Synthesis of Carbon Nanoparticles for Biomedical and Battery Applications = 생의학 및 배터리 분야 응용을 위한 탄소 나노 입자의 합성

안민철 2022년
논문상세정보
' Synthesis of Carbon Nanoparticles for Biomedical and Battery Applications = 생의학 및 배터리 분야 응용을 위한 탄소 나노 입자의 합성' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 화학과 응용과학
  • Li-S battery
  • antiviral effect
  • carbon nanoparticle
  • gene delivery
  • graphene quantum dots
  • nano particles
  • nanotechnology
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,639 0

0.0%

' Synthesis of Carbon Nanoparticles for Biomedical and Battery Applications = 생의학 및 배터리 분야 응용을 위한 탄소 나노 입자의 합성' 의 참고문헌

  • Virus capture and destruction by label-free graphene oxide for detection and disinfection applications
    Song , Z. et al 11 , 1171-1176 , doi:10.1002/smll.201401706 ( [2015]
  • Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles , SARS-CoV and influenza H5N1 viruses
    Li , Q. et al 32 , 1518-1525 , doi : https : //doi.org/10.1016/j.peptides.2011.05.015 ( [2011]
  • Understanding the Synergic Mechanism of Weak Interactions between Graphene Oxide and Lipid Membrane Leading to the Extraction of Lipids
    Zhang , X. , Cao , F. , Wu , L. & Jiang , X 35 , 14098-14107 , doi:10.1021/acs.langmuir.9b02536 [2019]
  • Tracking the Source of Carbon Dot Photoluminescence : Aromatic Domains versus Molecular Fluorophores
    Ehrat , F. et al 17 , 7710- 7716 , doi:10.1021/acs.nanolett.7b03863 [2017]
  • Toxicity of graphene-family nanoparticles : a general review of the origins and mechanisms
    Ou , L. et al 13 , 57 , doi:10.1186/s12989-016-0168-y [2016]
  • Theoretical Evaluation on Potential Cytotoxicity of Graphene Quantum Dots
    Liang , L. et al 2 , 1983-1991 , doi:10.1021/acsbiomaterials.6b00390 [2016]
  • The use of pH-sensitive positively charged polymeric micelles for protein delivery
    Gao , G. H. et al 33 , 9157-9164 , doi : https : //doi.org/10.1016/j.biomaterials.2012.09.016 [2012]
  • The toxicity of graphene quantum dots
    Wang , S. , Cole , I. S. & Li , Q 6 , 89867-89878 , doi:10.1039/C6RA16516H [2016]
  • The starting line for COVID-19 vaccine development .
    Lee , N. ; McGeer , A . 395 , 1815 ? 1816 , doi:10.1016/S0140-6736 ( 20 ) 31239-3 . [2020]
  • The in vitro and in vivo toxicity of graphene quantum dots
    Chong , Y. et al 35 , 5041-5048 , doi : https : //doi.org/10.1016/j.biomaterials.2014.03.021 [2014]
  • Synthesis and evaluation of polyamine carbon quantum dots ( CQDs ) in Litopenaeus vannamei as a therapeutic agent against WSSV
    Huang , H. T. et al 10 , 7343 , doi:10.1038/s41598-020-64325-5 ( [2020]
  • Sustainable Nanosheet Antioxidants for Sepsis Therapy via Scavenging Intracellular Reactive Oxygen and Nitrogen Species
    Yim , D. et al . 14 , 10324-10336 , doi:10.1021/acsnano.0c03807 ( [2020]
  • Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance .
    Lee , E. S. et al . 129 , 228-236 , doi : https : //doi.org/10.1016/j.jconrel.2008.04.024 ( [2008]
  • Sulfonated Nanomaterials with Broad-Spectrum Antiviral Activity Extending beyond Heparan Sulfate-Dependent Viruses .
    Cagno , V. et al . 64 , e02001-02020 , doi:10.1128/aac.02001-20 ( [2020]
  • Small molecular organic nanocrystals resemble carbon nanodots in terms of their properties .
    Khan , S. et al 9 , 175-180 , doi:10.1039/C7SC02528A [2018]
  • Size-Tunable Silver Nanoparticle and Surface Cluster Arrays
    Hulteen , J. C. et al . Nanosphere Lithography 103 , 3854-3863 , doi:10.1021/jp9904771 [1999]
  • Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
    Yan , K. , et al. 1 , 16010 , doi:10.1038/nenergy.2016.10 [2016]
  • Roll-to-roll production of 30-inch graphene films for transparent electrodes
    Bae , S. et al 5 , 574-578 , doi:10.1038/nnano.2010.132 [2010]
  • Revealing the Nature of Interaction between Graphene Oxide and Lipid Membrane by Surface-Enhanced Infrared Absorption Spectroscopy
    Wu , L. , Zeng , L. & Jiang , X 137 , 10052-10055 , doi:10.1021/jacs.5b03803 [2015]
  • Redox Mediator : A New Strategy in Designing Cathode for Prompting Redox Process of Li ? S Batteries
    Wu , X. et al 6 , 1900958 , doi : https : //doi.org/10.1002/advs.201900958 [2019]
  • Red , Yellow , and Blue Luminescence by Graphene Quantum Dots : Syntheses , Mechanism , and Cellular Imaging
    Gao , T. et al 9 , 24846-24856 , doi:10.1021/acsami.7b05569 [2017]
  • Recent Advancement of Nanostructured Carbon for Energy Applications
    Yang , Z. et al 115 , 5159-5223 , doi:10.1021/cr5006217 [2015]
  • PD 404,182 Is a Virocidal Small Molecule That Disrupts Hepatitis C Virus and Human Immunodeficiency Virus
    Chamoun , A. M. et al . 56 , 672-681 , doi:10.1128/aac.05722-11 [2012]
  • Origins of major human infectious diseases
    Wolfe , N. D. , Dunavan , C. P. & Diamond , J 447 , 279-283 , doi:10.1038/nature05775 [2007]
  • Novel 2D Sb2S3 Nanosheet/CNT Coupling Layer for Exceptional Polysulfide Recycling Performance .
    Yao , S. et al 8 , 1800710 , doi : https : //doi.org/10.1002/aenm.201800710 [2018]
  • Multisite Inhibitors for Enteric Coronavirus : Antiviral Cationic Carbon Dots Based on Curcumin .
    Ting , D. et al . 1 , 5451-5459 , doi:10.1021/acsanm.8b00779 [2018]
  • Mesoporous carbon nanomaterials in drug delivery and biomedical application
    Zhao , Q. et al 24 , 94-107 , doi:10.1080/10717544.2017.1399300 [2017]
  • Mechanisms of Quantum Dot Nanoparticle Cellular Uptake .
    Zhang , L.W . ; Monteiro-Riviere , N.A . 110 , 138 ? 155 , doi:10.1093/toxsci/kfp087 . [2009]
  • Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes .
    Lin , D. , et al. 11 , 626-632 , doi:10.1038/nnano.2016.32 [2016]
  • Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template .
    Kim , K. et al 535 , 131-135 , doi:10.1038/nature18284 [2016]
  • Interaction of Graphene and its Oxide with Lipid Membrane : A Molecular Dynamics Simulation Study
    Chen , J. et al 120 , 6225-6231 , doi:10.1021/acs.jpcc.5b10635 [2016]
  • In vivo biodistribution and toxicology of carboxylated graphene quantum dots
    Nurunnabi , M. et al . 7 , 6858-6867 [2013]
  • High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots
    Lin , C. J. et al 15 , e1902641 , doi:10.1002/smll.201902641 [2019]
  • Graphene-based nanomaterials for versatile imaging studies
    Yoo , J.M . ; Kang , J.H . ; Hong , B.H 44 , 4835 ? 4852 , doi:10.1039/C5CS00072F . [2015]
  • Graphene quantum dots prevent alpha-synucleinopathy in Parkinson 's disease
    Kim , D. et al 13 , 812-818 , doi:10.1038/s41565- 018-0179-y [2018]
  • Graphene quantum dots in photodynamic therapy
    Chen , J. et al 2 , 4961-4967 , doi:10.1039/D0NA00631A ( [2020]
  • Graphene quantum dots from chemistry to applications
    Tian , P. ; Tang , L. ; Teng , K.S . ; Lau , S.P 10 , 221 ? 258 , doi:10.1016/j.mtchem.2018.09.007 [2018]
  • Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery .
    Hu , Y. et al 68 , 104373 , doi : https : //doi.org/10.1016/j.nanoen.2019.104373 ( [2020]
  • Graphene quantum dots as anti-inflammatory therapy for colitis
    Lee , B. C. et al 6 , eaaz2630 , doi:10.1126/sciadv.aaz2630 ( [2020]
  • Graphene quantum dots : structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries
    Park , J. et al 8 , e272-e272 , doi:10.1038/am.2016.61 [2016]
  • Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites .
    Li , Y. et al 110 , 12295-12300 , doi:10.1073/pnas.1222276110 [2013]
  • Graphene Quantum Dots Based Systems As HIV Inhibitors
    Iannazzo , D. et al 29 , 3084-3093 , doi:10.1021/acs.bioconjchem.8b00448 [2018]
  • Graphene Oxide and Derivatives : The Place in Graphene Family
    Dideikin , A.T. ; Vul ’ , A.Y 6 , 149 , doi:10.3389/fphy.2018.00149 . [2019]
  • Gram-scale synthesis of high-purity graphene quantum dots with multicolor photoluminescence
    Liu , F. et al 5 , 103428-103432 , doi:10.1039/c5ra19219f [2015]
  • Glucose-Responsive Micelles from Self-Assembly of Poly ( ethylene glycol ) -b-Poly ( acrylic acid-co-acrylamidophenylboronic acid ) and the Controlled Release of Insulin
    Wang , B. et al . 25 , 12522-12528 , doi:10.1021/la901776a [2009]
  • Gene therapy : Trials and tribulations
    Somia , N. ; Verma , I.M . 1 , 91 ? 99 , doi:10.1038/35038533 . [2000]
  • Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions .
    Donskyi , I. S. et al 11 , 15804-15809 , doi:10.1039/c9nr05273a [2019]
  • Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus
    Loczechin , A. et al 11 , 42964-42974 , doi:10.1021/acsami.9b15032 [2019]
  • Flexible free-standing carbon nanotube films for model lithium-ion batteries
    Chew , S. Y. et al . 47 , 2976-2983 , doi : https : //doi.org/10.1016/j.carbon.2009.06.045 ( [2009]
  • Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery
    Kim , M.-H. et al 5 , 3568-3576 , doi:10.1021/nn103130q ( [2011]
  • Envelope-deforming antiviral peptide derived from influenza virus M2 protein .
    Jung , Y. et al 517 , 507-512 , doi : https : //doi.org/10.1016/j.bbrc.2019.07.088 [2019]
  • Enhancing the of Performance of Lithium-Sulfur Batteries through Electrochemical Impregnation of Sulfur in Hierarchical Mesoporous Carbon Nanoparticles
    Kim , S.-J . et al 7 , 3653-3655 , doi : https : //doi.org/10.1002/celc.202001022 ( [2020]
  • Enhancement of electrochemical properties by polysulfide trapping in a graphene-coated sulfur cathode on patterned current collector .
    Yu , S.-H. et al 52 , 3203-3206 , doi:10.1039/C5CC09694D [2016]
  • Efforts at COVID-19 Vaccine Development : Challenges and Successes
    Haque , A. ; Pant , A.B . 8 , 739 . [2020]
  • Effects of HIV-1 gp41-Derived Virucidal Peptides on Virus-like Lipid Membranes
    Carravilla , P. et al . 113 , 1301-1310 , doi : https : //doi.org/10.1016/j.bpj.2017.06.061 [2017]
  • Direct visualization of sulfur cathodes : new insights into Li ? S batteries via operando X-ray based methods
    Yu , S.-H. et al 11 , 202-210 , doi:10.1039/C7EE02874A [2018]
  • DNA Self-Assembly of Targeted Near-Infrared-Responsive Gold Nanoparticles for Cancer Thermo-Chemotherapy
    Xiao , Z. et al 51 , 11853-11857 , doi : https : //doi.org/10.1002/anie.201204018 [2012]
  • Constructing multi-functional Janus separator toward highly stable lithium batteries .
    Wu , X. et al . 28 , 153-159 , doi : https : //doi.org/10.1016/j.ensm.2020.03.004 ( [2020]
  • Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance
    Zhang , K. , Zhao , Q. , Tao , Z . & Chen , J . 6 , 38-46 , doi:10.1007/s12274-012-0279-1 ( [2013]
  • Classification , properties , and environmental toxicities
    Saleh , T. A. Nanomaterials 20 , 101067 , doi : https : //doi.org/10.1016/j.eti.2020.101067 ( [2020]
  • Challenges and Prospects of Lithium ? Sulfur Batteries
    Manthiram , A. , Fu , Y . & Su , Y.-S 46 , 1125-1134 , doi:10.1021/ar300179v [2013]
  • Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor : A review
    Yang , Z. et al 141 , 467- 480 , doi : https : //doi.org/10.1016/j.carbon.2018.10.010 ( [2019]
  • Carbon dots as inhibitors of virus by activation of type I interferon response
    Du , T. et al 110 , 278-285 , doi:10.1016/j.carbon.2016.09.032 [2016]
  • Carbon ? sulfur composites for Li ? S batteries : status and prospects
    Wang , D.-W. et al A 1 , 9382-9394 , doi:10.1039/C3TA11045A [2013]
  • Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism
    Cagno , V. et al . 17 , 195-203 , doi:10.1038/nmat5053 [2018]
  • Bioapplication of graphene oxide derivatives : drug/gene delivery , imaging , polymeric modification , toxicology , therapeutics and challenges
    Nurunnabi , M. et al . 5 , 42141-42161 , doi:10.1039/C5RA04756K [2015]
  • Antiviral Activity of Graphene Oxide ? Silver Nanocomposites by Preventing Viral Entry and Activation of the Antiviral Innate Immune Response
    Du , T. et al 1 , 1286-1293 , doi:10.1021/acsabm.8b00154 [2018]
  • Antiviral Activity of Graphene Oxide : How Sharp Edged Structure and Charge Matter
    Ye , S. et al 7 , 21571-21579 , doi:10.1021/acsami.5b06876 [2015]
  • An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics
    Li , Y. et al 23 , 776-780 , doi : https : //doi.org/10.1002/adma.201003819 [2011]
  • Activation of micropore-confined sulfur within hierarchical porous carbon for lithium-sulfur batteries .
    Kim , J.-J . et al 306 , 617-622 , doi : https : //doi.org/10.1016/j.jpowsour.2015.12.093 ( [2016]
  • Accelerating Next-Generation Vaccine Development for Global Disease Prevention
    Koff , W. C. et al . 340 , 1232910 , doi:10.1126/science.1232910 ( [2013]
  • A review of the development of full cell lithium-ion batteries : The impact of nanostructured anode materials
    Balogun , M.-S. et al . 9 , 2823-2851 , doi:10.1007/s12274-016-1171-1 [2016]
  • A pomegranate-inspired nanoscale design for large-volumechange lithium battery anodes .
    Liu , N. et al . 9 , 187-192 , doi:10.1038/nnano.2014.6 [2014]
  • A Class of Catalysts of BiOX ( X = Cl , Br , I ) for Anchoring Polysulfides and Accelerating Redox Reaction in Lithium Sulfur Batteries
    Wu , X. et al 13 , 13109-13115 , doi:10.1021/acsnano.9b05908 [2019]
  • 9 Georgakilas, V., Perman, J. A., Tucek, J. & Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews 115, 4744-4822, doi:10.1021/cr500304f (2015).
    [2015]
  • 9 Chung, Y.H.; Beiss, V.; Fiering, S.N.; Steinmetz, N.F. COVID-19 Vaccine Frontrunners and Their Nanotechnology Design. ACS Nano 2020, 14, 12522–12537, doi:10.1021/acsnano.0c07197.
    [2020]
  • 8 Abu-Raddad, L.J.; Chemaitelly, H.; Butt, A.A. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. N. Engl. J. Med. 2021, 385, 187–189, doi:10.1056/NEJMc2104974.
  • 7 Wang, Y. & Xia, Y. Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals. Nano Letters 4, 2047-2050, doi:10.1021/nl048689j (2004).
    [2004]
  • 7 Jeyanathan, M.; Afkhami, S.; Smaill, F.; Miller, M.S.; Lichty, B.D.; Xing, Z. Immunological considerations for COVID-19 vac-cine strategies. Nat. Rev. Immunol. 2020, 20, 615–632, doi:10.1038/s41577-020-00434-6.
    [2020]
  • 66 Perini, G.; Palmieri, V.; Ciasca, G.; D’Ascenzo, M.; Gervasoni, J.; Primiano, A.; Rinaldi, M.; Fioretti, D.; Prampolini, C.; Tibe-rio, F.; et al. Graphene Quantum Dots’ Surface Chemistry Modulates the Sensitivity of Glioblastoma Cells to Chemothera-peutics. Int. J. Mol. Sci. 2020, 21, 6301.
  • 65 Perini, G.; Palmieri, V.; Ciasca, G.; de Spirito, M.; Papi, M. Unravelling the Potential of Graphene Quantum Dots in Biomed-icine and Neuroscience. Int. J. Mol. Sci. 2020, 21, 3712.
    [2020]
  • 64 Hanada, S.; Fujioka, K.; Inoue, Y.; Kanaya, F.; Manome, Y.; Yamamoto, K. Cell-Based in Vitro Blood-Brain Barrier Model Can Rapidly Evaluate Nanoparticles’ Brain Permeability in Association with Particle Size and Surface Modification. Int. J. Mol. Sci. 2014, 15, 1812–1825.
    [2014]
  • 62 Assunção, I.C.C.; Sério, S.; Ferreira, Q.; Jones, N.C.; Hoffmann, S.V.; Ribeiro, P.A.; Raposo, M. Graphene Oxide Lay-er-by-Layer Films for Sensors and Devices. Nanomaterials 2021, 11, 1556.
  • 61 Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon– sulphur cathode for lithium–sulphur batteries. Nature Materials 8, 500-506, doi:10.1038/nmat2460 (2009).
    [2009]
  • 61 Henna, T.K.; Pramod, K. Graphene quantum dots redefine nanobiomedicine. Mater. Sci. Eng. C 2020, 110, 110651, doi:10.1016/j.msec.2020.110651.
    [2020]
  • 60 Wang, C.; Wu, C.; Zhou, X.; Han, T.; Xin, X.; Wu, J.; Zhang, J.; Guo, S. Enhancing Cell Nucleus Accumulation and DNA Cleavage Activity of Anti-Cancer Drug via Graphene Quantum Dots. Sci. Rep. 2013, 3, 2852, doi:10.1038/srep02852.
    [2013]
  • 6 Zhang, N., Yu, S.-H. & Abruña, H. D. Regulating lithium nucleation and growth by zinc modified current collectors. Nano Research 13, 45-51, doi:10.1007/s12274-019-2567-7 (2020).
    [2020]
  • 6 Wise, J. Covid-19: The E484K mutation and the risks it poses. BMJ 372, n359, doi:10.1136/bmj.n359 (2021).
  • 6 Habiba, K., Makarov, V., Weiner, B. & Morell, G. 263-291 (2014).
    [2014]
  • 59 Shang, W.; Zhang, X.; Zhang, M.; Fan, Z.; Sun, Y.; Han, M.; Fan, L. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale 2014, 6, 5799–5806, doi:10.1039/C3NR06433F.
    [2014]
  • 58 Chung, S.; Revia, R.A.; Zhang, M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater. 2021, 33, 1904362, doi:10.1002/adma.201904362.
  • 57 Wu, C.; Wang, C.; Han, T.; Zhou, X.; Guo, S.; Zhang, J. Insight into the Cellular Internalization and Cytotoxicity of Graphene Quantum Dots. Adv. Healthc. Mater. 2013, 2, 1613–1619, doi:10.1002/adhm.201300066.
    [2013]
  • 57 Li, Q., Mahmood, N., Zhu, J., Hou, Y. & Sun, S. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 9, 668-683, doi:https://doi.org/10.1016/j.nantod.2014.09.002 (2014).
    [2014]
  • 56 Liu, Y.; Zhao, C.; Sabirsh, A.; Ye, L.; Wu, X.; Lu, H.; Liu, J. A Novel Graphene Quantum Dot-Based mRNA Delivery Platform. ChemistryOpen 2021, 10, 666–671, doi:10.1002/open.202000200.
  • 56 Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews 117, 10403-10473, doi:10.1021/acs.chemrev.7b00115 (2017).
    [2017]
  • 55 Kersting, D.; Fasbender, S.; Pilch, R.; Kurth, J.; Franken, A.; Ludescher, M.; Naskou, J.; Hallenberger, A.; Gall, C.V.; Mohr, C.J.; et al. From in vitro to ex vivo: Subcellular localization and uptake of graphene quantum dots into solid tumors. Nano-technology 2019, 30, 395101, doi:10.1088/1361-6528/ab2cb4.
  • 54 Gonçalves, C.; Akhter, S.; Pichon, C.; Midoux, P. Intracellular Availability of pDNA and mRNA after Transfection: A Com-parative Study among Polyplexes, Lipoplexes, and Lipopolyplexes. Mol. Pharm. 2016, 13, 3153– 3163, doi:10.1021/acs.molpharmaceut.6b00376.
    [2016]
  • 53 Zhu, H., Wei, J., Wang, K. & Wu, D. Applications of carbon materials in photovoltaic solar cells. Solar Energy Materials and Solar Cells 93, 1461- 1470, doi:https://doi.org/10.1016/j.solmat.2009.04.006 (2009).
    [2009]
  • 53 Cao, X.; Wang, J.; Deng, W.; Chen, J.; Wang, Y.; Zhou, J.; Du, P.; Xu, W.; Wang, Q.; Wang, Q.; et al. Photoluminescent Cation-ic Carbon Dots as efficient Non-Viral Delivery of Plasmid SOX9 and Chondrogenesis of Fibroblasts. Sci. Rep. 2018, 8, 7057, doi:10.1038/s41598-018-25330-x.
  • 52 Tabaei, S. R., Rabe, M., Zhdanov, V. P., Cho, N.-J. & Höök, F. Single Vesicle Analysis Reveals Nanoscale Membrane Curvature Selective Pore Formation in Lipid Membranes by an Antiviral α-Helical Peptide. Nano Letters 12, 5719-5725, doi:10.1021/nl3029637 (2012).
    [2012]
  • 52 Rezaei, A.; Hashemi, E. A pseudohomogeneous nanocarrier based on carbon quantum dots decorated with arginine as an efficient gene delivery vehicle. Sci. Rep. 2021, 11, 13790, doi:10.1038/s41598-021-93153-4.
  • 52 Li, Y. & Somorjai, G. A. Nanoscale Advances in Catalysis and Energy Applications. Nano Letters 10, 2289-2295, doi:10.1021/nl101807g (2010).
    [2010]
  • 51 Stark, W. J., Stoessel, P. R., Wohlleben, W. & Hafner, A. Industrial applications of nanoparticles. Chemical Society Reviews 44, 5793-5805, doi:10.1039/C4CS00362D (2015).
    [2015]
  • 51 Mohammadinejad, R.; Dadashzadeh, A.; Moghassemi, S.; Ashrafizadeh, M.; Dehshahri, A.; Pardakhty, A.; Sassan, H.; Sohre-vardi, S.-M.; Mandegary, A. Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided deliv-ery of plasmids and noncoding RNAs—A review. J. Adv. Res. 2019, 18, 81–93, doi:10.1016/j.jare.2019.01.004.
  • 51 Koller, D. & Lohner, K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim Biophys Acta 1838, 2250-2259, doi:10.1016/j.bbamem.2014.05.013 (2014).
    [2014]
  • 50 Jackman, J. A., Saravanan, R., Zhang, Y., Tabaei, S. R. & Cho, N.-J. Correlation between Membrane Partitioning and Functional Activity in a Single Lipid Vesicle Assay Establishes Design Guidelines for Antiviral Peptides. Small 11, 2372-2379, doi:https://doi.org/10.1002/smll.201403638 (2015).
    [2015]
  • 50 Ghafary, S.M.; Nikkhah, M.; Hatamie, S.; Hosseinkhani, S. Simultaneous Gene Delivery and Tracking through Preparation of Photo-Luminescent Nanoparticles Based on Graphene Quantum Dots and Chimeric Peptides. Sci. Rep. 2017, 7, 9552, doi:10.1038/s41598-017-09890-y.
    [2017]
  • 50 Cha, B. G. & Kim, J. Functional mesoporous silica nanoparticles for bioimaging applications. WIREs Nanomedicine and Nanobiotechnology 11, e1515, doi:https://doi.org/10.1002/wnan.1515 (2019).
    [2019]
  • 5 Yu, H.-D., Regulacio, M. D., Ye, E. & Han, M.-Y. Chemical routes to topdown nanofabrication. Chemical Society Reviews 42, 6006-6018, doi:10.1039/C3CS60113G (2013).
    [2013]
  • 5 Corey, L.; Mascola, J.R.; Fauci, A.S.; Collins, F.S. A strategic approach to COVID-19 vaccine R&D. Science 2020, 368, 948–950, doi:10.1126/science.abc5312.
  • 49 Serrano-Aroca, Á . et al. Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial-Resistant Era. ACS Nano, doi:10.1021/acsnano.1c00629 (2021).
  • 49 Jackman, J. A., Zan, G. H., Zhdanov, V. P. & Cho, N.-J. Rupture of Lipid Vesicles by a Broad-Spectrum Antiviral Peptide: Influence of Vesicle Size. The Journal of Physical Chemistry B 117, 16117-16128, doi:10.1021/jp409716p (2013).
    [2013]
  • 49 Carnerero, J.M.; Jimenez-Ruiz, A.; Castillo, P.M.; Prado-Gotor, R. Covalent and Non-Covalent DNA-Gold-Nanoparticle Interactions: New Avenues of Research. ChemPhysChem 2017, 18, 17–33, doi:10.1002/cphc.201601077.
    [2017]
  • 48 Zhou, Z.-W.; Liu, Y.-T.; Xie, X.-M.; Ye, X.-Y. Aluminothermic reduction enabled synthesis of silicon hollow microspheres from commercialized silica nanoparticles for superior lithium storage. Chem. Commun. 2016, 52, 8401–8404, doi:10.1039/C6CC03766F.
    [2016]
  • 48 Yoon, B. K., Jeon, W.-Y., Sut, T. N., Cho, N.-J. & Jackman, J. A. Stopping Membrane-Enveloped Viruses with Nanotechnology Strategies: Toward Antiviral Drug Development and Pandemic Preparedness. ACS Nano 15, 125-148, doi:10.1021/acsnano.0c07489 (2021).
  • 47 Pang, Y.; Gao, H.; Wu, S.; Li, X. Facile synthesis the nitrogen and sulfur co-doped carbon dots for selective fluorescence de-tection of heavy metal ions. Mater. Lett. 2017, 193, 236–239, doi:10.1016/j.matlet.2017.01.149.
    [2017]
  • 47 Derakhshan, M. A., Amani, A. & Faridi-Majidi, R. State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS Applied Materials & Interfaces 13, 14816-14843, doi:10.1021/acsami.0c22381 (2021).
  • 46 Zhao, C.; Song, X.; Liu, Y.; Fu, Y.; Ye, L.; Wang, N.; Wang, F.; Li, L.; Mohammadniaei, M.; Zhang, M.; et al. Synthesis of gra-phene quantum dots and their applications in drug delivery. J. Nanobiotechnol. 2020, 18, 142, doi:10.1186/s12951-020-00698-z.
    [2020]
  • 46 Kang, I. et al. Graphene Quantum Dots Alleviate Impaired Functions in Niemann-Pick Disease Type C in Vivo. Nano Lett, doi:10.1021/acs.nanolett.0c03741 (2021).
  • 45 Zou, X., Zhang, L., Wang, Z. & Luo, Y. Mechanisms of the Antimicrobial Activities of Graphene Materials. J Am Chem Soc 138, 2064-2077, doi:10.1021/jacs.5b11411 (2016).
    [2016]
  • 45 Zhao, Y. et al. The antibacterial activities of MoS2 nanosheets towards multi-drug resistant bacteria. Chemical Communications 57, 2998-3001, doi:10.1039/D1CC00327E (2021).
  • 45 Wu, C.; Guan, X.; Xu, J.; Zhang, Y.; Liu, Q.; Tian, Y.; Li, S.; Qin, X.; Yang, H.; Liu, Y. Highly efficient cascading synergy of cancer photoimmunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hy-brid nanotheranostics. Biomaterials 2019, 205, 106–119, doi:10.1016/j.biomaterials.2019.03.020.
    [2019]
  • 44 Biswas, M.C.; Islam, M.T.; Nandy, P.K.; Hossain, M.M. Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review. ACS Mater. Lett. 2021, 3, 889–911, doi:10.1021/acsmaterialslett.0c00550.
  • 43 Ding, H.; Zhang, F.; Zhao, C.; Lv, Y.; Ma, G.; Wei, W.; Tian, Z. Beyond a Carrier: Graphene Quantum Dots as a Probe for Programmatically Monitoring Anti-Cancer Drug Delivery, Release, and Response. ACS Appl. Mater. Interfaces 2017, 9, 27396–27401, doi:10.1021/acsami.7b08824.
    [2017]
  • 42 Xue, Z.; Sun, Q.; Zhang, L.; Kang, Z.; Liang, L.; Wang, Q.; Shen, J.-W. Graphene quantum dot assisted translocation of drugs into a cell membrane. Nanoscale 2019, 11, 4503–4514, doi:10.1039/C8NR10091H.
    [2019]
  • 42 Lee, B.-C. et al. Oral administration of microbiome-friendly graphene quantum dots as therapy for colitis. 2D Materials, doi:10.1088/2053- 1583/abe362 (2021).
  • 41 Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; di Pietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm. 2017, 518, 185–192, doi:10.1016/j.ijpharm.2016.12.060.
    [2017]
  • 40 Zhu, L., Kate, P. & Torchilin, V. P. Matrix Metalloprotease 2-Responsive Multifunctional Liposomal Nanocarrier for Enhanced Tumor Targeting. ACS Nano 6, 3491-3498, doi:10.1021/nn300524f (2012).
    [2012]
  • 40 Chen, H.; Wang, Z.; Zong, S.; Chen, P.; Zhu, D.; Wu, L.; Cui, Y. A graphene quantum dot-based FRET system for nucle-ar-targeted and realtime monitoring of drug delivery. Nanoscale 2015, 7, 15477–15486, doi:10.1039/C5NR03454J.
    [2015]
  • 4 Yoon, B. K., Jeon, W.-Y., Sut, T. N., Cho, N.-J. & Jackman, J. A. Stopping Membrane-Enveloped Viruses with Nanotechnology Strategies: Toward Antiviral Drug Development and Pandemic Preparedness. ACS Nano 15, 125-148, doi:10.1021/acsnano.0c07489 (2021).
  • 4 Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gomez Roman, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 2020, 19, 305–306, doi:10.1038/d41573-020-00073-5.
    [2020]
  • 4 Prasad Yadav, T., Manohar Yadav, R. & Pratap Singh, D. Mechanical Milling: a Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites. Nanoscience and Nanotechnology 2, 22-48, doi:10.5923/j.nn.20120203.01 (2012).
    [2012]
  • 4 Kim, S.-J., Kim, K., Park, J. & Sung, Y.-E. Role and Potential of Metal Sulfide Catalysts in Lithium-Sulfur Battery Applications. ChemCatChem 11, 2373-2387, doi:https://doi.org/10.1002/cctc.201900184 (2019).
    [2019]
  • 39 Lee, B.-C.; Lee, J.Y.; Kim, J.; Shin, N.; Yoo, J.M.; Kang, I.; Kim, J.-J.; Lee, S.-E.; Kim, D.; Choi, S.W.; et al. Oral administration of microbiomefriendly graphene quantum dots as therapy for colitis. 2D Mater. 2021, 8, 025036, doi:10.1088/2053-1583/abe362.
  • 38 Kim, D.; Yoo, J.M.; Hwang, H.; Lee, J.; Lee, S.H.; Yun, S.P.; Park, M.J.; Lee, M.; Choi, S.; Kwon, S.H.; et al. Graphene quantum dots prevent α- synucleinopathy in Parkinson’s disease. Nat. Nanotechnol. 2018, 13, 812– 818, doi:10.1038/s41565-018-0179-y.
  • 37 Liu, Y., Meng, X. & Bu, W. Upconversion-based photodynamic cancer therapy. Coordination Chemistry Reviews 379, 82-98, doi:https://doi.org/10.1016/j.ccr.2017.09.006 (2019).
    [2019]
  • 36 Rapoport, N. Y., Kennedy, A. M., Shea, J. E., Scaife, C. L. & Nam, K.-H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. Journal of Controlled Release 138, 268-276, doi:https://doi.org/10.1016/j.jconrel.2009.05.026 (2009).
    [2009]
  • 36 Peng, J.; Gao, W.; Gupta, B.K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L.B.; Zhan, X.; Gao, G.; et al. Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett. 2012, 12, 844–849, doi:10.1021/nl2038979.
    [2012]
  • 35 Zhang, D. et al. Systematic evaluation of graphene quantum dot toxicity to male mouse sexual behaviors, reproductive and offspring health. Biomaterials 194, 215-232, doi:https://doi.org/10.1016/j.biomaterials.2018.12.001 (2019).
    [2019]
  • 35 Ruiz-Hernández, E., Baeza, A. & Vallet-Regí, M. Smart Drug Delivery through DNA/Magnetic Nanoparticle Gates. ACS Nano 5, 1259-1266, doi:10.1021/nn1029229 (2011).
    [2011]
  • 35 Kim, H.; Namgung, R.; Singha, K.; Oh, I.-K.; Kim, W.J. Graphene Oxide- Polyethylenimine Nanoconstruct as a Gene Deliv-ery Vector and Bioimaging Tool. Bioconjug. Chem. 2011, 22, 2558–2567, doi:10.1021/bc200397j.
    [2011]
  • 34 Yin, F.; Hu, K.; Chen, Y.; Yu, M.; Wang, D.; Wang, Q.; Yong, K.-T.; Lu, F.; Liang, Y.; Li, Z. SiRNA Delivery with PEGylated Graphene Oxide Nanosheets for Combined Photothermal and Genetherapy for Pancreatic Cancer. Theranostics 2017, 7, 1133–1148, doi:10.7150/thno.17841.
    [2017]
  • 34 Lee, B.-C. et al. Oral administration of microbiome-friendly graphene quantum dots as therapy for colitis. 2D Materials, doi:10.1088/2053- 1583/abe362 (2021).
  • 33 Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials 12, 991-1003, doi:10.1038/nmat3776 (2013).
    [2013]
  • 32 Li, J. et al. Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. Nano Today 37, 101061, doi:https://doi.org/10.1016/j.nantod.2020.101061 (2021).
  • 32 Feng, L.; Yang, X.; Shi, X.; Tan, X.; Peng, R.; Wang, J.; Liu, Z. Polyethylene Glycol and Polyethylenimine Du-al-Functionalized Nano- Graphene Oxide for Photothermally Enhanced Gene Delivery. Small 2013, 9, 1989–1997, doi:10.1002/smll.201202538.
    [2013]
  • 32 Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer 10, 9- 22, doi:10.1038/nrc2748 (2010).
    [2010]
  • 31 Tran, S., DeGiovanni, P.-J., Piel, B. & Rai, P. Cancer nanomedicine: a review of recent success in drug delivery. Clinical and Translational Medicine 6, e44, doi:https://doi.org/10.1186/s40169-017-0175-0 (2017).
    [2017]
  • 31 Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N.G.; Wu, T.; Li, L.; Li, J.; Gan, L.H. Chitosan-Functionalized Graphene Oxide as a Nanocar-rier for Drug and Gene Delivery. Small 2011, 7, 1569–1578, doi:10.1002/smll.201100191.
    [2011]
  • 30 Beltrán-Gracia, E., López-Camacho, A., Higuera-Ciapara, I., Velázquez- Fernández, J. B. & Vallejo-Cardona, A. A. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnology 10, 11, doi:10.1186/s12645-019-0055-y (2019).
    [2019]
  • 3 Teo, B. K. & Sun, X. H. From Top-Down to Bottom-Up to Hybrid Nanotechnologies: Road to Nanodevices. Journal of Cluster Science 17, 529-540, doi:10.1007/s10876-006-0086-5 (2006).
    [2006]
  • 3 Park, J., Yu, S.-H. & Sung, Y.-E. Design of structural and functional nanomaterials for lithium-sulfur batteries. Nano Today 18, 35-64, doi:https://doi.org/10.1016/j.nantod.2017.12.010 (2018).
    [2018]
  • 3 Graham, B.S. Rapid COVID-19 vaccine development. Science 2020, 368, 945–946, doi:10.1126/science.abb8923.
  • 29 Imani, R.; Mohabatpour, F.; Mostafavi, F. Graphene-based Nano-Carrier modifications for gene delivery applications. Car-bon 2018, 140, 569–591, doi:10.1016/j.carbon.2018.09.019.
    [2018]
  • 28 Kang, I. et al. Graphene Quantum Dots Alleviate Impaired Functions in Niemann-Pick Disease Type C in Vivo. Nano Lett, doi:10.1021/acs.nanolett.0c03741 (2021).
  • 28 Gustafsson, J.; Arvidson, G.; Karlsson, G.; Almgren, M. Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochim. Biophys. Acta Biomembr. 1995, 1235, 305–312, doi:10.1016/0005- 2736(95)80018-B.
    [1995]
  • 27 Tian, H., Liang, J. & Liu, J. Nanoengineering Carbon Spheres as Nanoreactors for Sustainable Energy Applications. Advanced Materials 31, 1903886, doi:https://doi.org/10.1002/adma.201903886 (2019).
    [2019]
  • 27 Kim, J.H.; Marks, F.; Clemens, J.D. Looking beyond COVID-19 vaccine phase 3 trials. Nat. Med. 2021, 27, 205–211, doi:10.1038/s41591-021- 01230-y.
  • 27 Donskyi, I. S. et al. Graphene Sheets with Defined Dual Functionalities for the Strong SARS-CoV-2 Interactions. Small, e2007091, doi:10.1002/smll.202007091 (2021).
  • 26 Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles—From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, doi:10.1021/acsnano.1c04996.
  • 25 Barenholz, Y. Doxil® —The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134, doi:10.1016/j.jconrel.2012.03.020.
    [2012]
  • 24 Del Pozo-Rodríguez, A.; Solinís, M.Á .; Rodríguez-Gascón, A. Applications of lipid nanoparticles in gene therapy. Eur. J. Pharm. Biopharm. 2016, 109, 184–193, doi:10.1016/j.ejpb.2016.10.016.
    [2016]
  • 23 Naldini, L. Gene therapy returns to centre stage. Nature 2015, 526, 351– 360, doi:10.1038/nature15818.
    [2015]
  • 21 Sametband, M., Kalt, I., Gedanken, A. & Sarid, R. Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide. ACS Appl Mater Interfaces 6, 1228-1235, doi:10.1021/am405040z (2014).
    [2014]
  • 21 Mulligan, R. The basic science of gene therapy. Science 1993, 260, 926– 932, doi:10.1126/science.8493530.
    [1993]
  • 21 Hong, X.-J. et al. Cerium Based Metal–Organic Frameworks as an Efficient Separator Coating Catalyzing the Conversion of Polysulfides for High Performance Lithium–Sulfur Batteries. ACS Nano 13, 1923-1931, doi:10.1021/acsnano.8b08155 (2019).
    [2019]
  • 20 Lee, Y.-H., Kim, J.-H., Kim, J.-H., Yoo, J.-T. & Lee, S.-Y. Spiderweb- Mimicking Anion-Exchanging Separators for Li–S Batteries. Advanced Functional Materials 28, 1801422, doi:https://doi.org/10.1002/adfm.201801422 (2018).
    [2018]
  • 20 Deverman, B.E.; Ravina, B.M.; Bankiewicz, K.S.; Paul, S.M.; Sah, D.W.Y. Gene therapy for neurological disorders: Progress and prospects. Nat. Rev. Drug Discov. 2018, 17, 641–659, doi:10.1038/nrd.2018.110.
    [2018]
  • 2 Saunders-Hastings, P. R. & Krewski, D. Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. Pathogens 5, 66 (2016).
    [2016]
  • 2 Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615, doi:10.1056/NEJMoa2034577.
  • 2 Anu Mary Ealia, S. & Saravanakumar, M. P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering 263, 032019, doi:10.1088/1757-899x/263/3/032019 (2017).
    [2017]
  • 19 Sheridan, C. Gene therapy finds its niche. Nat. Biotechnol. 2011, 29, 121– 128, doi:10.1038/nbt.1769.
    [2011]
  • 19 Pang, Y., Wei, J., Wang, Y. & Xia, Y. Synergetic Protective Effect of the Ultralight MWCNTs/NCQDs Modified Separator for Highly Stable Lithium–Sulfur Batteries. Advanced Energy Materials 8, 1702288, doi:https://doi.org/10.1002/aenm.201702288 (2018).
    [2018]
  • 18 Weissman, D.; Karikó, K. mRNA: Fulfilling the Promise of Gene Therapy. Mol. Ther. 2015, 23, 1416–1417, doi:10.1038/mt.2015.138.
    [2015]
  • 18 Kim, S.-J., Jeoun, Y., Park, J., Yu, S.-H. & Sung, Y.-E. Design considerations for lithium–sulfur batteries: mass transport of lithium polysulfides. Nanoscale 12, 15466-15472, doi:10.1039/D0NR02936J (2020).
    [2020]
  • 18 Chung, S.-H. & Manthiram, A. High-Performance Li–S Batteries with an Ultra-lightweight MWCNT-Coated Separator. The Journal of Physical Chemistry Letters 5, 1978-1983, doi:10.1021/jz5006913 (2014).
    [2014]
  • 17 Rao, M., Li, W. & Cairns, E. J. Porous carbon-sulfur composite cathode for lithium/sulfur cells. Electrochemistry Communications 17, 1-5, doi:https://doi.org/10.1016/j.elecom.2011.12.022 (2012).
    [2012]
  • 17 Dunbar, C.E.; High, K.A.; Joung, J.K.; Kohn, D.B.; Ozawa, K.; Sadelain, M. Gene therapy comes of age. Science 2018, 359, eaan4672, doi:10.1126/science.aan4672.
    [2018]
  • 17 Chen, Y. N., Hsueh, Y. H., Hsieh, C. T., Tzou, D. Y. & Chang, P. L. Antiviral Activity of Graphene-Silver Nanocomposites against Non- Enveloped and Enveloped Viruses. Int J Environ Res Public Health 13, 430, doi:10.3390/ijerph13040430 (2016).
    [2016]
  • 16 Wirth, T.; Parker, N.; Ylä-Herttuala, S. History of gene therapy. Gene 2013, 525, 162–169, doi:10.1016/j.gene.2013.03.137.
    [2013]
  • 15 Kim, K. R., Yu, S.-H. & Sung, Y.-E. Enhancement of cycle performance of Li–S batteries by redistribution of sulfur. Chemical Communications 52, 1198-1201, doi:10.1039/C5CC07380D (2016).
    [2016]
  • 15 Jović, D. et al. The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity. Nanomaterials 10, 1508 (2020).
    [2020]
  • 15 Hung, I.F.N.; Poland, G.A. Single-dose Oxford-AstraZeneca COVID-19 vaccine followed by a 12-week booster. Lancet 2021, 397, 854–855, doi:10.1016/S0140-6736(21)00528-6.
  • 14 Madhi, S.A.; Baillie, V.; Cutland, C.L.; Voysey, M.; Koen, A.L.; Fairlie, L.; Padayachee, S.D.; Dheda, K.; Barnabas, S.L.; Bhorat, Q.E.; et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 2021, 384, 1885–1898, doi:10.1056/NEJMoa2102214.
  • 14 Innocenzi, P. & Stagi, L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci 11, 6606-6622, doi:10.1039/d0sc02658a (2020).
    [2020]
  • 14 Goodarzi, S., Da Ros, T., Conde, J., Sefat, F. & Mozafari, M. Fullerene: biomedical engineers get to revisit an old friend. Materials Today 20, 460- 480, doi:https://doi.org/10.1016/j.mattod.2017.03.017 (2017).
    [2017]
  • 13 Zhang, C., Wu, H. B., Yuan, C., Guo, Z. & Lou, X. W. Confining Sulfur in Double-Shelled Hollow Carbon Spheres for Lithium–Sulfur Batteries. Angewandte Chemie International Edition 51, 9592-9595, doi:https://doi.org/10.1002/anie.201205292 (2012).
    [2012]
  • 13 Walsh, E.E.; Frenck, R.W.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N. Engl. J. Med. 2020, 383, 2439–2450, doi:10.1056/NEJMoa2027906.
  • 13 Su, C., Wang, X., Ding, L. & Yu, P. Enhancement of mechanical behavior of resin matrices and fiber reinforced polymer composites by incorporation of multi-wall carbon nanotubes. Polymer Testing 96, 107077, doi:https://doi.org/10.1016/j.polymertesting.2021.107077 (2021).
  • 12 Xu, N. et al. Enhanced mechanical properties of carbon fibre/epoxy composites via in situ coating‑carbonisation of micron-sized sucrose particles on the fibre surface. Materials & Design 200, 109458, doi:https://doi.org/10.1016/j.matdes.2021.109458 (2021).
  • 12 Benenson, S.; Oster, Y.; Cohen, M.J.; Nir-Paz, R. BNT162b2 mRNA Covid-19 Vaccine Effectiveness among Health Care Workers. N. Engl. J. Med. 2021, 384, 1775–1777, doi:10.1056/NEJMc2101951.
  • 11 Li, Z., Wu, H. B. & Lou, X. W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy & Environmental Science 9, 3061-3070, doi:10.1039/C6EE02364A (2016).
    [2016]
  • 10 Zhang, B.-T., Zheng, X., Li, H.-F. & Lin, J.-M. Application of carbonbased nanomaterials in sample preparation: A review. Analytica Chimica Acta 784, 1-17, doi:https://doi.org/10.1016/j.aca.2013.03.054 (2013).
    [2013]
  • 10 Mellet, J.; Pepper, M.S. A COVID-19 Vaccine: Big Strides Come with Big Challenges. Vaccines 2021, 9, 39.
  • 10 Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon– sulphur cathode for lithium–sulphur batteries. Nature Materials 8, 500-506, doi:10.1038/nmat2460 (2009).
    [2009]
  • 10 Innocenzi, P. & Stagi, L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chemical Science 11, 6606-6622, doi:10.1039/D0SC02658A (2020).
    [2020]
  • 1 Reperant, L. A. & Osterhaus, A. D. M. E. AIDS, Avian flu, SARS, MERS, Ebola, Zika… what next? Vaccine 35, 4470-4474, doi:https://doi.org/10.1016/j.vaccine.2017.04.082 (2017).
    [2017]
  • 1 Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable Lithium–Sulfur Batteries. Chemical Reviews 114, 11751-11787, doi:10.1021/cr500062v (2014).
    [2014]
  • 1 Knoll, M.D.; Wonodi, C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet 2021, 397, 72–74, doi:10.1016/S0140-6736(20)32623-4.