Identification of epigenetic background of growth regulation associated with methylation disturbances of 11p15 locus = 염색체 11p15 부위의 메틸화 이상과 연관된 성장 조절의 후생유전학적 기전 규명

김화영 2022년
논문상세정보
' Identification of epigenetic background of growth regulation associated with methylation disturbances of 11p15 locus = 염색체 11p15 부위의 메틸화 이상과 연관된 성장 조절의 후생유전학적 기전 규명' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 의료과학 약
  • Beckwith?Wiedemann syndrome
  • epigenetics
  • genome-wide methylation analysis
  • genomicimprinting
  • multi-locus imprinting disturbance
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
3,985 0

0.0%

' Identification of epigenetic background of growth regulation associated with methylation disturbances of 11p15 locus = 염색체 11p15 부위의 메틸화 이상과 연관된 성장 조절의 후생유전학적 기전 규명' 의 참고문헌

  • New insights into establishment and maintenance of DNA methylation imprints in mammals
    Kelsey G , Feil R. 368 ( 1609 ) :20110336 . [2013]
  • Epigenetic imprinting during assisted reproductive technologies : The effect of temporal and cumulative fluctuations in methionine cycling on the DNA methylation state .
    Hoeijmakers L , Kempe H , Verschure PJ 83 ( 2 ) :94-107 . [2016]
  • Debaun MR. Association between Beckwith-Wiedemann syndrome and assisted reproductive technology : a case series of 19 patients
  • A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants
    Fenton TR , Kim JH . 13:59 [2013]
  • 9. Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, et al. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell. 2006;11(5):711-22.
    [2006]
  • 8. Delaval K, Wagschal A, Feil R. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays. 2006;28(5):453-9.
    [2006]
  • 7. Joshi RS, Garg P, Zaitlen N, Lappalainen T, Watson CT, Azam N, et al. DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome. Am J Hum Genet. 2016;99(3):555-66.
    [2016]
  • 6. Monk D, Morales J, den Dunnen JT, Russo S, Court F, Prawitt D, et al. Recommendations for a nomenclature system for reporting methylation aberrations in imprinted domains. Epigenetics. 2018;13(2):117-21.
    [2018]
  • 59. Sanchez-Delgado M, Martin-Trujillo A, Tayama C, Vidal E, Esteller M, Iglesias-Platas I, et al. Absence of Maternal Methylation in Biparental Hydatidiform Moles from Women with NLRP7 Maternal-Effect Mutations Reveals Widespread Placenta- Specific Imprinting. PLoS Genet. 2015;11(11):e1005644.
    [2015]
  • 58. Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, et al. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci U S A. 1999;96(1):214-9.
    [1999]
  • 57. Cybulski J, Wisniewska A, Kulig-Adamiak A, Lewicka L, Cieniecka-Roslonkiewicz A, Kita K, et al. Long-alkyl-chain quaternary ammonium lactate based ionic liquids. Chemistry. 2008;14(30):9305-11.
    [2008]
  • 56. Begemann M, Rezwan FI, Beygo J, Docherty LE, Kolarova J, Schroeder C, et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet. 2018;55(7):497-504.
    [2018]
  • 55. Begemann M, Spengler S, Kordaß U, Schröder C, Eggermann T. Segmental maternal uniparental disomy 7q associated with DLK1/GTL2 (14q32) hypomethylation. Am J Med Genet A. 2012;158(2):423-8.
    [2012]
  • 54. Arima T, Kamikihara T, Hayashida T, Kato K, Inoue T, Shirayoshi Y, et al. ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res. 2005;33(8):2650-60.
    [2005]
  • 53. van Dijk SJ, Peters TJ, Buckley M, Zhou J, Jones PA, Gibson RA, et al. DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int J Obes (Lond). 2018;42(1):28-35.
    [2018]
  • 52. Fort RS, Matho C, Geraldo MV, Ottati MC, Yamashita AS, Saito KC, et al. Nc886 is epigenetically repressed in prostate cancer and acts as a tumor suppressor through the inhibition of cell growth. BMC Cancer. 2018;18(1):127.
    [2018]
  • 51. Kuratomi G, Iwamoto K, Bundo M, Kusumi I, Kato N, Iwata N, et al. Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry. 2008;13(4):429-41.
    [2008]
  • 50. Fontana L, Bedeschi MF, Maitz S, Cereda A, Fare C, Motta S, et al. Characterization of multi-locus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics. 2018;13(9):897-909.
    [2018]
  • 5. Da Silva-Santiago SC, Pacheco C, Rocha TCL, Brasil SMV, Pacheco ACL, Silva MM, et al. The linked human imprintome v1. 0: over 120 genes confirmed as imprinted impose a major review on previous censuses. Int J Data Min Bioinform. 2014;10(3):329-56.
    [2014]
  • 49. Sano S, Matsubara K, Nagasaki K, Kikuchi T, Nakabayashi K, Hata K, et al. Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type Ib in a patient with multilocus imprinting disturbance: a female-dominant phenomenon? J Hum Genet. 2016;61(8):765-9.
    [2016]
  • 48. Boonen SE, Porksen S, Mackay DJ, Oestergaard E, Olsen B, Brondum-Nielsen K, et al. Clinical characterisation of the multiple maternal hypomethylation syndrome in siblings. Eur J Hum Genet. 2008;16(4):453-61.
    [2008]
  • 47. Bak M, Boonen SE, Dahl C, Hahnemann JM, Mackay DJ, Tumer Z, et al. Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57. BMC Med Genet. 2016;17:29.
    [2016]
  • 46. Court F, Martin-Trujillo A, Romanelli V, Garin I, Iglesias-Platas I, Salafsky I, et al. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum Mutat. 2013;34(4):595-602.
    [2013]
  • 45. Calvello M, Tabano S, Colapietro P, Maitz S, Pansa A, Augello C, et al. Quantitative DNA methylation analysis improves epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome. Epigenetics. 2013;8(10):1053-60.
    [2013]
  • 44. Flanagan JM, Popendikyte V, Pozdniakovaite N, Sobolev M, Assadzadeh A, Schumacher A, et al. Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet. 2006;79(1):67-84.
    [2006]
  • 43. Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet. 2007;23(8):413-8.
    [2007]
  • 42. Gomes MV, Huber J, Ferriani RA, Amaral Neto AM, Ramos ES. Abnormal methylation at the KvDMR1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol Hum Reprod. 2009;15(8):471-7.
    [2009]
  • 41. Mussa A, Molinatto C, Baldassarre G, Riberi E, Russo S, Larizza L, et al. Cancer risk in Beckwith-Wiedemann Syndrome: A systematic review and meta-analysis outlining a novel (epi)genotype specific histotype targeted screening protocol. J Pediatr. 2016;176:142-9.e1.
    [2016]
  • 39. Maas SM, Vansenne F, Kadouch DJ, Ibrahim A, Bliek J, Hopman S, et al. Phenotype, cancer risk, and surveillance in Beckwith– Wiedemann syndrome depending on molecular genetic subgroups. Am J Med Genet A. 2016;170(9):2248-60.
    [2016]
  • 38. Mussa A, Russo S, Larizza L, Riccio A, Ferrero GB. (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome: a paradigm for genomic medicine. Clin Genet. 2016;89(4):403-15.
    [2016]
  • 37. Lee BH, Kim G-H, Oh TJ, Kim JH, Lee J-J, Choi SH, et al. Quantitative analysis of methylation status at 11p15 and 7q21 for the genetic diagnosis of Beckwith–Wiedemann syndrome and Silver–Russell syndrome. J Hum Genet. 2013;58(9):604-10.
    [2013]
  • 35. Romanelli V, Meneses HN, Fernández L, Martínez-Glez V, Gracia-Bouthelier R, Fraga MF, et al. Beckwith–Wiedemann syndrome and uniparental disomy 11p: fine mapping of the recombination breakpoints and evaluation of several techniques. Eur J Hum Genet. 2011;19(4):416-21.
    [2011]
  • 34. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24.
    [2015]
  • 33. Jang SS, Kim SY, Kim H, Hwang H, Chae JH, Kim KJ, et al. Diagnostic Yield of Epilepsy Panel Testing in Patients With Seizure Onset Within the First Year of Life. Front Neurol. 2019;10:988.
    [2019]
  • 32. Rezwan FI, Docherty LE, Poole RL, Lockett GA, Arshad SH, Holloway JW, et al. A statistical method for single sample analysis of HumanMethylation450 array data: genome-wide methylation analysis of patients with imprinting disorders. Clin Epigenetics. 2015;7(1):48.
    [2015]
  • 31. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29(2):189-96.
    [2013]
  • 30. Kalish JM, Biesecker LG, Brioude F, Deardorff MA, Di Cesare- Merlone A, Druley T, et al. Nomenclature and definition in asymmetric regional body overgrowth. Am J Med Genet A. 2017;173(7):1735-8.
    [2017]
  • 3. Demars J, Gicquel C. Epigenetic and genetic disturbance of the imprinted 11p15 region in Beckwith-Wiedemann and Silver- Russell syndromes. Clin Genet. 2012;81(4):350-61.
    [2012]
  • 29. Kim JH, Yun S, Hwang SS, Shim JO, Chae HW, Lee YJ, et al. The 2017 Korean National Growth Charts for children and adolescents: development, improvement, and prospects. Korean J Pediatr. 2018;61(5):135-49.
    [2018]
  • 27. Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet. 2008;40(8):949-51.
    [2008]
  • 26. Parry DA, Logan CV, Hayward BE, Shires M, Landolsi H, Diggle C, et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet. 2011;89(3):451-8.
    [2011]
  • 25. Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38(3):300-2.
    [2006]
  • 24. Docherty LE, Rezwan FI, Poole RL, Turner CL, Kivuva E, Maher ER, et al. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun. 2015;6:8086.
    [2015]
  • 23. Meyer E, Lim D, Pasha S, Tee LJ, Rahman F, Yates JR, et al. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet. 2009;5(3):e1000423.
    [2009]
  • 22. Bens S, Kolarova J, Beygo J, Buiting K, Caliebe A, Eggermann T, et al. Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics. 2016;8(6):801-16.
    [2016]
  • 21. Eggermann T, Leisten I, Binder G, Begemann M, Spengler S. Disturbed methylation at multiple imprinted loci: an increasing observation in imprinting disorders. Epigenomics. 2011;3(5):625-37.
    [2011]
  • 20. Krzyzewska IM, Alders M, Maas SM, Bliek J, Venema A, Henneman P, et al. Genome-wide methylation profiling of Beckwith-Wiedemann syndrome patients without molecular confirmation after routine diagnostics. Clin Epigenetics. 2019;11(1):53.
    [2019]
  • 2. Skaar DA, Li Y, Bernal AJ, Hoyo C, Murphy SK, Jirtle RL. The human imprintome: regulatory mechanisms, methods of ascertainment, and roles in disease susceptibility. ILAR J. 2012;53(3-4):341-58.
    [2012]
  • 19. Docherty LE, Rezwan FI, Poole RL, Jagoe H, Lake H, Lockett GA, et al. Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. J Med Genet. 2014;51(4):229-38.
    [2014]
  • 18. Aref-Eshghi E, Schenkel LC, Lin H, Skinner C, Ainsworth P, Paré G, et al. Clinical validation of a genome-wide DNA methylation assay for molecular diagnosis of imprinting disorders. J Mol Diagn. 2017;19(6):848-56.
    [2017]
  • 17. Eggermann T, Heilsberg AK, Bens S, Siebert R, Beygo J, Buiting K, et al. Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing. J Mol Med (Berl). 2014;92(7):769-77.
    [2014]
  • 16. Eggermann T, Brück J, Knopp C, Fekete G, Kratz C, Tasic V, et al. Need for a precise molecular diagnosis in Beckwith- Wiedemann and Silver-Russell syndrome: what has to be considered and why it is important. J Mol Med (Berl). 2020;98(10):1447-55.
    [2020]
  • 15. Maeda T, Higashimoto K, Jozaki K, Yatsuki H, Nakabayashi K, Makita Y, et al. Comprehensive and quantitative multilocus methylation analysis reveals the susceptibility of specific imprinted differentially methylated regions to aberrant methylation in Beckwith-Wiedemann syndrome with epimutations. Genet Med. 2014;16(12):903-12.
    [2014]
  • 14. Bliek J, Verde G, Callaway J, Maas SM, De Crescenzo A, Sparago A, et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith–Wiedemann syndrome. Eur J Hum Genet. 2009;17(5):611-9.
    [2009]
  • 13. Azzi S, Rossignol S, Steunou V, Sas T, Thibaud N, Danton F, et al. Multilocus methylation analysis in a large cohort of 11p15- related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Hum Mol Genet. 2009;18(24):4724-33.
    [2009]
  • 12. Mussa A, Russo S, De Crescenzo A, Freschi A, Calzari L, Maitz S, et al. (Epi) genotype–phenotype correlations in Beckwith– Wiedemann syndrome. Eur J Hum Genet. 2016;24(2):183-90.
    [2016]
  • 11 Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018;14(4):229-49.
    [2018]
  • 10. Iglesias-Platas I, Martin-Trujillo A, Petazzi P, Guillaumet-Adkins A, Esteller M, Monk D. Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta. Hum Mol Genet. 2014;23(23):6275-85.
    [2014]
  • 1. Li Y, Sasaki H. Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Res. 2011;21(3):466-73.
    [2011]