Synthetic biological approaches to develop improved Bacillus thuringiensis insecticides = 개량된 Bacillus thuringiensis 살충제를 개발하기 위한 합성생물학적 접근법

박민구 2022년
논문상세정보
' Synthetic biological approaches to develop improved Bacillus thuringiensis insecticides = 개량된 Bacillus thuringiensis 살충제를 개발하기 위한 합성생물학적 접근법' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 농학과 관계공학
  • Cry toxins
  • bacillus thuringiensis
  • bio-insecticides
  • double-stranded RNA
  • rna interference
  • sacbrood virus
  • sporulation
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,920 0

0.0%

' Synthetic biological approaches to develop improved Bacillus thuringiensis insecticides = 개량된 Bacillus thuringiensis 살충제를 개발하기 위한 합성생물학적 접근법' 의 참고문헌

  • de Miranda, J.R., Bailey, L., Ball, B.V., Blanchard, P., Budge, G.E., Chejanovsky, N., Chen, Y.-P., Gauthier, L., Genersch, E., de Graaf, D.C., Ribière, M., Ryabov, E., De Smet, L., van der Steen, J.J.M., 2013. Standard methods for virus research in Apis mellifera. J. Apic. Res. 52, 1–56.
  • Zhu, C., Ruan, L., Peng, D., Yu, Z., Sun, M., 2006. Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Lett. Appl. Microbiol. 42, 109–114.
    [2006]
  • Zhang, J., Feng, J., Liang, Y., Chen, D., Zhou, Z.H., Zhang, Q., Lu, X., 2001. Threedimensional structure of the Chinese Sacbrood bee virus. Sci. China C Life Sci. 44, 443–448.
    [2001]
  • Young, J.R., 1979. Fall armyworm: control with insecticides. Fla. Entomol. 130–133.
    [1979]
  • Xue, J.-L., Cai, Q.-X., Zheng, D.-S., Yuan, Z.-M., 2005. The synergistic activity between Cry1Aa and Cry1c from Bacillus thuringiensis against Spodoptera exigua and Helicoverpa armigera. Lett. Appl. Microbiol. 40, 460–465.
    [2005]
  • World Health Organization, 2020. Vector-borne diseases factsheet. WHO Regional Office for South-East Asia.
    [2020]
  • Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., Earl, A.M., 2014. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLOS ONE 9, e112963.
    [2014]
  • Visser, B., Munsterman, E., Stoker, A., Dirkse, W.G., 1990. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172, 6783–6788.
    [1990]
  • Velivelli, S.L., De Vos, P., Kromann, P., Declerck, S., Prestwich, B.D., 2014. Biological control agents: from field to market, problems, and challenges. Trends Biotechnol. 32, 493–496.
    [2014]
  • Valicente, F.H., de Toledo Picoli, E.A., de Vasconcelos, M.J.V., Carneiro, N.P., Carneiro, A.A., Guimarães, C.T., Lana, U.G., 2010. Molecular characterization and distribution of Bacillus thuringiensis cry1 genes from Brazilian strains effective against the fall armyworm, Spodoptera frugiperda. Biol. Control 53, 360– 366.
    [2010]
  • Turner, C.T., Davy, M.W., MacDiarmid, R.M., Plummer, K.M., Birch, N.P., Newcomb, R.D., 2006. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol. 15, 383–391.
    [2006]
  • Travers, R.S., Martin, P.A.W., Reichelderfer, C.F., 1987. Selective process for efficient isolation of soil Bacillus spp. Appl Env. Microbiol 53, 1263–1266.
    [1987]
  • Transformation of Bacillus thuringiensis by electroporation
    Bone , E.J. , Ellar , D.J. 58 , 171 ? 177 [1989]
  • Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene
  • Tounsi, S., Dammak, M., Rebaî, A., Jaoua, S., 2005. Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins and toxin mixtures. Biol. Control 35, 27–31.
    [2005]
  • The phosphorelay signal transduction pathway in the initiation of Bacillus subtilis sporulation
    Hoch , J.A. 51 , 55 ? 61 [1993]
  • The mode of action of Bacillus thuringiensis endotoxins
  • The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division
    Fujita , M. , Losick , R. 17 , 1166 ? 1174 [2003]
  • The challenge of antibiotic resistance
    Levy , S.B. 278 , 46 ? 53 [1998]
  • The Asian Honey Bee ( Apis cerana ) is Significantly in Decline
  • Terenius, O., Papanicolaou, A., Garbutt, J.S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J.-L., Barthel, A., Bebas, P., Bitra, K., Bravo, A., Chevalier, F., Collinge, D.P., Crava, C.M., de Maagd, R.A., Duvic, B., Erlandson, M., Faye, I., Felföldi, G., Fujiwara, H., Futahashi, R., Gandhe, A.S., Gatehouse, H.S., Gatehouse, L.N., Giebultowicz, J.M., Gómez, I., Grimmelikhuijzen, C.J.P., Groot, A.T., Hauser, F., Heckel, D.G., Hegedus, D.D., Hrycaj, S., Huang, L., Hull, J.J., Iatrou, K., Iga, M., Kanost, M.R., Kotwica, J., Li, C., Li, J., Liu, J., Lundmark, M., Matsumoto, S., Meyering-Vos, M., Millichap, P.J., Monteiro, A., Mrinal, N., Niimi, T., Nowara, D., Ohnishi, A., Oostra, V., Ozaki, K., Papakonstantinou, M., Popadic, A., Rajam, M.V., Saenko, S., Simpson, R.M., Soberón, M., Strand, M.R., Tomita, S., Toprak, U., Wang, P., Wee, C.W., Whyard, S., Zhang, W., Nagaraju, J., ffrench-Constant, R.H., Herrero, S., Gordon, K., Swevers, L., Smagghe, G., 2011. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 57, 231–245.
  • Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J., Natale, D.A., 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41.
  • Tabashnik, B.E., Liu, Y.-B., Finson, N., Masson, L., Heckel, D.G., 1997. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc. Natl. Acad. Sci. 94, 1640–1644.
    [1997]
  • Tabashnik, B.E., Brévault, T., Carrière, Y., 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521.
    [2013]
  • Substances generally recognized as safe-until they ’ re not : challenges in protecting the food supply in a processed world
    Scrufari , C.A. 36 , 219 . [2016]
  • Song, F., Zhang, J., Gu, A., Wu, Y., Han, L., He, K., Chen, Z., Yao, J., Hu, Y., Li, G., 2003. Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene. Appl. Environ. Microbiol. 69, 5207– 5211.
    [2003]
  • Sonawane, N.D., Szoka, F.C., Verkman, A.S., 2003. Chloride accumulation and swelling in endosomes enhances DNA transfer by Polyamine-DNA Polyplexes. J. Biol. Chem. 278, 44826–44831.
    [2003]
  • Shepard, D.S., 1984. Computer Mapping: The SYMAP Interpolation Algorithm, In Spatial Statistics and Models, Springer Netherlands, Dordrecht, pp. 133–145.
    [1984]
  • Serological identification of Bacillus thuringiensis and related bacteria isolated in Japan
    Ohba , M. , Aizawa , K. 32 , 303 ? 309 [1978]
  • Seemann, T., 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069.
    [2014]
  • Scott, J.G., Michel, K., Bartholomay, L.C., Siegfried, B.D., Hunter, W.B., Smagghe, G., Zhu, K.Y., Douglas, A.E., 2013. Towards the elements of successful insect RNAi. J. Insect Physiol. 59, 1212–1221.
    [2013]
  • Schnepf, E., Crickmore, N., Rie, J.V., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R., Dean, D.H., 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806.
    [1998]
  • Sansinenea, E., Vázquez, C., Ortiz, A., 2010. Genetic manipulation in Bacillus thuringiensis for strain improvement. Biotechnol. Lett. 32, 1549–1557.
    [2010]
  • Sajid, M., Geng, C., Li, M., Wang, Y., Liu, H., Zheng, J., Peng, D., Sun, M., 2018. Whole-genome analysis of Bacillus thuringiensis revealing partial genes as a source of novel cry toxins. Appl. Environ. Microbiol. 84.
    [2018]
  • STAB-SD : a Shine ? Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability .
    Agaisse , H. , Lereclus , D. , 20 , 633 ? 643 . [1996]
  • Rosenkranz, P., Aumeier, P., Ziegelmann, B., 2010. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119.
    [2010]
  • Ricietto, A.P.S., Gomis-Cebolla, J., Vilas-Bôas, G.T., Ferré, J., 2016. Susceptibility of Grapholita molesta (Busck, 1916) to formulations of Bacillus thuringiensis, individual toxins and their mixtures. J. Invertebr. Pathol. 141, 1–5.
    [2016]
  • Reyes-Ramírez, A., Ibarra, J.E., 2008. Plasmid patterns of Bacillus thuringiensis type strains. Appl. Environ. Microbiol. 74, 125–129.
    [2008]
  • Remy-Kristensen, A., Clamme, J.-P., Vuilleumier, C., Kuhry, J.-G., Mely, Y., 2001. Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochim. Biophys. Acta 1, 21-32
    [2001]
  • Regulation of insecticidal crystal protein production in Bacillus thuringiensis
    Baum , J.A. , Malvar , T. 18 , 1 ? 12 [1995]
  • Rang, C., Gil, P., Neisner, N., Van Rie, J., Frutos, R., 2005. Novel Vip3-related protein from Bacillus thuringiensis. Appl. Environ. Microbiol. 71, 6276–6281.
    [2005]
  • Ramirez-Romero, R., Chaufaux, J., Pham-Delègue, M.-H., 2005. Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36, 601–611.
    [2005]
  • Qin, S., Lin, H., Jiang, P., 2012. Advances in genetic engineering of marine algae. Biotechnol. Adv., Special issue on ACB 2011 30, 1602–1613.
    [2012]
  • Protein phosphorylation and regulation of adaptive responses in bacteria
  • Prevention of Chinese Sacbrood Virus Infection in Apis cerana using RNA Interference .
  • Plasmid uptake by bacteria : a comparison of methods and efficiencies
    Yoshida , N. , Sato , M. 83 , 791 ? 798 . [2009]
  • Pirk, C.W.W., Strauss, U., Yusuf, A.A., Démares, F., Human, H., 2016. Honeybee health in Africa—a review. Apidologie 47, 276–300.
    [2016]
  • Peterson, R.K., Higley, L.G., 2000. Biotic stress and yield loss. CRC Press.
    [2000]
  • Persistence of Bacillus thuringiensis in foundation beeswax and beecomb in beehives for the control of Galleria mellonella
    Burges , H.D. 28 , 217 ? 222 [1976]
  • Peng, Y.-S., Fang, Y., Xu, S., Ge, L., 1987. The resistance mechanism of the Asian honey bee, Apis cerana to an ectoparasitic mite, Varroa jacobsoni Oudemans. J. Invertebr. Pathol. 49, 54–60.
    [1987]
  • Peng, D., Luo, Y., Guo, S., Zeng, H., Ju, S., Yu, Z., Sun, M., 2009. Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis. J. Appl. Microbiol. 106, 1849–1858.
    [2009]
  • Park, M.G., Kim, W.J., Choi, J.Y., Kim, J.H., Park, D.H., Kim, J.Y., Wang, M., Je, Y.H., 2020. Development of a Bacillus thuringiensis based dsRNA production platform to control sacbrood virus in Apis cerana. Pest Manag. Sci. 76, 1699–1704.
    [2020]
  • Park, M.G., Choi, J.Y., Park, D.H., Wang, M., Kim, H.J., Je, Y.H., 2021. Simultaneous control of sacbrood virus (SBV) and Galleria mellonella using a Bt strain transformed to produce dsRNA targeting the SBV vp1 gene. Entomol. Gen. 41, 233–242.
  • Palma, L., Muñoz, D., Berry, C., Murillo, J., Caballero, P., 2014. Bacillus thuringiensis Toxins: An overview of their biocidal activity. Toxins 6, 3296–3325.
    [2014]
  • Paldi, N., Glick, E., Oliva, M., Zilberberg, Y., Aubin, L., Pettis, J., Chen, Y., Evans, J.D., 2010. Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. Appl. Environ. Microbiol. 76, 5960– 5964.
    [2010]
  • Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T., Fookes, M., Falush, D., Keane, J.A., Parkhill, J., 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691-3693.
    [2015]
  • Overview of the basic biology of Bacillus thuringiensis with emphasis on genetic engineering of bacterial larvicides for mosquito control
  • On the use of Bacillus thuringiensis in the fight against the corn borer
    Husz , B. 2 , 99 ? 110 [1929]
  • Nucleotide sequences of the sporulation gene spo0A and its mutant genes of Bacillus subtilis
    Kudoh , J. , Ikeuchi , T. 82 , 2665 ? 2668 . [1985]
  • Muschiol, S., Balaban, M., Normark, S., Henriques-Normark, B., 2015. Uptake of extracellular DNA: Competence induced pili in natural transformation of Streptococcus pneumoniae. BioEssays 37, 426–435.
    [2015]
  • Monnerat, R.G., Batista, A.C., de Medeiros, P.T., Martins, E.S., Melatti, V.M., Praça, L.B., Dumas, V.F., Morinaga, C., Demo, C., Gomes, A.C.M., 2007. Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biol. Control 41, 291–295.
  • Molecular genetics of sporulation in Bacillus subtilis
    Stragier , P. , Losick , R. 30 , 297 ? 341 [1996]
  • Molecular genetic manipulation of truncated Cry1C protein synthesis in Bacillus thuringiensis to improve stability and yield .
  • Moar, W.J., Pusztai-Carey, M., Faassen, H.V., Bosch, D., Frutos, R., Rang, C., Luo, K., Adang, M.J., 1995. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 61, 2086–2092.
    [1995]
  • Miranda, J.R. de, Bailey, L., Ball, B.V., Blanchard, P., Budge, G.E., Chejanovsky, N., Chen, Y.-P., Gauthier, L., Genersch, E., Graaf, D.C. de, Ribière, M., Ryabov, E., Smet, L.D., Steen, J.J.M. van der, 2013. Standard methods for virus research in Apis mellifera. J. Apic. Res. 52, 1–56.
  • Mingxiao, M., Jinhua, L., Yingjin, S., Li, L., Yongfei, L., 2013. TaqMan MGB probe fluorescence real-Time quantitative PCR for rapid detection of Chinese Sacbrood Virus. PLOS ONE 8, e52670.
    [2013]
  • Martin, P.A., Lohr, J.R., Dean, D.H., 1981. Transformation of Bacillus thuringiensis protoplasts by plasmid deoxyribonucleic acid. J. Bacteriol. 145, 980–983.
    [1981]
  • Maori, E., Paldi, N., Shafir, S., Kalev, H., Tsur, E., Glick, E., Sela, I., 2009. IAPV, a beeaffecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Mol. Biol. 18, 55–60.
    [2009]
  • Mao, H.-Q., Roy, K., Troung-Le, V.L., Janes, K.A., Lin, K.Y., Wang, Y., August, J.T., Leong, K.W., 2001. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Controlled Release 70, 399–421.
    [2001]
  • Malone, L.A., Pham-Delègue, M.-H., 2001. Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.). Apidologie 32, 287–304.
    [2001]
  • Mahillon, J., Lereclus, D., 2000. Electroporation of Bacillus thuringiensis and Bacillus cereus. In Electrotransformation of Bacteria, Springer, Berlin, Heidelberg, 242– 252.
    [2000]
  • Macaluso, A., Mettus, A.M., 1991. Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA. J. Bacteriol. 173, 1353–1356.
    [1991]
  • Lereclus, D., Arantès, O., Chaufaux, J., Lecadet, M.-M., 1989. Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 60, 211–217.
    [1989]
  • Lepidopteran insect species ? specific , broadspectrum , and systemic RNA interference by spraying ds RNA on larvae
  • Leonard, S.P., Powell, J.E., Perutka, J., Geng, P., Heckmann, L.C., Horak, R.D., Davies, B.W., Ellington, A.D., Barrick, J.E., Moran, N.A., 2020. Engineered symbionts activate honey bee immunity and limit pathogens. Science 367, 573-576.
    [2020]
  • Lemes, A.R.N., Davolos, C.C., Legori, P.C.B.C., Fernandes, O.A., Ferré, J., Lemos, M.V.F., Desiderio, J.A., 2014. Synergism and Antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. PLOS ONE 9, e107196.
    [2014]
  • Lehr, P., 2014. Global markets for biopesticides. Rep. Code CHM029E BCC Res.
    [2014]
  • Lees, R.S., Knols, B., Bellini, R., Benedict, M.Q., Bheecarry, A., Bossin, H.C., Chadee, D.D., Charlwood, J., Dabiré, R.K., Djogbenou, L., Egyir-Yawson, A., Gato, R., Gouagna, L.C., Hassan, M.M., Khan, S.A., Koekemoer, L.L., Lemperiere, G., Manoukis, N.C., Mozuraitis, R., Pitts, R.J., Simard, F., Gilles, J.R.L., 2014. Review: Improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Trop.,132, S2–S11.
  • Le Breton, Y., Mohapatra, N.P., Haldenwang, W.G., 2006. In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl. Environ. Microbiol. 72, 327–333.
    [2006]
  • Lambert, B., Höfte, H., Annys, K., Jansens, S., Soetaert, P., Peferoen, M., 1992. Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae. Appl. Environ. Microbiol. 58, 2536–2542.
    [1992]
  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
    [1970]
  • Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M., Goettel, M.S., 2015. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132, 1–41.
    [2015]
  • Lacey, L.A., 2017. Entomopathogens used as microbial control agents, in: Microbial Control of Insect and Mite Pests. Elsevier, pp. 3–12.
    [2017]
  • Kwadha, C.A., Ong’amo, G.O., Ndegwa, P.N., Raina, S.K., Fombong, A.T., 2017. The Biology and Control of the Greater Wax Moth, Galleria mellonella. Insects 8, 61.
    [2017]
  • Kumari, M., Pandey, S., Mishra, A., Nautiyal, C.S., 2017. Finding a facile way for the bacterial DNA transformation by biosynthesized gold nanoparticles. FEMS Microbiol. Lett. 364.
    [2017]
  • Kronstad, J.W., Schnepf, H.E., Whiteley, H.R., 1983. Diversity of locations for Bacillus thuringiensis crystal protein genes. J. Bacteriol. 154, 419–428.
    [1983]
  • Kim, Y., Koh, I., Young Lim, M., Chung, W.-H., Rho, M., 2017. Pan-genome analysis of Bacillus for microbiome profiling. Sci. Rep. 7, 10984.
    [2017]
  • Keller, M., Sneh, B., Strizhov, N., Prudovsky, E., Regev, A., Koncz, C., Schell, J., Zilberstein, A., 1996. Digestion of δ-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC. Insect Biochem. Mol. Biol. 26, 365–373.
    [1996]
  • Kaze, M., Brooks, L., Sistrom, M., 2021. Antimicrobial resistance in Bacillus-based biopesticide products. Microbiology 167.
  • Kaur, S., 2012. Risk assessment of Bt transgenic crops, in: Bacillus Thuringiensis Biotechnology. Springer, pp. 41–85.
    [2012]
  • Kang, A.-R., Lee, M.-L., Lee, M.-Y., Kim, H.-K., Yoon, M.-Y., Choi, Y.-S., 2015. Biological Control of Wax Moth, Galleria mellonella L. (Lepidoptera: Pyralidae) by Bacillus thuringiensis. J. Apic. 30, 275.
    [2015]
  • Kalman, S., Kiehne, K.L., Cooper, N., Reynoso, M.S., Yamamoto, T., 1995. Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl. Environ. Microbiol. 61, 3063–3068.
    [1995]
  • Janmaat, A.F., Myers, J., 2003. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc. R. Soc. Lond. B Biol. Sci. 270, 2263–2270.
    [2003]
  • Interaction between toxin crystals and vegetative insecticidal proteins of Bacillus thuringiensis in lepidopteran larvae .
  • Insecticidal promise of Bacillus thuringiensis
    Lambert , B. , Peferoen , M. 42 , 112 ? 122 [1992]
  • Insect Pollinated Crops , Insect Pollinators and US Agriculture : Trend Analysis of Aggregate Data for the Period 1992 ? 2009
    Calderone , N.W. 7 , e37235 . [2012]
  • Höfte, H., Whiteley, H.R., 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242–255.
    [1989]
  • Hunter, W., Ellis, J., vanEngelsdorp, D., Hayes, J., Westervelt, D., Glick, E., Williams, M., Sela, I., Maori, E., Pettis, J., Cox-Foster, D., Paldi, N., 2010. Large-Scale Field Application of RNAi Technology Reducing Israeli Acute Paralysis Virus Disease in Honey Bees (Apis mellifera, Hymenoptera: Apidae). PLOS Pathog. 6, e1001160.
  • Hu, Xiaomin., Hansen, B.Munk., Eilenberg, J., Hendriksen, N.Bohse., Smidt, Lasse., Yuan, Zhiming., Jensen, G.Bolander., 2004. Conjugative transfer, stability and expression of a plasmid encoding a cry1Ac gene in Bacillus cereus group strains. FEMS Microbiol. Lett. 231, 45–52.
    [2004]
  • History , use , and future of microbial insecticides .
  • High resistance to Sacbrood virus disease in Apis cerana ( Hymenoptera : Apidae ) colonies selected for superior brood viability and hygienic behavior .
  • He, L., Wang, T., Chen, Y., Ge, S., Wyckhuys, K.A.G., Wu, K., 2021. Larval diet affects development and reproduction of East Asian strain of the fall armyworm, Spodoptera frugiperda. J. Integr. Agric. 20, 736–744.
  • Gutiérrez-Moreno, R., Mota-Sanchez, D., Blanco, C.A., Whalon, M.E., Terán- Santofimio, H., Rodriguez-Maciel, J.C., DiFonzo, C., 2019. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 112, 792–802.
    [2019]
  • Guanghong, L., Yi, P., Qijin, C., Zhijian, S., Xiaozhao, W., 2002. Studies on the artificial diet for Beet Armyworm, Spodoptera exigua. Chin. J. Biol. Control 18, 132–134.
    [2002]
  • González, JoséM., Dulmage, H.T., Carlton, B.C., 1981. Correlation between specific plasmids and δ-endotoxin production in Bacillus thuringiensis. Plasmid 5, 351– 365.
    [1981]
  • Gomis-Cebolla, J., Ruiz de Escudero, I., Vera-Velasco, N.M., Hernández-Martínez, P., Hernández-Rodríguez, C.S., Ceballos, T., Palma, L., Escriche, B., Caballero, P., Ferré, J., 2017. Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. J. Invertebr. Pathol. 142, 60–67.
  • Glatron, M.F., Rapoport, G., 1972. Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. Biochimie 54, 1291– 1301.
    [1972]
  • Glare, T.R., O’Callaghan, M., 2000. Bacillus thuringiensisbiology, ecology and safety.
    [2000]
  • George, Z., Crickmore, N., 2012. Bacillus thuringiensis applications in agriculture, In Bacillus thuringiensis biotechnology.19–39.
    [2012]
  • Gene silencing as an adaptive defence against viruses
    Waterhouse , P.M. , Wang , M.-B. , Lough , T. 411 ( 6839 ) , 834-842 [2001]
  • Gawron-Burke, C., Baum, J.A., 1991. Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria, Genetic engineering, 237–263.
    [1991]
  • Gao, Y., Hu, Y., Fu, Q., Zhang, J., Oppert, B., Lai, F., Peng, Y., Zhang, Z., 2010. Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis. J. Invertebr. Pathol. 105, 11–15.
    [2010]
  • Fujita, M., González-Pastor, J.E., Losick, R., 2005. High-and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187, 1357–1368.
    [2005]
  • From microbial sprays to insect-resistant transgenic plants : history of the biospesticide Bacillus thuringiensis
    Sanchis , V. 31 , 217 ? 231 [2011]
  • Flower visitors and pollination in the oriental ( Indomalayan ) region
    Corlett , R.T. 79 , 497 ? 532 . [2004]
  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806.
    [1998]
  • Finney, D.J., 1952. Probit Analysis. 2nd ed. By D. J. Finney. Cambridge University Press, New York, 1952. 318 pp. J. Am. Pharm. Assoc. 41, 627–627.
  • Ferrari, F.A., Trach, K., LeCoq, D., Spence, J., Ferrari, E., Hoch, J.A., 1985. Characterization of the spo0A locus and its deduced product. Proc. Natl. Acad. Sci. 82, 2647–2651.
    [1985]
  • Fernández-Luna, M.T., Tabashnik, B.E., Lanz-Mendoza, H., Bravo, A., Soberón, M., Miranda-Ríos, J., 2010. Single concentration tests show synergism among Bacillus thuringiensis subsp. israelensis toxins against the malaria vector mosquito Anopheles albimanus. J. Invertebr. Pathol. 104, 231–233.
    [2010]
  • Expression of the crystal protein gene under the control of the alpha-amylase promoter in Bacillus thuringiensis strains .
  • Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A., Koziel, M.G., 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. 93, 5389– 5394.
    [1996]
  • Entwistle, P., Bailey, M.C., CORY, J.C., HIGGS, S.C., 1993. Bacillus thurigiensis an environmental biopesticidas theory and practice. John Wiley & Sons.
    [1993]
  • Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark, S., Dalal, R., deWinter, A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden, D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S., Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K., Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhong, F., Korlach, J., Turner, S., 2009. Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323, 133–138.
  • Efficient transformation of Bacillus thuringiensis and B. cereus via electroporation : Transformation of acrystalliferous strains with a cloned delta-endotoxin gene
  • Economic growth and the environment
    Grossman , G.M. , Krueger , A.B. 110 , 353 ? 377 [1995]
  • Diversity and distribution of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Argentina .
    Sauka , D.H. , Benintende , G.B. 49 , 273 ? 281 [2017]
  • Diamondback Moth Ecology and Management : Problems , Progress , and Prospects
  • Desai, S.D., Eu, Y.-J., Whyard, S., Currie, R.W., 2012. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by doublestranded RNA ingestion. Insect Mol. Biol. 21, 446–455.
    [2012]
  • Demeneix, B., Behr, J., 2005. Polyethylenimine (PEI), in: Advances in Genetics, Non- Viral Vectors for Gene Therapy, Second Edition: Part 1. Academic Press, pp. 215– 230.
    [2005]
  • Delécluse, A., Poncet, S., Klier, A., Rapoport, G., 1993. Expression of cryIVA and cryIVB Genes, Independently or in Combination, in a Crystal-Negative Strain of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 59, 3922–3927.
    [1993]
  • DeWeerdt, S., 2015. The beeline. Nature 521, S50–S51.
    [2015]
  • DeLucca II, A.J., Simonson, J.G., Larson, A.D., 1981. Bacillus thuringiensis distribution in soils of the United States. Can. J. Microbiol. 27, 865–870.
    [1981]
  • De Schrijver, A., De Clercq, P., de Maagd, R.A., van Frankenhuyzen, K., 2015. Relevance of Bt toxin interaction studies for environmental risk assessment of genetically modified crops. Plant Biotechnol. J. 13, 1221–1223.
    [2015]
  • Dai, P.-L., Jia, H.-R., Geng, L.-L., Diao, Q.-Y., 2016. Bt toxin Cry1Ie causes no negative effects on survival, pollen consumption, or olfactory learning in worker honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 109, 1028–1033.
    [2016]
  • Da Silva, S.M.B., Silva‐Werneck, J.O., Falcao, R., Gomes, A.C., Fragoso, R.R., Quezado, M.T., Neto, O.B.O., Aguiar, J.B., de Sá, M.G., Bravo, A., 2004. Characterization of novel Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda and other insect pests. J. Appl. Entomol. 128, 102–107.
  • Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Dean, D.H., 1998. Revision of the Nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807–813.
    [1998]
  • Crickmore, N., Nicholls, C., Earp, D.J., Hodgman, T.C., Ellar, D.J., 1990. The construction of Bacillus thuringiensis strains expressing novel entomocidal δ- endotoxin combinations. Biochem. J. 270, 133–136.
    [1990]
  • Crickmore, N., 2017. Bacillus thuringiensis Toxin Classification, Springer International Publishing, Cham, pp. 41–52.
    [2017]
  • Control of the greater and lesser wax moths ( Galleria mellonella and Achroia grisella ) with Bacillus thuringiensis
    Burges , H.D. , Bailey , L. 11 , 184 ? 195 . [1968]
  • Construction of cloning vectors for Bacillus thuringiensis
    Arantes , O. , Lereclus , D. 108 , 115 ? 119 [1991]
  • Complete Genome Sequence of Sacbrood Virus Strain SBM2 , Isolated from the Honeybee Apis cerana in Vietnam
  • Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli .
    Schnepf , H.E. , Whiteley , H.R. 78 , 2893 ? 2897 . [1981]
  • Classification of Bacillus thuringiensis strains .
    De Barjac , H. , Frachon , E. 35 , 233 ? 240 . [1990]
  • Choi, Y.S., Lee, M.Y., Hong, I.P., Kim, N.S., Kim, H.K., Lee, K.G., Lee, M.L., 2010. Occurrence of Sacbrood Virus in Korean Apiaries from Apis cerana (Hymenoptera: Apidae). J. Apic. 25, 187–191.
    [2010]
  • Characterizations of polyethyleneimine-plasmid DNA complexes for gene delivery
    Hu , W. 47 , 04 . [2008]
  • Characterization of crystal proteins of Bacillus thuringiensis NT0423 isolate from Korean sericultural farms
  • Chantawannakul, P., de Guzman, L.I., Li, J., Williams, G.R., 2016. Parasites, pathogens, and pests of honeybees in Asia. Apidologie 47, 301–324.
    [2016]
  • Chandrasena, D.I., Signorini, A.M., Abratti, G., Storer, N.P., Olaciregui, M.L., Alves, A.P., Pilcher, C.D., 2018. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Manag. Sci. 74, 746–754.
    [2018]
  • Chambers, J.A., Jelen, A., Gilbert, M.P., Jany, C.S., Johnson, T.B., Gawron-Burke, C., 1991. Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. J. Bacteriol. 173, 3966–3976.
    [1991]
  • Carlton, B.C., González Jr, J.M., 1985. The genetics and molecular biology of Bacillus thuringiensis, in: The Molecular Biology of the Bacilli. Elsevier, pp. 211–249.
    [1985]
  • Bt : Mode of action and use
    Whalon , M.E. , Wingerd , B.A. 54 , 200 ? 211 [2003]
  • Brewer, M.J., Trumble, J.T., Alvarado-Rodriguez, B., Chaney, W.E., 1990. Beet armyworm (Lepidoptera: Noctuidae) adult and larval susceptibility to three insecticides in managed habitats and relationship to laboratory selection for resistance. J. Econ. Entomol. 83, 2136–2146.
    [1990]
  • Bravo, A., Pacheco, S., Gómez, I., Garcia-Gómez, B., Onofre, J., Soberón, M., 2017. Insecticidal proteins from Bacillus thuringiensis and their mechanism of action. Springer International Publishing, Cham. 53–66.
    [2017]
  • Biology , ecology , and management of the diamondback moth
    Talekar , N.S. , Shelton , A.M. , 38 , 275 ? 301 [1993]
  • Beye, M., Härtel, S., Hagen, A., Hasselmann, M., Omholt, S.W., 2002. Specific developmental gene silencing in the honey bee using a homeobox motif. Insect Mol. Biol. 11, 527–532.
    [2002]
  • Berliner, E., 1911. Uber die schlaffsucht der mehlmottenraupe. Z Ges Getreidew 3, 63–70.
  • Bergamasco, V.B., Mendes, D.R.P., Fernandes, O.A., Desidério, J.A., Lemos, M.V.F., 2013. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). J. Invertebr. Pathol. 112, 152–158.
    [2013]
  • Beet armyworm ( Spodoptera exigua ) resistance to spinosad
  • Barboza-Corona, J.E., López-Meza, J.E., Ibarra, J.E., 1998. Cloning and expression of the cry1Ea4 gene of Bacillus thuringiensis and the comparative toxicity of its gene product. World J. Microbiol. Biotechnol. 14, 437–441.
    [1998]
  • Baranek, J., Banaszak, M., Lorent, D., Kaznowski, A., Konecka, E., 2021. Insecticidal activity of Bacillus thuringiensis Cry1, Cry2 and Vip3 toxin combinations in Spodoptera exigua control: highlights on synergism and data scoring. Entomol. Gen. 71–82.
  • Bai-Zhong, Z., Xu, S., Cong-Ai, Z., Liu-Yang, L., Ya-She, L., Xing, G., Dong-Mei, C., Zhang, P., MIng-Wang, S., Xi-Ling, C., 2020. Silencing of cytochrome P450 in Spodoptera frugiperda (Lepidoptera: Noctuidae) by RNA interference enhances susceptibility to chlorantraniliprole. J. Insect Sci. 20, 12.
    [2020]
  • Bai, C., Degheele, D., Jansens, S., Lambert, B., 1993. Activity of insecticidal crystal proteins and strains of Bacillus thuringiensis against Spodoptera exempta (Walker). J. Invertebr. Pathol. 62, 211–215.
    [1993]
  • Bacillus subtilis sporulation : regulation of gene expression and control of morphogenesis
    Errington , J. 57 , 1 ? 33 [1993]
  • Bacillus subtilis Spore Coat
    Driks , A. 63 , 1 ? 20 [1999]
  • Bachman, P., Fischer, J., Song, Z., Urbanczyk-Wochniak, E., Watson, G., 2020. Environmental fate and dissipation of applied dsRNA in soil, aquatic systems, and plants. Front. Plant Sci. 11.
    [2020]
  • Aronson, A.I., Wu, D., Zhang, C., 1995. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J. Bacteriol. 177, 4059–4065.
    [1995]
  • Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCT method
    Livak , K.J. , Schmittgen , T.D. 25 , 402 ? 408 . [2001]
  • Amdam, G.V., Simões, Z.L., Guidugli, K.R., Norberg, K., Omholt, S.W., 2003. Disruption of vitellogenin gene function in adult honeybees by intra- abdominal injection of double-stranded RNA. BMC Biotechnol. 8.
    [2003]
  • Akinc, A., Thomas, M., Klibanov, A.M., Langer, R., 2005. Exploring polyethyleniminemediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7, 657–663.
    [2005]
  • Agaisse, H., Lereclus, D., 1995. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J. Bacteriol. 177, 6027–6032.
    [1995]
  • Adams, L.F., Brown, K.L., Whiteley, H.R., 1991. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J. Bacteriol. 173, 3846–3854.
    [1991]
  • Adamczyk Jr, J.J., Leonard, B.R., Graves, J.B., 1999. Toxicity of selected insecticides to fall armyworms (Lepidoptera: Noctuidae) in laboratory bioassay studies. Fla. Entomol. 230–236.
    [1999]
  • Adamczyk Jr, J.J., Holloway, J.W., Church, G.E., Leonard, B.R., Graves, J.B., 1998. Larval survival and development of the fall armyworm (Lepidoptera: Noctuidae) on normal and transgenic cotton expressing the Bacillus thuringiensis CryIA (c) δ- endotoxin. J. Econ. Entomol. 91, 539–545.
    [1998]
  • A routine method for embedding animal tissues in Spurr resin for electron microscopy
  • A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy
    Morris , J.K. 27 , 1A-149A . [1965]