, J., Abreu, I. A., Hu, Y., Seo, H., Zhang, X., and Chua, N. H. 2007. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. The Plant Cell. 19:2952-2966.
    [2007]
  • Castaño-Miquel, L., Seguí, J., Manrique, S., Teixeira, I., Carretero-Paulet, L., Atencio, F. and Lois, L. M. 2013. Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation. Mol. Plant. 6:1646-1660.
    [2013]
  • Capella-Gutierrez, S., Silla-Martinez, J. M. and Gabaldon, T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25:1972-1973.
  • Cai, X., Wang, Z., Hou, Y., Liu, C., Hendy, A., Xing, J. and Chen, X. L. 2020. Systematic characterization of the ubiquitin-specific proteases in Magnaporthe oryzae. Phytopathology. 2:1-12.
    [2020]
  • Budhiraja, R., Hermkes, R., Müller, S., Schmidt, J., Colby, T., Panigrahi, K., Coupland, G. and Bachmair, A. 2009. Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation. Plant Physiol. 149:1529-1540.
    [2009]
  • Broday, L., Kolotuev, I., Didier, C., Bhoumik, A., Gupta, B. P., Sternberg, P. W., Podbilewicz, B. and Ronai, Z. 2004. The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. Genes Dev. 18:2380-2391.
    [2004]
  • Bousset, L., Ermel, M., Soglonou, B., and Husson, O. 2019. A method to measure redox potential (Eh) and pH in agar media and plants shows that fungal growth is affected by and affects pH and Eh. Fungal Biol. 123:117-124.
    [2019]
  • Bi, F., Barad, S., Ment, D., Luria, N., Dubey, A., Casado, V., Glam, N., Minguez, J.D., Espeso, E.A., Fluhr, R., and Prusky, D. 2016. Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. Mol. Plant Pathol. 17:1178-1195.
    [2016]
  • Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. and Lima, C. D. 2002. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell. 108:345- 356.
    [2002]
  • Benlloch, R. and Lois, L. M. 2018. Sumoylation in plants: mechanistic insights and its role in drought stress. J. Exp. Bot. 69:4539-4554.
    [2018]
  • Balakirev, M. Y., Mullally, J. E., Favier, A., Assard, N., Sulpice, E., Lindsey, D. F., Rulina, A. V., Gidrol, X. and Wilkinson, K. D. 2015. Wss1 metalloprotease partners with Cdc48/Doa1 in processing genotoxic SUMO conjugates. Elife, 4:e06763
    [2015]
  • Augustine, R. C., York, S. L., Rytz, T. C. and Vierstra, R. D. 2016. Defining the SUMO system in maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress. Plant Physiol. 171:2191-2210.
    [2016]
  • Atir-Lande, A., Gildor, T., and Kornitzer, D. 2005. Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis. Mol. Biol. Cell. 16:2772-2785.
    [2005]
  • Alonso, A., Greenlee, M., Matts, J., Kline, J., Davis, K. J. and Miller, R. K. 2015. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton. 72:305-339.
    [2015]
  • Alonso, A., D’Silva, S., Rahman, M., Meluh, P. B., Keeling, J., Meednu, N., Hoops, H.J., and Miller, R.K. 2012. The yeast homologue of the microtubuleassociated protein Lis1 interacts with the sumoylation machinery and a SUMO-targeted ubiquitin ligase. Mol. Biol. Cell. 23:4552–4566.
    [2012]
  • Akimov, V., Barrio-Hernandez, I., Hansen, S. V., Hallenborg, P., Pedersen, A. K., Bekker-Jensen, D. B., Puglia, M., Christensen, S. D. K., Vanselow, J. T., Nielsen, M. M., Kratchmarova, I., Kelstrup, C. D., Olsen, J. V. and Blagoev, B. 2018. UbiSite approach for comprehensive mapping of lysine and Nterminal ubiquitination sites. Nat. Struct. Mol. Biol. 25:631-640.
  • Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., Banet, J. F., Billis, K., Girón, C. G., Howe, T. H. K., Kähäri, A., Kokocinski, F., Martin, F. J., Murphy, D. N., Nag, R., Ruffier, M., Schuster, M., Tang, Y. A., Vogel J.-H., White, S., Zadissa, A., Flicek, P. and Searle, S. M. J. 2016. The Ensembl gene annotation system. Database (Oxford). 2016.
  • A new protease required for cell-cycle progression in yeast