Biophysical Model-based Quantitative Microstructure Mapping using Magnetic Resonance Imaging = 자기공명영상을 이용한 생체물리학적 모델 기반 정량적 미세구조체 영상법

신형걸 2022년
논문상세정보
' Biophysical Model-based Quantitative Microstructure Mapping using Magnetic Resonance Imaging = 자기공명영상을 이용한 생체물리학적 모델 기반 정량적 미세구조체 영상법' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 응용 물리
  • Iron mapping
  • Magnetic Resonance Imaging (MRI)
  • Magnetic susceptibility source separation
  • Myelin mapping
  • Myelin water imaging (MWI)
  • Quantitative susceptibility mapping (QSM)
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
4,666 0

0.0%

' Biophysical Model-based Quantitative Microstructure Mapping using Magnetic Resonance Imaging = 자기공명영상을 이용한 생체물리학적 모델 기반 정량적 미세구조체 영상법' 의 참고문헌

  • Y. Wang et al., In Vivo Quantification of Myelin Changes in the Vertebrate Nervous System, J Neurosci, vol. 29, no. 46, p. 14663 14669, Nov. 2009, doi: 10.1523/jneurosci.4082-08.2009.
    [2009]
  • Y. Taege et al., Assessment of mesoscopic properties of deep gray matter iron through a model-based simultaneous analysis of magnetic susceptibility and R2* - A pilot study in patients with multiple sclerosis and normal controls, Neuroimage, vol. 186, no. Appl. Opt. 46 26 sep 2007, p. 308 320, Feb. 2019, doi: 10.1016/j.neuroimage.2018.11.011.
  • Y. Nam, D.-H. Kim, and J. Lee, Physiological noise compensation in gradient-echo myelin water imaging, Neuroimage, vol. 120, no. Magn. Reson. Med. 73 2015, p. 345 349, Oct. 2015, doi: 10.1016/j.neuroimage.2015.07.014.
  • Y. H. Sung et al., Differential involvement of nigral subregions in idiopathic parkinsonbapos;s disease, Hum Brain Mapp, vol. 39, no. 1, pp. 542–553, 2018, doi: 10.1002/hbm.23863.
    [2018]
  • Y. Gossuin, R. N. Muller, and P. Gillis, Relaxation induced by ferritin: a better understanding for an improved MRI iron quantification, Nmr Biomed, vol. 17, no. 7, pp. 427–432, 2004, doi: 10.1002/nbm.903.
    [2004]
  • Y. Alemán‐Gómez et al., Partial‐volume modeling reveals reduced gray matter in specific thalamic nuclei early in the time course of psychosis and chronic schizophrenia, Hum Brain Mapp, vol. 41, no. 14, pp. 4041–4061, 2020, doi: 10.1002/hbm.25108.
    [2020]
  • Whole brain susceptibility mapping using compressed sensing. ,
    B. Wu , W. Li , A. Guidon , and C. Liu , vol . 67 , no . 1 , p. 137 147 , Jan. [2012]
  • Water content and myelin water fraction in multiple sclerosis
    C. Laule et al. vol . 251 , no . 3 , p. 284 293 , [2004]
  • V. Wiggermann et al., Susceptibility‐sensitive MRI of multiple sclerosis lesions and the impact of normal‐appearing white matter changes, Nmr Biomed, vol. 30, no. 8, p. e3727, 2017, doi: 10.1002/nbm.3727.
    [2017]
  • Theory of NMR signal behavior in magnetically inhomogeneous tissues : The static dephasing regime
    D. A. Yablonskiy and E. M. Haacke , vol . 32 , no . 6 , p. 749 763 , Dec. [1994]
  • Thalamic Deep Brain Stimulation for Essential Tremor : Relation of Lead Location to Outcome
    E. Papavassiliou et al. vol . 54 , no . 4 , p. A24 , [2004]
  • T2 prep three-dimensional spiral imaging with efficient whole brain coverage for myelin water quantification at 1.5 tesla.
    T. D. Nguyen et al. vol . 67 , no . 3 , p. 614 621 , [2012]
  • T. Sugahara et al., Usefulness of diffusion‐weighted MRI with echo‐planar technique in the evaluation of cellularity in gliomas, J Magn Reson Imaging, vol. 9, no. 1, pp. 53–60, 1999, doi: 10.1002/(sici)1522-2586(199901)9:1<53::aid-jmri7>3.0.co;2-2.
    [1999]
  • T. P. Naidich, M. Castillo, S. Cha, and J. G. Smirniotopoulos, Imaging of the brain. Philadelphia: Saunders, 2013.
    [2013]
  • T. Liu, W. Xu, P. Spincemaille, A. S. Avestimehr, and Y. Wang, Accuracy of the Morphology Enabled Dipole Inversion (MEDI) Algorithm for Quantitative Susceptibility Mapping in MRI, Ieee T Med Imaging, vol. 31, no. 3, pp. 816–824, 2012, doi: 10.1109/tmi.2011.2182523.
    [2012]
  • T. Liu, P. Spincemaille, L. de Rochefort, B. Kressler, and Y. Wang, Calculation of susceptibility through multiple orientation sampling (COSMOS): A method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI, Magnet Reson Med, vol. 61, no. 1, pp. 196–204, 2009, doi: 10.1002/mrm.21828.
  • Superficial white matter imaging : Contrast mechanisms and whole-brain in vivo mapping
    E. Kirilina et al. vol . 6 , no . 41 , p. eaaz9281 , [2020]
  • S.-H. Oh, M. Bilello, M. Schindler, C. E. Markowitz, J. A. Detre, and J. Lee, Direct visualization of short transverse relaxation time component (ViSTa), Neuroimage, vol. 83, no. Magn. Reson. Q. 8 1992, p. 485 492, Dec. 2013, doi: 10.1016/j.neuroimage.2013.06.047.
  • S. Webb, C. A. Munro, R. Midha, and G. J. Stanisz, Is multicomponent T2 a good measure of myelin content in peripheral nerve?, Magnet Reson Med, vol. 49, no. 4, p. 638 645, Mar. 2003, doi: 10.1002/mrm.10411.
    [2003]
  • S. Ramón⠀y⠀Cajal, La retine des vertebres. Cellule, 1893.
    [1893]
  • S. Kalantari, C. Laule, T. A. Bjarnason, I. M. Vavasour, and A. L. MacKay, Insight into in vivo magnetization exchange in human white matter regions., Magnet Reson Med, vol. 66, no. 4, p. 1142 1151, Oct. 2011, doi: 10.1002/mrm.22873.
    [2011]
  • S. K. Singh et al., Identification of human brain tumour initiating cells, Nature, vol. 432, no. 7015, pp. 396–401, 2004, doi: 10.1038/nature03128.
    [2004]
  • S. Hametner, I. Wimmer, L. Haider, S. Pfeifenbring, W. Brück, and H. Lassmann, Iron and neurodegeneration in the multiple sclerosis brain, Ann Neurol, vol. 74, no. 6, pp. 848–61, 2013, doi: 10.1002/ana.23974.
    [2013]
  • S. Hametner et al., The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study., Neuroimage, vol. 179, pp. 117–133, 2018, doi: 10.1016/j.neuroimage.2018.06.007.
    [2018]
  • S. H. Kolind, B. Mädler, S. Fischer, D. K. B. Li, and A. L. MacKay, Myelin water imaging: Implementation and development at 3.0T and comparison to 1.5T measurements, Magnet Reson Med, vol. 62, no. 1, p. 106 115, Jul. 2009, doi: 10.1002/mrm.21966.
    [2009]
  • S. Ding et al., Comprehensive cellular‐resolution atlas of the adult human brain, J Comp Neurol, vol. 524, no. 16, pp. 3127–3481, 2016, doi: 10.1002/cne.24080.
    [2016]
  • S. C. L. Deoni, B. K. Rutt, and D. K. Jones, Investigating exchange and multicomponent relaxation in fully‐balanced steady‐state free precession imaging, J Magn Reson Imaging, vol. 27, no. 6, p. 1421 1429, Jun. 2008, doi: 10.1002/jmri.21079.
    [2008]
  • Referenceless interleaved echo-planar imaging.
    S. B. Reeder , E. Atalar , A . Z. Faranesh , and E. R. McVeigh vol . 41 , no . 1 , p. 87 94 , Jan. [1999]
  • Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence.
    T. Prasloski et al. vol . 63 , no . 1 , p. 533 539 , Oct. [2012]
  • R. N. Muller, P. Gillis, F. Moiny, and A. Roch, Transverse relaxivity of particulate MRI contrast media: From theories to experiments, Magnet Reson Med, vol. 22, no. 2, pp. 178–182, 1991, doi: 10.1002/mrm.1910220203.
    [1991]
  • R. J. Ward, F. A. Zucca, J. H. Duyn, R. R. Crichton, and L. Zecca, The role of iron in brain ageing and neurodegenerative disorders, Lancet Neurology, vol. 13, no. 10, pp. 1045–1060, 2014, doi: 10.1016/s1474-4422(14)70117-6.
    [2014]
  • R. Cusack and N. Papadakis, New Robust 3-D Phase Unwrapping Algorithms: Application to Magnetic Field Mapping and Undistorting Echoplanar Images, Neuroimage, vol. 16, no. 3, pp. 754–764, 2002, doi: 10.1006/nimg.2002.1092.
    [2002]
  • Phase and amplitude correction for multi-echo water-fat separation with bipolar acquisitions ,
    H. Yu et al. vol . 31 , no . 5 , p. 1264 1271 , [2010]
  • P. Sati et al., Micro-compartment specific T2* relaxation in the brain, Neuroimage, vol. 77, no. J. Magn. Reson. Imaging 18 2003, p. 268 278, Aug. 2013, doi: 10.1016/j.neuroimage.2013.03.005.
  • P. J. Wright et al., Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization, Magnetic Reson Mater Phys Biology Medicine, vol. 21, no. 1–2, p. 121 130, Mar. 2008, doi: 10.1007/s10334-008-0104-8.
    [2008]
  • Nonexponential T2 * decay in white matter
  • N. Weiskopf, S. Mohammadi, A. Lutti, and M. F. Callaghan, Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology., Curr Opin Neurol, vol. 28, no. 4, p. 313 322, Aug. 2015, doi: 10.1097/wco.0000000000000222.
    [2015]
  • N. Lipsman et al., MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study, Lancet Neurology, vol. 12, no. 5, pp. 462–468, 2013, doi: 10.1016/s1474-4422(13)70048-6.
    [2013]
  • Myelination and support of axonal integrity by glia
    K.-A . Nave vol . 468 , no . 7321 , p. 244 252 , Nov. [2010]
  • Myelin water mapping by spatially regularized longitudinal relaxographic imaging at high magnetic fields ,
    C. Labadie et al. , vol . 71 , no . 1 , p. 375 387 , Jan. [2014]
  • Myelin water imaging of multiple sclerosis at 7 T : Correlations with histopathology
  • Multiple sclerosis
    A. Compston and A. Coles vol . 372 , no . 9648 , p. 1502 1517 , Oct. [2008]
  • Motor skill learning requires active central myelination ,
    I . A. McKenzie et al. vol . 346 , no . 6207 , p. 318 322 , Oct. [2014]
  • Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T
    J. Oh , E. T. Han , D. Pelletier , and S. J. Nelson , vol . 24 , no . 1 , p. 33 43 , Jan. [2006]
  • Magnetic Resonance of Myelin Water : An in vivo Marker for Myelin ,
    A. L. MacKay and C. Laule vol . 2 , no . 1 , p. 71 91 , Jan. [2016]
  • MRI receiver frequency response as a contributor to Nyquist ghosting in echo planar imaging ,
    I. Delakis , K. Petala , and J. P. D. Wilde , vol . 22 , no . 2 , p. 324 328 , Aug. [2005]
  • MRI T2 and T2 * relaxometry to visualize neuromelanin in the dorsal substantia nigra pars compacta ,
  • MEDI+0 : Morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping ,
    Z. Liu , P. Spincemaille , Y. Yao , Y. Zhang , and Y. Wang , vol . 79 , no . 5 , p. 2795 2803 , [2018]
  • M. Fukunaga et al., Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast, Proc National Acad Sci, vol. 107, no. 8, pp. 3834–3839, 2010, doi: 10.1073/pnas.0911177107.
    [2010]
  • M. F. Glasser et al., A multi-modal parcellation of human cerebral cortex, Nature, vol. 536, no. 7615, pp. 171–178, 2016, doi: 10.1038/nature18933.
    [2016]
  • M. Brammerloh et al., Toward an early diagnostic marker of Parkinson’s: measuring iron in dopaminergic neurons with MR relaxometry, Biorxiv, p. 2020.07.01.170563, 2020, doi: 10.1101/2020.07.01.170563.
    [2020]
  • M. Alecci and P. Jezzard, Characterization and reduction of gradient-induced eddy currents in the RF shield of a TEM resonator., Magnet Reson Med, vol. 48, no. 2, p. 404 407, Aug. 2002, doi: 10.1002/mrm.10226.
    [2002]
  • M. A. Fernández‐Seara and F. W. Wehrli, Postprocessing technique to correct for background gradients in image‐based R*2 measurements, Magnet Reson Med, vol. 44, no. 3, pp. 358–366, 2000, doi: 10.1002/1522-2594(200009)44:3<358::aid-mrm3>3.0.co;2-i.
    [2000]
  • L. de Rochefort, R. Brown, M. R. Prince, and Y. Wang, Quantitative MR susceptibility mapping using piece‐wise constant regularized inversion of the magnetic field, Magn Reson Med, vol. 60, no. 4, pp. 1003–1009, 2008, doi: 10.1002/mrm.21710.
    [2008]
  • L. de Rochefort, R. Brown, M. R. Prince, and Y. Wang, Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field, Magnet Reson Med, vol. 60, no. 4, pp. 1003–1009, 2008, doi: 10.1002/mrm.21710.
    [2008]
  • L. Zecca, M. B. H. Youdim, P. Riederer, J. R. Connor, and R. R. Crichton, Iron, brain ageing and neurodegenerative disorders, Nat Rev Neurosci, vol. 5, no. 11, pp. 863–873, 2004, doi: 10.1038/nrn1537.
    [2004]
  • L. Li and J. S. Leigh, Quantifying arbitrary magnetic susceptibility distributions with MR, Magnet Reson Med, vol. 51, no. 5, pp. 1077–1082, 2004, doi: 10.1002/mrm.20054.
    [2004]
  • K.-T. Yung, Empirical models of transverse relaxation for spherical magnetic perturbers, Magn Reson Imaging, vol. 21, no. 5, pp. 451–463, 2003, doi: 10.1016/s0730-725x(02)00640-9.
    [2003]
  • K. Shmueli, S. J. Dodd, T.-Q. Li, and J. H. Duyn, The contribution of chemical exchange to MRI frequency shifts in brain tissue., Magnet Reson Med, vol. 65, no. 1, pp. 35–43, 2011, doi: 10.1002/mrm.22604.
    [2011]
  • K. Shmueli, J. A. de Zwart, P. van Gelderen, T.-Q. Li, S. J. Dodd, and J. H. Duyn, Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data, Magnet Reson Med, vol. 62, no. 6, pp. 1510–1522, Dec. 2009, doi: 10.1002/mrm.22135.
    [2009]
  • K. Shmueli, J. A. de Zwart, P. van Gelderen, T. Li, S. J. Dodd, and J. H. Duyn, Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data, Magnet Reson Med, vol. 62, no. 6, pp. 1510–1522, 2009, doi: 10.1002/mrm.22135.
    [2009]
  • K. C. McPhee and A. H. Wilman, T2 quantification from only proton density and T2-weighted MRI by modelling actual refocusing angles, Neuroimage, vol. 118, pp. 642–650, 2015, doi: 10.1016/j.neuroimage.2015.05.079.
    [2015]
  • K. Brodmann, Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, 1909.
    [1909]
  • J. P. Wansapura, S. K. Holland, R. S. Dunn, and W. S. Ball, NMR relaxation times in the human brain at 3.0 tesla, J Magn Reson Imaging, vol. 9, no. 4, pp. 531–538, 1999, doi: 10.1002/(sici)1522-2586(199904)9:4<531::aid-jmri4>3.0.co;2-l.
  • J. P. Marques and R. Bowtell, Application of a Fourier‐based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility, Concepts Magnetic Reson Part B Magnetic Reson Eng, vol. 25B, no. 1, p. 65 78, Apr. 2005, doi: 10.1002/cmr.b.20034.
    [2005]
  • J. Lee et al., Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure., P Natl Acad Sci Usa, vol. 107, no. 11, pp. 5130–5, 2010, doi: 10.1073/pnas.0910222107.
    [2010]
  • J. F. Schenck, The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds, Med Phys, vol. 23, no. 6, pp. 815–850, 1996, doi: 10.1118/1.597854.
    [1996]
  • J. F. Schenck and E. A. Zimmerman, High‐field magnetic resonance imaging of brain iron: birth of a biomarker?, Nmr Biomed, vol. 17, no. 7, pp. 433–445, 2004, doi: 10.1002/nbm.922.
    [2004]
  • Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer ’ s Disease
    N. D. Telling et al. vol . 24 , no . 10 , pp . 1205-1215.e3 , [2017]
  • Intracranial Calcifications and Hemorrhages : Characterization with Quantitative Susceptibility Mapping ,
    W. Chen et al. vol . 270 , no . 2 , p. 496 505 , Feb. [2014]
  • Incidental magnetization transfer effects in multislice brain MRI at 3.0T ,
    Y. Chang et al. vol . 25 , no . 4 , p. 862 865 , [2007]
  • In vivo visualization of myelin water in brain by magnetic resonance
  • Improved estimation of myelin water fraction using complex model fitting.
    Y. Nam , J. Lee , D. Hwang , and D.-H. Kim , vol . 116 , no . Neuroimage 70 2013 , p. 214 221 , Aug. [2015]
  • Imaging beta amyloid aggregation and iron accumulation in Alzheimer ’ s disease using quantitative susceptibility mapping MRI.
    N.-J . Gong , R. Dibb , M. Bulk , L. van der Weerd , and C. Liu , vol . 191 , no . PLoS One 8 2013 , p. 176 185 , [2019]
  • I. M. Vavasour, K. P. Whittall, D. K. B. Li, and A. L. MacKay, Different magnetization transfer effects exhibited by the short and long T2 components in human brain, Magnet Reson Med, vol. 44, no. 6, p. 860 866, 2000, doi: 10.1002/1522-2594(200012)44:6<860::aid-mrm6>3.0.co;2-c.
  • High-resolution myelin water imaging in post-mortem multiple sclerosis spinal cord : A case report
    C. Laule et al. , vol . 22 , no . 11 , p. 1485 1489 , [2015]
  • High-field MRI of brain cortical substructure based on signal phase
  • H. Zhang, T. Schneider, C. A. Wheeler-Kingshott, and D. C. Alexander, NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain, Neuroimage, vol. 61, no. 4, pp. 1000–1016, 2012, doi: 10.1016/j.neuroimage.2012.03.072.
    [2012]
  • H. Sachs, Das Hemisphärenmark des menschlichen Grosshirns, Dmw - Deutsche Medizinische Wochenschrift, vol. 19, no. 27, pp. 651–652, 1893, doi: 10.1055/s-0028-1143781.
  • H. Lee, Y. Nam, H.-J. Lee, J.-J. Hsu, R. G. Henry, and D.-H. Kim, Improved three-dimensional multi-echo gradient echo based myelin water fraction mapping with phase related artifact correction., Neuroimage, vol. 169, no. Magnetic Reson. Med. 78 2017, p. 1 10, Dec. 2017, doi: 10.1016/j.neuroimage.2017.11.058.
  • G. Schaltenbrand and W. Wahren, Atlas for stereotaxy of the human brain, 2d, rev. ed. Stuttgart: Thieme, 1977.
    [1977]
  • Field inhomogeneity correction for gradient echo myelin water fraction imaging ,
  • Fiber orientation-dependent white matter contrast in gradient echo MRI.
    S. Wharton and R. Bowtell vol . 109 , no . 45 , p. 18559 18564 , Nov. [2012]
  • Fast multislice mapping of the myelin water fraction using multicompartment analysis of T 2 * decay at 3T : A preliminary postmortem study
    Y. P. Du et al. vol . 58 , no . 5 , p. 865 870 , [2007]
  • F. Schweser, A. Deistung, B. W. Lehr, and J. R. Reichenbach, Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?, Neuroimage, vol. 54, no. 4, p. 2789 2807, Feb. 2011, doi: 10.1016/j.neuroimage.2010.10.070.
    [2011]
  • F. Schweser, A. Deistung, B. W. Lehr, K. Sommer, and J. R. Reichenbach, SEMI-TWInS: Simultaneous Extraction of Myelin and Iron using a T2*-Weighted Imaging Sequence Proc. Intl. Soc. Mag. Reson. Med. 19 (2011) 120, presented at the Proceedings of International Society for Magnetic Resonance in Medicine 19th annual meeting, 2011.
  • F. Q. Ye and P. S. Allen, Relaxation enhancement of the transverse magnetization of water protons in paramagnetic suspensions of red blood cells, Magnet Reson Med, vol. 34, no. 5, pp. 713–720, 1995, doi: 10.1002/mrm.1910340510.
    [1995]
  • F. Bloch, Nuclear Induction, Phys Rev, vol. 70, no. 7–8, pp. 460–474, 1946, doi: 10.1103/physrev.70.460.
    [1946]
  • F. Bagnato et al., Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla., Brain J Neurology, vol. 134, no. Pt 12, pp. 3602–15, 2011, doi: 10.1093/brain/awr278.
    [2011]
  • Effects of white matter microstructure on phase and susceptibility maps ,
    S. Wharton and R. Bowtell vol . 73 , no . 3 , p. 1258 1269 , [2015]
  • Effect of intercompartmental water exchange on the apparent myelin water fraction in multiexponential T2 measurements of rat spinal cord
    K. D. Harkins , A. N. Dula , and M. D. Does , vol . 67 , no . 3 , p. 793 800 ,doi : 10.1002/mrm.23053 . [2012]
  • E. Y. Kim, Y. H. Sung, H.-G. Shin, Y. Noh, Y. Nam, and J. Lee, Diagnosis of Early-Stage Idiopathic Parkinson’s Disease Using High-Resolution Quantitative Susceptibility Mapping Combined with Histogram Analysis in the Substantia Nigra at 3 T, J Clin Neurol, vol. 14, no. 1, pp. 90–97, 2018, doi: 10.3988/jcn.2018.14.1.90.
  • E. Tuzzi et al., Ultra-High Field MRI in Alzheimer’s Disease: Effective Transverse Relaxation Rate and Quantitative Susceptibility Mapping of Human Brain In Vivo and Ex Vivo compared to Histology, J Alzheimer’s Dis, vol. 73, no. 4, pp. 1481–1499, 2020, doi: 10.3233/jad-190424.
    [2020]
  • E. Stephenson, N. Nathoo, Y. Mahjoub, J. F. Dunn, and V. W. Yong, Iron in multiple sclerosis: roles in neurodegeneration and repair, Nat Rev Neurol, vol. 10, no. 8, pp. 459–468, 2014, doi: 10.1038/nrneurol.2014.118.
    [2014]
  • E. R. Sowell, B. S. Peterson, P. M. Thompson, S. E. Welcome, A. L. Henkenius, and A. W. Toga, Mapping cortical change across the human life span, Nat Neurosci, vol. 6, no. 3, pp. 309–315, 2003, doi: 10.1038/nn1008.
    [2003]
  • E. M. Haacke et al., Imaging iron stores in the brain using magnetic resonance imaging, Magn Reson Imaging, vol. 23, no. 1, pp. 1–25, 2005, doi: 10.1016/j.mri.2004.10.001.
    [2005]
  • E. Alonso-Ortiz, I. R. Levesque, and G. B. Pike, Multi‐gradient‐echo myelin water fraction imaging: Comparison to the multi‐echo‐spin‐echo technique, Magnet Reson Med, vol. 79, no. 3, p. 1439 1446, Mar. 2018, doi: 10.1002/mrm.26809.
    [2018]
  • E. Alonso-Ortiz, I. R. Levesque, and G. B. Pike, MRI‐based myelin water imaging: A technical review, Magnet Reson Med, vol. 73, no. 1, p. 70 81, Jan. 2015, doi: 10.1002/mrm.25198.
    [2015]
  • D. Zhou, J. Cho, J. Zhang, P. Spincemaille, and Y. Wang, Susceptibility underestimation in a high‐susceptibility phantom: Dependence on imaging resolution, magnitude contrast, and other parameters, Magnet Reson Med, vol. 78, no. 3, pp. 1080–1086, 2017, doi: 10.1002/mrm.26475.
    [2017]
  • D. Fritzsch, M. Reiss-Zimmermann, R. Trampel, R. Turner, K.-T. Hoffmann, and A. Schäfer, Seven-Tesla Magnetic Resonance Imaging in Wilson Disease Using Quantitative Susceptibility Mapping for Measurement of Copper Accumulation, Invest Radiol, vol. 49, no. 5, pp. 299–306, 2014, doi: 10.1097/rli.0000000000000010.
    [2014]
  • D. A. Yablonskiy, Quantitation of intrinsic magnetic susceptibility‐related effects in a tissue matrix. Phantom study, Magnet Reson Med, vol. 39, no. 3, p. 417 428, Mar. 1998, doi: 10.1002/mrm.1910390312.
  • D. A. Yablonskiy, A. L. Sukstanskii, J. Luo, and X. Wang, Voxel spread function method for correction of magnetic field inhomogeneity effects in quantitative gradient‐echo‐based MRI, Magnet Reson Med, vol. 70, no. 5, p. 1283 1292, Nov. 2013, doi: 10.1002/mrm.24585.
    [2013]
  • Contributions to magnetic susceptibility of brain tissue ,
    J. H. Duyn and J. Schenck , vol . 30 , no . 4 , p. e3546 , [2017]
  • Combining phase images from multi-channel RF coils using 3D phase offset maps derived from a dual-echo scan ,
    S. Robinson , G. Grabner , S. Witoszynskyj , and S. Trattnig , vol . 65 , no . 6 , p. 1638 1648 , [2011]
  • C. Wisnieff, S. Ramanan, J. Olesik, S. Gauthier, Y. Wang, and D. Pitt, Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and the presence of iron: Iron and Myelin Content of MS Lesions with MRI, Magnet Reson Med, vol. 74, no. 2, pp. 564–570, 2015, doi: 10.1002/mrm.25420.
  • C. W. J. van der Weijden et al., Myelin quantification with MRI: A systematic review of accuracy and reproducibility, Neuroimage, vol. 226, p. 117561, 2021, doi: 10.1016/j.neuroimage.2020.117561.
  • C. Stüber et al., Myelin and iron concentration in the human brain: A quantitative study of MRI contrast, Neuroimage, vol. 93, no. P1, p. 95 106, Jun. 2014, doi: 10.1016/j.neuroimage.2014.02.026.
    [2014]
  • C. R. Jack et al., In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent, Magnet Reson Med, vol. 52, no. 6, pp. 1263–1271, 2004, doi: 10.1002/mrm.20266.
    [2004]
  • C. Liu, W. Li, K. A. Tong, K. W. Yeom, and S. Kuzminski, Susceptibility‐weighted imaging and quantitative susceptibility mapping in the brain, J Magn Reson Imaging, vol. 42, no. 1, pp. 23–41, 2015, doi: 10.1002/jmri.24768.
    [2015]
  • C. Laule et al., Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology., Mult Scler, vol. 12, no. 6, p. 747 753, Dec. 2006, doi: 10.1177/1352458506070928.
    [2006]
  • C. Hildebrand, S. Remahl, H. Persson, and C. Bjartmar, Myelinated nerve fibres in the CNS, Prog Neurobiol, vol. 40, no. 3, pp. 319–384, Mar. 1993, doi: 10.1016/0301-0082(93)90015-k.
  • B. Russell-Schulz, C. Laule, D. K. B. Li, and A. L. MacKay, What causes the hyperintense T2-weighting and increased short T2 signal in the corticospinal tract?, Magn Reson Imaging, vol. 31, no. 3, p. 329 335, 2013, doi: 10.1016/j.mri.2012.07.003.
    [2013]
  • B. Drayer, P. Burger, R. Darwin, S. Riederer, R. Herfkens, and G. Johnson, MRI of brain iron, Am J Roentgenol, vol. 147, no. 1, pp. 103–110, 1986, doi: 10.2214/ajr.147.1.103.
    [1986]
  • A. S. Soliman, C. N. Wiens, T. P. Wade, and C. A. McKenzie, Fat quantification using an interleaved bipolar acquisition, Magnet Reson Med, vol. 75, no. 5, p. 2000 2008, May 2016, doi: 10.1002/mrm.25807.
  • A. K. Lotfipour et al., High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson’s disease, J Magn Reson Imaging, vol. 35, no. 1, pp. 48–55, 2012, doi: 10.1002/jmri.22752.
    [2012]
  • A geometric approach to separate the effects of magnetic susceptibility and chemical shift/exchange in a phantom with isotropic magnetic susceptibility ,
    H. Eun , H. Jeong , J. Lee , H. Shin , and J. Lee , , doi : 10.1002/mrm.28408 . [2020]
  • A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility ,
    R. Salomir , B. D. de Senneville , and C. T. Moonen , vol . 19B , no . 1 , p. 26 34 , Jan. [2003]