Promotion of bone repair by using RGD-grafted phosphatidylserine-containing liposomes = RGD가 결합된 포스파티딜세린 리포좀을 이용한 골형성 촉진

우 레레 2022년
논문상세정보
' Promotion of bone repair by using RGD-grafted phosphatidylserine-containing liposomes = RGD가 결합된 포스파티딜세린 리포좀을 이용한 골형성 촉진' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 외과의 다방면
  • bone formation
  • macrophage
  • phosphatidylserine
  • polarization
  • rgd
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
2,481 0

0.0%

' Promotion of bone repair by using RGD-grafted phosphatidylserine-containing liposomes = RGD가 결합된 포스파티딜세린 리포좀을 이용한 골형성 촉진' 의 참고문헌

  • [99] J. Hatakeyama, H. Anan, Y. Hatakeyama, N. Matsumoto, F. Takayama, Z. Wu, E. Matsuzaki, M. Minakami, T. Izumi, H. Nakanishi, Induction of bone repair in rat calvarial defects using a combination of hydroxyapatite with phosphatidylserine liposomes, Journal of oral science 61(1) (2019) 111-118.
    [2019]
  • [98] Z. Wu, H.M. Ma, T. Kukita, Y. Nakanishi, H. Nakanishi, Phosphatidylserine-containing liposomes inhibit the differentiation of osteoclasts and trabecular bone loss, Journal of immunology (Baltimore, Md. : 1950) 184(6) (2010) 3191-3201.
  • [97] C. Xu, P. Su, X. Chen, Y. Meng, W. Yu, A.P. Xiang, Y. Wang, Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen- Phosphatidylserine composite scaffolds for bone tissue engineering, Biomaterials 32(4) (2011) 1051-1058.
    [2011]
  • [96] M. Santin, W. Rhys-Williams, J. O'Reilly, M.C. Davies, K. Shakesheff, W.G. Love, A.W. Lloyd, S.P. Denyer, Calcium-binding phospholipids as a coating material for implant osteointegration, Journal of the Royal Society, Interface / the Royal Society 3(7) (2006) 277-281.
    [2006]
  • [94] S.S. Jin, D.Q. He, D. Luo, Y. Wang, M. Yu, B. Guan, Y. Fu, Z.X. Li, T. Zhang, Y.H. Zhou, C.Y. Wang, Y. Liu, A Biomimetic Hierarchical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment To Promote Endogenous Bone Regeneration, ACS Nano 13(6) (2019) 6581-6595.
  • [93] J. Löffler, F.A. Sass, S. Filter, A. Rose, A. Ellinghaus, G.N. Duda, A. Dienelt, Compromised Bone Healing in Aged Rats Is Associated With Impaired M2 Macrophage Function, Front Immunol 10 (2019) 2443.
    [2019]
  • [92] M. Li, F. Wei, X. Yin, L. Xiao, L. Yang, J. Su, J. Weng, B. Feng, Y. Xiao, Y. Zhou, Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteogenesis, Mater Sci Eng C Mater Biol Appl 109 (2020) 110508.
    [2020]
  • [91] H. Kang, H.J. Jung, S.K. Kim, D.S.H. Wong, S. Lin, G. Li, V.P. Dravid, L. Bian, Magnetic Manipulation of Reversible Nanocaging Controls In Vivo Adhesion and Polarization of Macrophages, ACS Nano (2018).
    [2018]
  • [90] M. Bartneck, C. Skazik, N.E. Paul, J. Salber, D. Klee, G. Zwadlo- Klarwasser, The RGD coupling strategy determines the inflammatory response of human primary macrophages in vitro and angiogenesis in vivo, Macromol Biosci 14(3) (2014) 411-418.
    [2014]
  • [89] S. Samimi, N. Maghsoudnia, R.B. Eftekhari, F. Dorkoosh, Chapter 3 - Lipid-Based Nanoparticles for Drug Delivery Systems, in: S.S. Mohapatra, S. Ranjan, N. Dasgupta, R.K. Mishra, S. Thomas (Eds.), Characterization and Biology of Nanomaterials for Drug Delivery, Elsevier2019, pp. 47-76.
  • [88] E. Joseph, G. Singhvi, Chapter 4 - Multifunctional nanocrystals for cancer therapy: a potential nanocarrier, in: A.M. Grumezescu (Ed.), Nanomaterials for Drug Delivery and Therapy, William Andrew Publishing2019, pp. 91-116.
  • [87] R.M. Mozafari, Nanoliposomes: from fundamentals to recent developments, Trafford2005.
  • [86] M.R. Mozafari, Nanoliposomes: Preparation and Analysis, in: V. Weissig (Ed.), Liposomes: Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers, Humana Press, Totowa, NJ, 2010, pp. 29-50.
    [2010]
  • [85] P.P. Spicer, J.D. Kretlow, S. Young, J.A. Jansen, F.K. Kasper, A.G. Mikos, Evaluation of bone regeneration using the rat critical size calvarial defect, Nature Protocols 7(10) (2012) 1918-1929.
    [2012]
  • [84] M. Hudieb, A. Haddad, M. Bakeer, A. Alkhazaaleh, M. AlKhader, D. Taani, S. Kasugai, Influence of Age on Calvarial Critical Size Defect Dimensions: A Radiographic and Histological Study, Journal of Craniofacial Surgery 32(8) (2021).
  • [81] M.L. Briuglia, C. Rotella, A. McFarlane, D.A. Lamprou, Influence of cholesterol on liposome stability and on in vitro drug release, Drug Deliv Transl Res 5(3) (2015) 231-242.
    [2015]
  • [7] A. Grosjean, N. Venteclef, E. Dalmas, Understanding the heterogeneity and functions of metabolic tissue macrophages, Semin Cell Dev Biol 119 (2021) 130-139.
  • [79] T. Harel-Adar, T.B. Mordechai, Y. Amsalem, M.S. Feinberg, J. Leor, S. Cohen, Modulation of cardiac macrophages by phosphatidylserinepresenting liposomes improves infarct repair, Proceedings of the National Academy of Sciences 108(5) (2011) 1827.
    [2011]
  • [76] V.A. Fadok, D.L. Bratton, D.M. Rose, A. Pearson, R.A. Ezekewitz, P.M. Henson, A receptor for phosphatidylserine-specific clearance of apoptotic cells, Nature 405(6782) (2000) 85-90.
    [2000]
  • [75] M. Otsuka, K. Goto, S. Tsuchiya, Y. Aramaki, Phosphatidylserine- Specific Receptor Contributes to TGF-β Production in Macrophages through a MAP Kinase, ERK, Biological and Pharmaceutical Bulletin 28(9) (2005) 1707-1710.
    [2005]
  • [74] J.D. Stubbs, C. Lekutis, K.L. Singer, A. Bui, D. Yuzuki, U. Srinivasan, G. Parry, cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences, Proceedings of the National Academy of Sciences of the United States of America 87(21) (1990) 8417-8421.
  • [73] T. Abe, J. Shin, K. Hosur, M.C. Udey, T. Chavakis, G. Hajishengallis, Regulation of Osteoclast Homeostasis and Inflammatory Bone Loss by MFG-E8, The Journal of Immunology 193(3) (2014) 1383.
    [2014]
  • [72] E. Albus, K. Sinningen, M. Winzer, S. Thiele, U. Baschant, A. Hannemann, J. Fantana, A.-K. Tausche, H. Wallaschofski, M. Nauck, H. Völzke, S. Grossklaus, T. Chavakis, M.C. Udey, L.C. Hofbauer, M. Rauner, Milk Fat Globule-Epidermal Growth Factor 8 (MFG-E8) Is a Novel Antiinflammatory Factor in Rheumatoid Arthritis in Mice and Humans, J Bone Miner Res 31(3) (2016) 596-605.
  • [71] P. Laplante, F. Brillant-Marquis, M.-J. Brissette, B. Joannette-Pilon, R. Cayrol, V. Kokta, J.-F. Cailhier, MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions, Journal of Investigative Dermatology 137(9) (2017) 2005-2013.
    [2017]
  • [70] M.M. Aziz, S. Ishihara, Y. Mishima, N. Oshima, I. Moriyama, T. Yuki, Y. Kadowaki, M.A. Rumi, Y. Amano, Y. Kinoshita, MFG-E8 attenuates intestinal inflammation in murine experimental colitis by modulating osteopontin49 dependent alphavbeta3 integrin signaling, J Immunol 182(11) (2009) 7222- 7232.
    [2009]
  • [6] G. Bajpai, A. Bredemeyer, W. Li, K. Zaitsev, A.L. Koenig, I. Lokshina, J. Mohan, B. Ivey, H.M. Hsiao, C. Weinheimer, A. Kovacs, S. Epelman, M. Artyomov, D. Kreisel, K.J. Lavine, Tissue Resident CCR2- and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury, Circ Res 124(2) (2019) 263- 278.
  • [69] T. Cui, M. Miksa, R. Wu, H. Komura, M. Zhou, W. Dong, Z. Wang, S. Higuchi, W. Chaung, S.A. Blau, C.P. Marini, T.S. Ravikumar, P. Wang, Milk fat globule epidermal growth factor 8 attenuates acute lung injury in mice after intestinal ischemia and reperfusion, American journal of respiratory and critical care medicine 181(3) (2010) 238-246.
  • [68] F.N. Soki, A.J. Koh, J.D. Jones, Y.W. Kim, J. Dai, E.T. Keller, K.J. Pienta, K. Atabai, H. Roca, L.K. McCauley, Polarization of prostate cancerassociated macrophages is induced by milk fat globule-EGF factor 8 (MFGE8)- mediated efferocytosis, J Biol Chem 289(35) (2014) 24560-24572.
  • [67] M. Aziz, A. Jacob, A. Matsuda, R. Wu, M. Zhou, W. Dong, W.-L. Yang, P. Wang, Pre-Treatment of Recombinant Mouse MFG-E8 Downregulates LPSInduced TNF-α Production in Macrophages via STAT3-Mediated SOCS3 Activation, PloS one 6(11) (2011) e27685.
    [2011]
  • [66] R. Hanayama, M. Tanaka, K. Miwa, A. Shinohara, A. Iwamatsu, S. Nagata, Identification of a factor that links apoptotic cells to phagocytes, Nature 417(6885) (2002) 182-187.
    [2002]
  • [64] Y. Ishimoto, K. Ohashi, K. Mizuno, T. Nakano, Promotion of the Uptake of PS Liposomes and Apoptotic Cells by a Product of Growth Arrest- Specific Gene, <i>gas6</i>, The Journal of Biochemistry 127(3) (2000) 411- 417.
    [2000]
  • [62] S.Y. Park, M.Y. Jung, H.J. Kim, S.J. Lee, S.Y. Kim, B.H. Lee, T.H. Kwon, R.W. Park, I.S. Kim, Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor, Cell Death Differ 15(1) (2008) 192-201.
    [2008]
  • [61] D. Park, A.C. Tosello-Trampont, M.R. Elliott, M. Lu, L.B. Haney, Z. Ma, A.L. Klibanov, J.W. Mandell, K.S. Ravichandran, BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module, Nature 450(7168) (2007) 430-434.
    [2007]
  • [60] M. Miyanishi, K. Tada, M. Koike, Y. Uchiyama, T. Kitamura, S. Nagata, Identification of Tim4 as a phosphatidylserine receptor, Nature 450(7168) (2007) 435-439.
    [2007]
  • [5] P.A. Louwe, L. Badiola Gomez, H. Webster, G. Perona-Wright, C.C. Bain, S.J. Forbes, S.J. Jenkins, Recruited macrophages that colonize the postinflammatory peritoneal niche convert into functionally divergent resident cells, Nat Commun 12(1) (2021) 1770.
  • [59] M.O. Li, M.R. Sarkisian, W.Z. Mehal, P. Rakic, R.A. Flavell, Phosphatidylserine Receptor Is Required for Clearance of Apoptotic Cells, Science 302(5650) (2003) 1560.
    [2003]
  • [58] M.Z. Hosain, K. Yuzuriha, Khadijah, M. Takeo, A. Kishimura, Y. Murakami, T. Mori, Y. Katayama, Synergic modulation of the inflammatory state of macrophages utilizing anti-oxidant and phosphatidylserinecontaining polymer-lipid hybrid nanoparticles, Medchemcomm 8(7) (2017) 1514-1520.
    [2017]
  • [57] J. Wang, Y.X. Kang, W. Pan, W. Lei, B. Feng, X.J. Wang, Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine48 Containing Nanoparticles in Cultured Macrophages, International journal of molecular sciences 17(5) (2016).
    [2016]
  • [56] P. Kumar, M.Z. Hosain, J.H. Kang, M. Takeo, A. Kishimura, T. Mori, Y. Katayama, Suppression of atopic dermatitis in mice model by reducing inflammation utilizing phosphatidylserine-coated biodegradable microparticles, J Biomater Sci Polym Ed 26(18) (2015) 1465-1474.
    [2015]
  • [55] M. Yeom, D.H. Hahm, B.J. Sur, J.J. Han, H.J. Lee, H.I. Yang, K.S. Kim, Phosphatidylserine inhibits inflammatory responses in interleukin-1betastimulated fibroblast-like synoviocytes and alleviates carrageenan-induced arthritis in rat, Nutrition research (New York, N.Y.) 33(3) (2013) 242-250.
    [2013]
  • [53] G. Dvoriantchikova, C. Agudelo, E. Hernandez, V.I. Shestopalov, D. Ivanov, Phosphatidylserine-containing liposomes promote maximal survival of retinal neurons after ischemic injury, J Cereb Blood Flow Metab 29(11) (2009) 1755-1759.
    [2009]
  • [51] Y. Ren, Y. Xie, G. Jiang, J. Fan, J. Yeung, W. Li, P.K.H. Tam, J. Savill, Apoptotic Cells Protect Mice against Lipopolysaccharide-Induced Shock, The Journal of Immunology 180(7) (2008) 4978-4985.
    [2008]
  • [49] V.A. Fadok, D.R. Voelker, P.A. Campbell, J.J. Cohen, D.L. Bratton, P.M. Henson, Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, The Journal of Immunology 148 (1922) 2207.
  • [47] O.R. Mahon, D.C. Browe, T. Gonzalez-Fernandez, P. Pitacco, I.T. Whelan, S. Von Euw, C. Hobbs, V. Nicolosi, K.T. Cunningham, K.H.G. Mills, D.J. Kelly, A. Dunne, Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner, Biomaterials 239 (2020) 119833.
    [2020]
  • [46] B. Saleh, H.K. Dhaliwal, R. Portillo-Lara, E. Shirzaei Sani, R. Abdi, M.M. Amiji, N. Annabi, Local Immunomodulation Using an Adhesive Hydrogel Loaded with miRNA-Laden Nanoparticles Promotes Wound Healing, Small 15(36) (2019) e1902232.
    [2019]
  • [45] S. Jiang, C. Lyu, P. Zhao, W. Li, W. Kong, C. Huang, G.M. Genin, Y. Du, Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D, Nat Commun 10(1) (2019) 3491.
    [2019]
  • [44] K. Garg, N.A. Pullen, C.A. Oskeritzian, J.J. Ryan, G.L. Bowlin, Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds, Biomaterials 34(18) (2013) 4439-4451.
    [2013]
  • [43] O. Veiseh, J.C. Doloff, M. Ma, A.J. Vegas, H.H. Tam, A.R. Bader, J. Li, E. Langan, J. Wyckoff, W.S. Loo, S. Jhunjhunwala, A. Chiu, S. Siebert, K. Tang, J. Hollister-Lock, S. Aresta-Dasilva, M. Bochenek, J. Mendoza-Elias, Y. Wang, M. Qi, D.M. Lavin, M. Chen, N. Dholakia, R. Thakrar, I. Lacik, G.C. Weir, J. Oberholzer, D.L. Greiner, R. Langer, D.G. Anderson, Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates, Nat Mater 14(6) (2015) 643-651.
  • [42] L. Liu, G. Chen, T. Chao, B.D. Ratner, E.H. Sage, S. Jiang, Reduced foreign body reaction to implanted biomaterials by surface treatment with oriented osteopontin, J Biomater Sci Polym Ed 19(6) (2008) 821-835.
    [2008]
  • [41] L. Zhang, Z. Cao, T. Bai, L. Carr, J.R. Ella-Menye, C. Irvin, B.D. Ratner, S. Jiang, Zwitterionic hydrogels implanted in mice resist the foreign-body reaction, Nat Biotechnol 31(6) (2013) 553-556.
    [2013]
  • [40] E.G. Campioni, J.N. Nobrega, M.V. Sefton, HEMA/MMMA microcapsule implants in hemiparkinsonian rat brain: biocompatibility assessment using [3H]PK11195 as a marker for gliosis, Biomaterials 19(7-9) (1998) 829-837.
    [1998]
  • [3] S. Watanabe, M. Alexander, A.V. Misharin, G.R.S. Budinger, The role of macrophages in the resolution of inflammation, J Clin Invest 129(7) (2019) 2619-2628.
    [2019]
  • [37] R. Trindade, T. Albrektsson, P. Tengvall, A. Wennerberg, Foreign Body Reaction to Biomaterials: On Mechanisms for Buildup and Breakdown of Osseointegration, Clin Implant Dent Relat Res 18(1) (2016) 192-203.
    [2016]
  • [35] B.N. Brown, R. Londono, S. Tottey, L. Zhang, K.A. Kukla, M.T. Wolf, K.A. Daly, J.E. Reing, S.F. Badylak, Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials, Acta Biomater 8(3) (2012) 978-987.
    [2012]
  • [34] B.N. Brown, J.E. Valentin, A.M. Stewart-Akers, G.P. McCabe, S.F. Badylak, Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component, Biomaterials 30(8) (2009) 1482-1491.
    [2009]
  • [32] K.L. Spiller, T.J. Koh, Macrophage-based therapeutic strategies in regenerative medicine, Adv Drug Deliv Rev 122 (2017) 74-83.
    [2017]
  • [2] A. Mantovani, S.K. Biswas, M.R. Galdiero, A. Sica, M. Locati, Macrophage plasticity and polarization in tissue repair and remodelling, J Pathol 229(2) (2013) 176-185.
    [2013]
  • [29] S.F. Badylak, J.E. Valentin, A.K. Ravindra, G.P. McCabe, A.M. Stewart- Akers, Macrophage phenotype as a determinant of biologic scaffold remodeling, Tissue Eng Part A 14(11) (2008) 1835-1842.
    [2008]
  • [28] H.N. Wilkinson, E.R. Roberts, A.R. Stafford, K.L. Banyard, P. Matteucci, K.A. Mace, M.J. Hardman, Tissue Iron Promotes Wound Repair via M2 Macrophage Polarization and the Chemokine (C-C Motif) Ligands 17 and 22, Am J Pathol 189(11) (2019) 2196-2208.
    [2019]
  • [27] H. Kim, S.Y. Wang, G. Kwak, Y. Yang, I.C. Kwon, S.H. Kim, Exosome- Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing, Adv Sci (Weinh) 6(20) (2019) 1900513.
    [2019]
  • [26] K. Klinkert, D. Whelan, A.J.P. Clover, A.L. Leblond, A.H.S. Kumar, N.M. Caplice, Selective M2 Macrophage Depletion Leads to Prolonged Inflammation in Surgical Wounds, Eur Surg Res 58(3-4) (2017) 109-120.
    [2017]
  • [25] K.L. Spiller, S. Nassiri, C.E. Witherel, R.R. Anfang, J. Ng, K.R. Nakazawa, T. Yu, G. Vunjak-Novakovic, Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds, Biomaterials 37 (2015) 194-207.
    [2015]
  • [23] A. Sindrilaru, T. Peters, S. Wieschalka, C. Baican, A. Baican, H. Peter, A. Hainzl, S. Schatz, Y. Qi, A. Schlecht, J.M. Weiss, M. Wlaschek, C. Sunderkotter, K. Scharffetter-Kochanek, An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice, J Clin Invest 121(3) (2011) 985-997.
  • [21] F.O. Martinez, A. Sica, A. Mantovani, M. Locati, Macrophage activation and polarization, Front Biosci 13 (2008) 453-461.
    [2008]
  • [20] J.M. Daley, S.K. Brancato, A.A. Thomay, J.S. Reichner, J.E. Albina, The phenotype of murine wound macrophages, J Leukoc Biol 87(1) (2010) 59-67.
    [2010]
  • [1] J.M. Reinke, H. Sorg, Wound repair and regeneration, Eur Surg Res 49(1) (2012) 35-43.
    [2012]
  • [19] P.J. Murray, J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy, S. Goerdt, S. Gordon, J.A. Hamilton, L.B. Ivashkiv, T. Lawrence, M. Locati, A. Mantovani, F.O. Martinez, J.L. Mege, D.M. Mosser, G. Natoli, J.P. Saeij, J.L. Schultze, K.A. Shirey, A. Sica, J. Suttles, I. Udalova, J.A. van Ginderachter, S.N. Vogel, T.A. Wynn, Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity 41(1) (2014) 14-20.
  • [16] E. Boada-Romero, J. Martinez, B.L. Heckmann, D.R. Green, The clearance of dead cells by efferocytosis, Nat Rev Mol Cell Biol 21(7) (2020) 398-414.
    [2020]
  • [12] S. Jhunjhunwala, S. Aresta-DaSilva, K. Tang, D. Alvarez, M.J. Webber, B.C. Tang, D.M. Lavin, O. Veiseh, J.C. Doloff, S. Bose, A. Vegas, M. Ma, G. Sahay, A. Chiu, A. Bader, E. Langan, S. Siebert, J. Li, D.L. Greiner, P.E. Newburger, U.H. von Andrian, R. Langer, D.G. Anderson, Neutrophil Responses to Sterile Implant Materials, PLoS One 10(9) (2015) e0137550.
  • [103] T. Harel-Adar, T. Ben Mordechai, Y. Amsalem, M.S. Feinberg, J. Leor, S. Cohen, Modulation of cardiac macrophages by phosphatidylserinepresenting liposomes improves infarct repair, Proceedings of the National Academy of Sciences of the United States of America 108(5) (2011) 1827- 1832.
    [2011]
  • [102] H. Hosseini, Y. Li, P. Kanellakis, C. Tay, A. Cao, P. Tipping, A. Bobik, B.H. Toh, T. Kyaw, Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes, Cardiovasc Res 106(3) (2015) 443-452.
    [2015]
  • [101] L. Huang, H. Tang, P. Sherchan, C. Lenahan, W. Boling, J. Tang, J.H. Zhang, The Activation of Phosphatidylserine/CD36/TGF-beta1 Pathway prior to Surgical Brain Injury Attenuates Neuroinflammation in Rats, Oxid Med Cell Longev 2020 (2020) 4921562.
    [2020]
  • [100] R. Toita, E. Shimizu, M. Murata, J.H. Kang, Protective and healing effects of apoptotic mimic-induced M2-like macrophage polarization on pressure ulcers in young and middle-aged mice, Journal of controlled release : official journal of the Controlled Release Society 330 (2021) 705- 714.
  • Tissue macrophages : heterogeneity and functions
    S. Gordon , A. Pluddemann 15 ( 1 ) ( [2017]
  • Tim4- and MerTK-Mediated Engulfment of Apoptotic Cells by Mouse Resident Peritoneal Macrophages
  • The role of neutrophil death in chronic inflammation and cancer
  • The dual roles of neutrophils and macrophages in inflammation : a critical balance between tissue damage and repair
  • Role of Human Macrophage Polarization in Inflammation during Infectious Diseases
  • Rodent models in bone-related research : the relevance of calvarial defects in the assessment of bone regeneration strategies
  • Reduction of fibrous encapsulation by polyethylene glycol-grafted liposomes containing phosphatidylserine ,
  • Reducing capsular thickness and enhancing angiogenesis around implant drug release systems
    B.D . Ratner 78 ( 1-3 ) ( [2002]
  • Recent progress on developing exogenous monocyte/macrophage-based therapies for inflammatory and degenerative diseases
  • Phosphatidylserinespecific receptor contributes to TGF-beta production in macrophages through a MAP kinase , ERK
  • Phosphatidylserinedependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation
  • Phosphatidylserine-containing liposomes suppress inflammatory bone loss by ameliorating the cytokine imbalance provoked by infiltrated macrophages
  • Perspectives and challenges in tissue engineering and regenerative medicine
    R. Langer 21 ( 32-33 ) ( [2009]
  • Neutrophil recruitment and function in health and inflammation
    E. Kolaczkowska , P. Kubes 13 ( 3 ) ( [2013]
  • Monocyte recruitment during infection and inflammation
    C. Shi , E.G . Pamer 11 ( 11 ) ( [2011]
  • Modulation of the antiinflammatory effects of phosphatidylserine-containing liposomes by PEGylation
  • Mechanics of neutrophil phagocytosis : experiments and quantitative models
  • Macrophages in Tissue Repair , Regeneration , and Fibrosis
  • Macrophage Polarization
    P.J . Murray 79 ( [2017]
  • Involvement of TGF-beta in inhibitory effects of negatively charged liposomes on nitric oxide production by macrophages stimulated with lps ,
  • Involvement of ERK , a MAP kinase , in the production of TGF-beta by macrophages treated with liposomes composed of phosphatidylserine ,
  • How Neutrophils Meet Their End
  • Granulocyte Apoptosis and Its Role in the Resolutionand Control of Lung Inflammation ,
    C. Haslett 160 ( [1999]
  • From Monocytes to M1/M2 Macrophages : Phenotypical vs. Functional Differentiation
  • Foreign body reaction to biomaterials
  • Diversity and Versatility of Phagocytosis : Roles in Innate Immunity , Tissue Remodeling , and Homeostasis
  • Characterization of the in vitro macrophage response and in vivo host response to poly ( ethylene glycol ) - based hydrogels
  • Characterisation of the cellular infiltrate in the foreign body granuloma of textile meshes with its impact on collagen deposition
  • Biomaterial biocompatibility and the macrophage
    Anderson , K.M . Miller 5 ( 1 ) ( [1984]
  • An Apoptotic 'Eat Me ' Signal : Phosphatidylserine Exposure
    K. Segawa , S. Nagata , 25 ( 11 ) ( [2015]