Biomarkers Profiling For Aggressive Breast Cancer Using Quantitative Proteomics And Bioinformatics = 정량 단백체학 및 생물정보학을 이용한 공격적인 유방암 바이오 마커의 발굴

김혜윤 2022년
논문상세정보
' Biomarkers Profiling For Aggressive Breast Cancer Using Quantitative Proteomics And Bioinformatics = 정량 단백체학 및 생물정보학을 이용한 공격적인 유방암 바이오 마커의 발굴' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 의료과학 약
  • Mass spectrometry
  • Proteomics
  • biomarker
  • breast-cancer
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
4,396 0

0.0%

' Biomarkers Profiling For Aggressive Breast Cancer Using Quantitative Proteomics And Bioinformatics = 정량 단백체학 및 생물정보학을 이용한 공격적인 유방암 바이오 마커의 발굴' 의 참고문헌

  • Why geneticists stole cancer research even though cancer is primarily a signaling disease
    Yaffe , M.B. 12 ( 565 ) . [2019]
  • WGCNA : an R package for weighted correlation network analysis
  • Visual account of protein investment in cellular functions
    Liebermeister , W. , et al. 111 ( 23 ) : p. 8488-93 . [2014]
  • Validation Study of the American Joint Committee on Cancer Eighth Edition Prognostic Stage Compared With the Anatomic Stage in Breast Cancer
    Weiss , A. , et al. 4 ( 2 ) : p. 203-209 [2018]
  • Unrestricted modification search reveals lysine methylation as major modification induced by tissue formalin fixation and paraffin embedding
    Zhang , Y. , et al. 15 ( 15 ) : p. 2568-79 . [2015]
  • Universal sample preparation method for proteome analysis .
    Wisniewski , J.R. , et al. , 6 ( 5 ) : p. 359-62 . [2009]
  • Understanding the dual nature of CD44 in breast cancer progression
    Louderbough , J.M . and J.A . Schroeder , 9 ( 12 ) : p. 1573- 86 . [2011]
  • Understanding multicellular function and disease with human tissue-specific networks
    Greene , C.S. , et al. , 47 ( 6 ) : p. 569-76 . [2015]
  • Ubiquitin-Conjugating Enzyme E2T is an Independent Prognostic Factor and Promotes Gastric Cancer Progression
    Yu , H. , et al. , 37 ( 9 ) : p. 11723-11732 . [2016]
  • The ubiquitin-conjugating enzyme E2-EPF is overexpressed in cervical cancer and associates with tumor growth
    Liang , J. , et al. , 28 ( 4 ) : p. 1519-25 . [2012]
  • The roles of cell adhesion molecules in tumor suppression and cell migration : a new paradox
    Moh , M.C . and S. Shen , 3 ( 4 ) : p. 334-6 . [2009]
  • The proteomic landscape of triple-negative breast cancer
    Lawrence , R.T. , et al. 11 ( 6 ) : p. 990 . [2015]
  • The clinical and functional significance of c-Met in breast cancer : a review
  • The biology and role of CD44 in cancer progression : therapeutic implications
    Chen , C. , et al. , 11 ( 1 ) : p. 64 . [2018]
  • The Role of CD44 in Disease Pathophysiology and Targeted Treatment
    Jordan , A.R. , et al. 6 : p. 182 . [2015]
  • The Fe-S cluster-containing NEET proteins mitoNEET and NAF-1 as chemotherapeutic targets in breast cancer
    Bai , F. , et al. , 112 ( 12 ) : p. 3698-703 . [2015]
  • Targeting MET in cancer : rationale and progress .
    Gherardi , E. , et al. , 12 ( 2 ) : p. 89-103 . [2012]
  • Targeted disruption of heparan sulfate interaction with hepatocyte and vascular endothelial growth factors blocks normal and oncogenic signaling
    Cecchi , F. , et al. , 22 ( 2 ) : p. 250-62 . [2012]
  • Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry
    Buczak , K. , et al. , 15 ( 9 ) : p. 2956-2979 . [2020]
  • Residual tissue repositories as a resource for population-based cancer proteomic studies
    Piehowski , P.D. , et al. , 15 : p. 26 [2018]
  • Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features
    Creighton , C.J. , et al. , 106 ( 33 ) : p. 13820-5 . [2009]
  • Relative Protein Quantification Using Tandem Mass Tag Mass Spectrometry .
    Zhang , L. and J.E . Elias 1550 : p. 185-198 [2017]
  • Reconstruction of pathway modification induced by nicotinamide using multi-omic network analyses in triple negative breast cancer
    Kim , J.Y. , et al. , 7 ( 1 ) : p. 3466 . [2017]
  • Recent advances in mass spectrometry based clinical proteomics : applications to cancer research
  • Re-definition of claudin-low as a breast cancer phenotype
    Fougner , C. , et al. , 11 ( 1 ) : p. 1787 . [2020]
  • RasGRP Ras guanine nucleotide exchange factors in cancer .
  • REVIGO summarizes and visualizes long lists of gene ontology terms .
    Supek , F. , et al. , 6 ( 7 ) : p. e21800 . [2011]
  • RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics .
    Salzer , E. , et al. , 17 ( 12 ) : p. 1352-1360 . [2016]
  • Quantitative analysis of changes in ER , PR and HER2 expression in primary breast cancer and paired nodal metastases
    Aitken , S.J. , et al. 21 ( 6 ) : p. 1254-1261 . [2010]
  • Quantitative Proteomic Analysis Identifies AHNAK ( Neuroblast Differentiation-associated Protein AHNAK ) as a Novel Candidate Biomarker for Bladder Urothelial Carcinoma Diagnosis by Liquid-based Cytology
    Lee , H. , et al. , 17 ( 9 ) : p. 1788-1802 . [2018]
  • Proteomic patterns associated with response to breast cancer neoadjuvant treatment
    Shenoy , A. , et al. , 16 ( 9 ) : p. e9443 . [2020]
  • Proteomic maps of breast cancer subtypes
    Tyanova , S. , et al. , 7 : p. 10259 . [2016]
  • Proteomic identification of immunoproteasome accumulation in formalin-fixed rodent spinal cords with experimental autoimmune encephalomyelitis
    Jain , M.R. , et al. , 11 ( 3 ) : p. 1791-803 . [2012]
  • Proteomic developments in the analysis of formalin-fixed tissue
  • Proteogenomics connects somatic mutations to signalling in breast cancer
    Mertins , P. , et al. , 534 ( 7605 ) : p. 55-62 . [2016]
  • Protein signatures of molecular pathways in non-small cell lung carcinoma ( NSCLC ) : comparison of glycoproteomics and global proteomics .
    Yang , S. , et al. , 14 : p. 31 . [2017]
  • Protein biomarkers for subtyping breast cancer and implications for future research
    Mueller , C. , et al. , 15 ( 2 ) : p. 131-152 . [2018]
  • Progesterone receptor modulates ERalpha action in breast cancer
    Mohammed , H. , et al. 523 ( 7560 ) : p. 313-7 . [2015]
  • Phenotypic and molecular characterization of the claudinlow intrinsic subtype of breast cancer
    Prat , A. , et al. , 12 ( 5 ) : p. R68 . [2010]
  • Perseus : A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research
    Tyanova , S. and J. Cox , 1711 : p. 133-148 . [2018]
  • PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis .
    LeBleu , V.S. , et al. , 16 ( 10 ) : p. 992-1003 , 1-15 . [2014]
  • PF4 Promotes Platelet Production and Lung Cancer Growth
    Pucci , F. , et al. 17 ( 7 ) : p. 1764-1772 . [2016]
  • Overexpression of Specific CD44 Isoforms Is Associated with Aggressive Cell Features in Acquired Endocrine Resistance .
    Bellerby , R. , et al. , 6 : p. 145 . [2016]
  • Molecular features and survival outcomes of the intrinsic subtypes within HER2-positive breast cancer
    Prat , A. , et al. , 106 ( 8 ) [2014]
  • Molecular Portrait of Hypoxia in Breast Cancer : A Prognostic Signature and Novel HIF-Regulated Genes
    Ye , I.C. , et al. , 16 ( 12 ) : p. 1889-1901 . [2018]
  • Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells
    Tamada , M. , et al. , 72 ( 6 ) : p. 1438-48 . [2012]
  • Modeling precision treatment of breast cancer
    Daemen , A. , et al. , 14 ( 10 ) : p. R110 . [2013]
  • Metabolic reprogramming in breast cancer results in distinct mitochondrial bioenergetics between luminal and basal subtypes .
    Lunetti , P. , et al. , 286 ( 4 ) : p. 688-709 . [2019]
  • Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities .
    Lanning , N.J. , et al. , 5 : p. 6 . [2017]
  • Mass-spectrometric exploration of proteome structure and function
    Aebersold , R. and M. Mann 537 ( 7620 ) : p. 347-55 . [2016]
  • Lipocalin 2 promotes breast cancer progression
    Yang , J. , et al. 106 ( 10 ) : p. 3913-8 . [2009]
  • Lipid Droplets Define a Sub-Population of Breast Cancer Stem Cells
    Hershey , B.J. , et al. , 9 ( 1 ) . [2019]
  • Is network meta-analysis as valid as standard pairwise meta-analysis ? It all depends on the distribution of effect modifiers
    Jansen , J.P. and H. Naci , 11 : p. 159 . [2013]
  • Is my network module preserved and reproducible ?
    Langfelder , P. , et al. , 7 ( 1 ) : p. e1001057 . [2011]
  • Involvement of Ras activation in human breast cancer cell signaling , invasion , and anoikis .
    Eckert , L.B. , et al. , 64 ( 13 ) : p. 4585-92 . [2004]
  • Integrated Multi-Omic Analyses Support Distinguishing Secretory Carcinoma of the Breast from Basal-Like Triple-Negative Breast Cancer
    Jin , M.S. , et al. , 12 ( 5 ) : p. e1700125 . [2018]
  • Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells
    Lyons , A. , et al. , 292 ( 41 ) : p. 16983-16998 . [2017]
  • Improving the Proteomic Analysis of Archival Tissue by Using Pressure-Assisted Protein Extraction : A Mechanistic Approach
  • Impact of oncogenic driver mutations on feedback between the PI3K and MEK pathways in cancer cells
    Yuen , H.F. , et al. , 32 ( 4 ) : p. 413-22 . [2012]
  • Immunohistochemical features of claudin-low intrinsic subtype in metaplastic breast carcinomas .
    Gerhard , R. , et al. , 21 ( 3 ) : p. 354-60 . [2012]
  • Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies
    Lehmann , B.D. , et al. , 121 ( 7 ) : p. 2750-67 . [2011]
  • Hyaluronan-CD44 interactions as potential targets for cancer therapy
    Misra , S. , et al. 278 ( 9 ) : p. 1429-43 . [2011]
  • Hyaluronan-CD44 Interactions in Cancer : Paradoxes and Possibilities
    Toole , B.P. 15 ( 24 ) : p. 7462-7468 . [2009]
  • High expression of FOXR2 in breast cancer correlates with poor prognosis .
    Song , H. , et al. , 37 ( 5 ) : p. 5991-7 . [2016]
  • Genomic Landscape and Endocrine-Resistant Subgroup in Estrogen Receptor-Positive , Progesterone Receptor-Negative , and HER2- Negative Breast Cancer
    Liu , X.Y. , et al. , 8 ( 22 ) : p. 6386-6399 . [2018]
  • Gene expression profiling of breast cell lines identifies potential new basal markers .
    Charafe-Jauffret , E. , et al. , 25 ( 15 ) : p. 2273-84 . [2006]
  • Fundamentals of cancer metabolism
    DeBerardinis , R.J. and N.S . Chandel 2 ( 5 ) : p. e1600200 . [2016]
  • Functional precision cancer medicine-moving beyond pure genomics .
    Letai , A. 23 ( 9 ) : p. 1028-1035 . [2017]
  • Fast and sensitive total protein and Peptide assays for proteomic analysis
    Wisniewski , J.R. and F.Z . Gaugaz 87 ( 8 ) : p. 4110-6 [2015]
  • Factors that drive the increasing use of FFPE tissue in basic and translational cancer research
    Gaffney , E.F. , et al. 93 ( 5 ) : p. 373-386 . [2018]
  • FOXD1 promotes breast cancer proliferation and chemotherapeutic drug resistance by targeting p27
    Zhao , Y.F. , et al. 456 ( 1 ) : p. 232-7 . [2015]
  • Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value
    Nair , K.S. , R. Naidoo , and R. Chetty , 58 ( 4 ) : p. 343-51 . [2005]
  • Elucidating the Metabolic Plasticity of Cancer : Mitochondrial Reprogramming and Hybrid Metabolic States .
    Jia , D. , et al. , 7 ( 3 ) . [2018]
  • Elevated expression of UBE2T exhibits oncogenic properties in human prostate cancer
    Wen , M. , et al. , 6 ( 28 ) : p. 25226-39 . [2015]
  • Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms , metabolic pathways , and transcription factors
    Deshmukh , A.S. , et al. , 14 ( 4 ) : p. 841-53 . [2015]
  • Decoding signalling networks by mass spectrometry-based proteomics .
    Choudhary , C. and M. Mann 11 ( 6 ) : p. 427- 39 . [2010]
  • Cytoscape : a software environment for integrated models of biomolecular interaction networks
    Shannon , P. et al . 13 ( 11 ) : p. 2498- 504 [2003]
  • Comprehensive Proteomic Characterization Reveals Subclass-Specific Molecular Aberrations within Triple-negative Breast Cancer
    Kosok , M. , et al. , 23 ( 2 ) : p. 100868 . [2020]
  • Comparison of multiple protein extraction buffers for GeLC-MS/MS proteomic analysis of liver and colon formalin-fixed , paraffin-embedded tissues
    Broeckx , V. , et al. , 12 ( 2 ) : p. 553-65 . [2016]
  • Common markers of proliferation .
    Whitfield , M.L. , et al. , 6 ( 2 ) : p. 99-106 . [2006]
  • Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes
    Prat , A. , et al. , 142 ( 2 ) : p. 237-55 . [2013]
  • Cell adhesion proteins as tumor suppressors
    Okegawa , T. , et al. , 167 ( 4 ) : p. 1836-43 . [2002]
  • Cancer-Related NEET Proteins Transfer 2Fe-2S Clusters to Anamorsin , a Protein Required for Cytosolic Iron-Sulfur Cluster Biogenesis
    Lipper , C.H. , et al. , 10 ( 10 ) : p. e0139699 . [2015]
  • Cancer stem cell markers in breast neoplasias : their relevance and distribution in distinct molecular subtypes .
    Schmitt , F. , et al. , 460 ( 6 ) : p. 545-53 . [2012]
  • Cancer statistics , 2020 .
  • CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis
    Todaro , M. , et al. , 14 ( 3 ) : p. 342-56 . [2014]
  • CD44 regulates epigenetic plasticity by mediating iron endocytosis
    Muller , S. , et al. 12 ( 10 ) : p. 929-938 . [2020]
  • CD44 regulates cell proliferation , migration , and invasion via modulation of c-Src transcription in human breast cancer cells
    Nam , K. , et al. , 27 ( 9 ) : p. 1882-94 . [2015]
  • CD44 modulates Hs578T human breast cancer cell adhesion , migration , and invasiveness
    Herrera-Gayol , A. and S. Jothy , 66 ( 1 ) : p. 99-108 . [1999]
  • CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers
    Olsson , E. , et al. , 11 : p. 418 . [2011]
  • CD44 is required for two consecutive steps in HGF/c-Met signaling
    Orian-Rousseau , V. , et al. , 16 ( 23 ) : p. 3074-86 . [2002]
  • CD44 is prognostic for overall survival in the NCI randomized trial on breast conservation with 25 year follow-up
    Dan , T. , et al. , 143 ( 1 ) : p. 11-8 . [2014]
  • CD44 as a tumor biomarker and therapeutic target
    Xu , H. , et al. , 9 ( 1 ) : p. 36 [2020]
  • CD44 : from adhesion molecules to signalling regulators .
  • CD44 : A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells
  • Breast cancer stem cells and intrinsic subtypes : controversies rage on .
  • Breast cancer quantitative proteome and proteogenomic landscape .
    Johansson , H.J. , et al. 10 ( 1 ) : p. 1600 . [2019]
  • Blocking Y-Box Binding Protein-1 through Simultaneous Targeting of PI3K and MAPK in Triple Negative Breast Cancers .
    Tiwari , A. , et al. , . 12 ( 10 ) . [2020]
  • BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams
  • An Integrated Workflow for Global , Glyco- , and Phospho92 proteomic Analysis of Tumor Tissues
    Zhou , Y. , et al. , 92 ( 2 ) : p. 1842-1849 . [2020]
  • ABHD12 Knockdown Suppresses Breast Cancer Cell Proliferation , Migration and Invasion .
    Jun , S. , et al. , 40 ( 5 ) : p. 2601-2611 . [2020]
  • A Comparative Analysis of Individual RAS Mutations in Cancer Biology
  • 93. Giusti, L. and A. Lucacchini, Proteomic studies of formalin-fixed paraffinembedded tissues. Expert Rev Proteomics, 2013. 10(2): p. 165-77.
    [2013]
  • 92. Fu, Z., et al., Improved protein extraction and protein identification from archival formalin-fixed paraffin-embedded human aortas. Proteomics Clin Appl, 2013. 7(3-4): p. 217-24.
    [2013]
  • 9. Pozniak, Y., et al., System-wide Clinical Proteomics of Breast Cancer Reveals Global Remodeling of Tissue Homeostasis. Cell Syst, 2016. 2(3): p. 172-84.
    [2016]
  • 86. Umoh, M.E., et al., A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Mol Med, 2018. 10(1): p. 48-62.
    [2018]
  • 85. Yanovich-Arad, G., et al., Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Rep, 2021. 34(9): p. 108787.
  • 83. Jang, H.N., et al., Mass Spectrometry-Based Proteomic Discovery of Prognostic Biomarkers in Adrenal Cortical Carcinoma. Cancers (Basel), 2021. 13(15).
  • 80. Early Breast Cancer Trialists' Collaborative, G., Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet, 2005. 365(9472): p. 1687-717.
    [2005]
  • 78. Joosten, S.P.J., et al., Hepatocyte growth factor/MET and CD44 in colorectal cancer: partners in tumorigenesis and therapy resistance. Biochim Biophys Acta Rev Cancer, 2020. 1874(2): p. 188437.
    [2020]
  • 7. Vinik, Y., et al., Proteomic analysis of circulating extracellular vesicles identifies potential markers of breast cancer progression, recurrence, and response. Sci Adv, 2020. 6(40).
    [2020]
  • 65. Krishnan, A., et al., Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci, 2016. 19(11): p. 1454-1462.
    [2016]
  • 61. Yen, T.Y., et al., Glycoproteins in Claudin-Low Breast Cancer Cell Lines Have a Unique Expression Profile. J Proteome Res, 2017. 16(4): p. 1391- 1400.
    [2017]
  • 49. Warburg, O., F. Wind, and E. Negelein, The Metabolism of Tumors in the Body. J Gen Physiol, 1927. 8(6): p. 519-30.
  • 42. Szklarczyk, D., et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 2019. 47(D1): p. D607-D613.
    [2019]
  • 1D and 2D annotation enrichment : a statistical method integrating quantitative proteomics with complementary highthroughput data
    Cox , J. and M. Mann 13 Suppl 16 : p. S12 . [2012]
  • 19. Turley, E.A., P.W. Noble, and L.Y. Bourguignon, Signaling properties of hyaluronan receptors. J Biol Chem, 2002. 277(7): p. 4589-92.
    [2002]
  • 17. Zoller, M., CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer, 2011. 11(4): p. 254-67.
    [2011]
  • 129. Freedman, L.P., G. Venugopalan, and R. Wisman, Reproducibility2020: Progress and priorities. F1000Res, 2017. 6: p. 604.
    [2017]
  • 126. Lehmann, B.D., et al., Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat Commun, 2021. 12(1): p. 6276.
  • 12. Colzani, E., et al., Time-dependent risk of developing distant metastasis in breast cancer patients according to treatment, age and tumour characteristics. Br J Cancer, 2014. 110(5): p. 1378-84.
    [2014]
  • 116. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2018. CA Cancer J Clin, 2018. 68(1): p. 7-30.
    [2018]
  • 112. Camponeschi, F., S. Ciofi-Baffoni, and L. Banci, Anamorsin/Ndor1 Complex Reduces [2Fe-2S]-MitoNEET via a Transient Protein-Protein Interaction. J Am Chem Soc, 2017. 139(28): p. 9479-9482.
    [2017]
  • 110. Mittler, R., et al., NEET Proteins: A New Link Between Iron Metabolism, Reactive Oxygen Species, and Cancer. Antioxid Redox Signal, 2019. 30(8): p. 1083-1095.
    [2019]
  • 11. Radler, P.D., et al., Highly metastatic claudin-low mammary cancers can originate from luminal epithelial cells. Nat Commun, 2021. 12(1): p. 3742.
  • 108. Qiao, L., C. Dong, and B. Ma, UBE2T promotes proliferation, invasion and glycolysis of breast cancer cells by regualting the PI3K/AKT signaling pathway. J Recept Signal Transduct Res, 2021: p. 1-9.
  • 102. Madaras, L., et al., BRCA Mutation-Related and Claudin-Low Breast Cancer: Blood Relatives or Stepsisters. Pathobiology, 2016. 83(1): p. 1-12.
    [2016]
  • 1. Luond, F., S. Tiede, and G. Christofori, Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer, 2021. 125(2): p. 164-175.