Design, Modeling, Control, and Performance Optimization of Polymer Electrolyte Membrane Fuel Cell/Battery Hybrid Power System = 폴리머 전해질 막 연료전지 하이브리드 시스템의 설계, 모델링, 제어 및 전력 관리 최적화

원해파 2022년
논문상세정보
' Design, Modeling, Control, and Performance Optimization of Polymer Electrolyte Membrane Fuel Cell/Battery Hybrid Power System = 폴리머 전해질 막 연료전지 하이브리드 시스템의 설계, 모델링, 제어 및 전력 관리 최적화' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 응용 물리
  • Durability
  • Dynamic programming
  • Energy management
  • Genetic algorithm
  • Hydrogen consumption
  • PEMFC/battery hybrid power system
  • Rule-based
  • energy management strategy
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
967 0

0.0%

' Design, Modeling, Control, and Performance Optimization of Polymer Electrolyte Membrane Fuel Cell/Battery Hybrid Power System = 폴리머 전해질 막 연료전지 하이브리드 시스템의 설계, 모델링, 제어 및 전력 관리 최적화' 의 참고문헌

  • optimal energy management for fuel cell and supercapacitor systems using neural network based driving pattern recognition .
    Zhang R , Tao J , Zhou H. Fuzzy 27:45 ? 57 . https : //doi.org/10.1109/TFUZZ.2018.2856086 . [2019]
  • implementation of fuzzy output tracking control for a boost converter
    El Beid S , Doubabi S. DSP-based 61:196 ? 209https : //doi.org/10.1109/TIE.2013.2242413 . [2014]
  • fuzzy energy management system for FC/SC-Powered HEV Considering H2 Consumption and Load Variation .
    Zhang R , Tao J. GA-Based 26:1833 ? 43 . https : //doi.org/10.1109/TFUZZ.2017.2779424 . [2018]
  • controller for fuel cell & battery hybridisation
    Howroyd S , Chen R. Powerpath 41:4229 ? 38 . https : //doi.org/10.1016/j.ijhydene.2016.01.038 . [2016]
  • comparative study of extremum seeking methods applied to online energy management strategy of fuel cell hybrid electric vehicles .
    Zhou D , Ravey A , Al-Durra A , Gao F. A 151:778 ? 90 . https : //doi.org/10.1016/j.enconman.2017.08.079 . [2017]
  • adaptive sliding-mode control for boost DC-DC converters
    Oucheriah S , Guo L. PWM-based 60:3291 ? 4https : //doi.org/10.1109/TIE.2012.2203769 . [2013]
  • [9] Tarczewski T, Niewiara LJ, Skiwski M, Grzesiak LM. Gain-scheduled constrained state feedback control of DC-DC buck power converter. IET Power Electron 2018;11:735–43. https://doi.org/10.1049/iet-pel.2017.0370.
    [2018]
  • [8] Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl Energy 2011;88:981–1007. https://doi.org/10.1016/j.apenergy.2010.09.030.
    [2011]
  • [8] Rivetta CH, Emadi A, Williamson GA, Jayabalan R, Fahimi B. Analysis and control of a buck DC-DC converter operating with constant power load in sea and undersea vehicles. IEEE Trans Ind Appl 2006;42:559–72. https://doi.org/10.1109/TIA.2005.863903.
    [2006]
  • [7] Larminie J, Dicks A. Fuel cell systems explained: Second edition. Fuel Cell Syst Explain Second Ed 2013:1–406. https://doi.org/10.1002/9781118878330.
  • [7] Diaz-Saldierna LH, Leyva-Ramos J, Ortiz-Lopez MG, Reyes-Malanche JA. Currentcontrolled switching regulator using a DC-DC converter with high-step-down voltage gain. IET Power Electron 2012;5:1147–53. https://doi.org/10.1049/iet-pel.2011.0227.
    [2012]
  • [72] Song K, Wang X, Li F, Sorrentino M, Zheng B. Pontryagin’s minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability. Energy 2020;205. https://doi.org/10.1016/j.energy.2020.118064.
    [2020]
  • [70] Ansarey M, Shariat Panahi M, Ziarati H, Mahjoob M. Optimal energy management in a dual-storage fuel-cell hybrid vehicle using multi-dimensional dynamic programming. J Power Sources 2014;250:359–71. https://doi.org/10.1016/j.jpowsour.2013.10.145.
    [2014]
  • [6] Wang T, Li Q, Yang H, Yin L, Wang X, Qiu Y, et al. Adaptive current distribution method for parallel-connected PEMFC generation system considering performance consistency. Energy Convers Manag 2019;196:866–77. https://doi.org/10.1016/j.enconman.2019.06.048.
    [2019]
  • [6] Saadatizadeh Z, Heris PC, Sabahi M, Babaei E. Two new transformerless high step-down DC-DC converters. IET Power Electron 2019;12:1205–19. https://doi.org/10.1049/ietpel. 2018.5484.
    [2019]
  • [69] Onori S, Serrao L, Rizzoni G. Hybrid electric vehicles: Energy management strategies. SpringerBriefs Control Autom Robot 2016:1–112. https://doi.org/10.1007/978-1- 4471-6781-5.
  • [67] Kabza A. Fuel Cell Formulary Contents 2013.
    [2013]
  • [63] Jay Tawee Pukrushpan, Pukrushpan JT. Modeling and control of fuel cell systems and fuel processors. Mech Eng 2003:133.
  • [62] Liu Y, Liu J, Zhang Y, Wu Y, Chen Z, Ye M. Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization. Energy 2020;207. https://doi.org/10.1016/j.energy.2020.118212.
    [2020]
  • [61] Lv Y, Yuan H, Liu Y, Wang Q. Fuzzy logic based energy management strategy of battery-ultracapacitor composite power supply for HEV. Proc - 2010 1st Int Conf Pervasive Comput Signal Process Appl PCSPA 2010 2010:1209–14. https://doi.org/10.1109/PCSPA.2010.297.
  • [60] Song K, Chen H, Wen P, Zhang T, Zhang B, Zhang T. A comprehensive evaluation framework to evaluate energy management strategies of fuel cell electric vehicles. Electrochim Acta 2018;292:960–73. https://doi.org/10.1016/j.electacta.2018.09.166.
    [2018]
  • [57] Hirscher M, Hirose K. Handbook of Hydrogen Storage: New Materials for Future Energy Storage. 2010. Wiley n.d.
    [2010]
  • [56] Sulaiman N, Hannan MA, Mohamed A, Majlan EH, Wan Daud WR. A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges. Renew Sustain Energy Rev 2015;52:802–14. https://doi.org/10.1016/j.rser.2015.07.132.
    [2015]
  • [51] Fu Z, Zhu L, Tao F, Si P, Sun L. Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle considering fuel economy and fuel cell lifespan. Int J Hydrogen Energy 2020;45:8875–86. https://doi.org/10.1016/j.ijhydene.2020.01.017.
    [2020]
  • [49] Peng H, Li J, Thul A, Deng K, Ünlübayir C, Löwenstein L, et al. A scalable, causal, adaptive rule-based energy management for fuel cell hybrid railway vehicles learned from results of dynamic programming. ETransportation 2020;4:100057. https://doi.org/10.1016/j.etran.2020.100057.
    [2020]
  • [47] Zandi M, Payman A, Martin JP, Pierfederici S, Davat B, Meibody-Tabar F. Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications. IEEE Trans Veh Technol 2011;60:433–43. https://doi.org/10.1109/TVT.2010.2091433.
    [2011]
  • [46] Wang Y, Sun Z, Chen Z. Development of energy management system based on a rulebased power distribution strategy for hybrid power sources. Energy 2019;175:1055– 66. https://doi.org/10.1016/j.energy.2019.03.155.
    [2019]
  • [45] Shen Y, Cui P, Wang X, Han X, Wang YX. Variable structure battery-based fuel cell hybrid power system and its incremental fuzzy logic energy management strategy. Int J Hydrogen Energy 2020;45:12130–42. https://doi.org/10.1016/j.ijhydene.2020.02.083.
    [2020]
  • [42] Lopez Lopez G, Schacht Rodriguez R, Alvarado VM, Gomez-Aguilar JF, Mota JE, Sandoval C. Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation. Appl Energy 2017;205:1478–94. https://doi.org/10.1016/j.apenergy.2017.08.063.
    [2017]
  • [40] Liu Y, Liu J, Qin D, Li G, Chen Z, Zhang Y. Online energy management strategy of fuel cell hybrid electric vehicles based on rule learning. J Clean Prod 2020;260. https://doi.org/10.1016/j.jclepro.2020.121017.
    [2020]
  • [3] Zhang S, Zhao M, Wu X, Zhang H. Dual-phase DC-DC buck converter with lightload performance enhancement for portable applications. IET Power Electron 2018;11:719– 26. https://doi.org/10.1049/iet-pel.2017.0510.
    [2018]
  • [3] Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B. Step-Up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans Power Electron 2017;32:9143–78. https://doi.org/10.1109/TPEL.2017.2652318.
    [2017]
  • [3] Das V, Padmanaban S, Venkitusamy K, Selvamuthukumaran R, Blaabjerg F, Siano P. Recent advances and challenges of fuel cell based power system architectures and control – A review. Renew Sustain Energy Rev 2017;73:10–8. https://doi.org/10.1016/j.rser.2017.01.148.
    [2017]
  • [39] Gao Z. Scaling and Bandwidth-Parameterization based Controller Tuning. Proc Am Control Conf 2003;6:4989–96. https://doi.org/10.1109/acc.2003.1242516.
    [2003]
  • [37] Liu T, Wang B, Yang C. Online Markov Chain-based energy management for a hybrid tracked vehicle with speedy Q-learning. Energy 2018;160:544–55. https://doi.org/10.1016/j.energy.2018.07.022.
    [2018]
  • [37] Bao Y, Wang LY, Wang C, Jiang J, Jiang C, Duan C. Adaptive Feedforward Compensation for Voltage Source Disturbance Rejection in DC-DC Converters. IEEE Trans Control Syst Technol 2018;26:344–51. https://doi.org/10.1109/TCST.2017.2661829.
    [2018]
  • [36] Kazimierczuk MK. Pulse-Width Modulated DC-DC Power Converters. 2012. https://doi.org/10.1002/9780470694640.
  • [35] Hegazy O, Van Mierlo J. Particle swarm optimization for optimal powertrain component sizing and design of fuel cell hybrid electric vehicle. Proc Int Conf Optim Electr Electron Equipment, OPTIM 2010:601–9. https://doi.org/10.1109/OPTIM.2010.5510447.
  • [35] Erickson R W, Maksimovic D. Fundamentals of power electronics. Springer Science & Business Media, 2007.
    [2007]
  • [34] Pourhashemi AP, Mehdi Ansarey M. SM. Ant colony optimization applied to optimal energy management of fuel cell hybrid electric vehicle. Int Congr Ultra Mod Telecommun Control Syst Work 2012:497–503. https://doi.org/10.1109/ICUMT.2012.6459716.
  • [34] Han J-Q. Nonlinear design methods for control systems. IFAC Proc Vol 1999;32:1531– 6. https://doi.org/10.1016/s1474-6670(17)56259-x.
  • [33] Solano J, Hissel D, Péra M-C. Fail-Safe Power for Hybrid Electric Vehicles. IEEE Veh Technol Mag 2018:34–9.
  • [33] Gao Z. Scaling and Bandwidth-Parameterization based Controller Tuning. Proc Am Control Conf 2003;6:4989–96. https://doi.org/10.1109/acc.2003.1242516.
    [2003]
  • [31] Mattavelli P. An improved deadbeat control for UPS using disturbance observers. IEEE Trans Ind Electron 2005;52:206–12. https://doi.org/10.1109/TIE.2004.837912.
    [2005]
  • [31] Dorato P, Petersen D. Digital Control Systems. vol. 23. 1984. https://doi.org/10.1016/S0065-2458(08)60465-9.
  • [30] Mattavelli P. An improved deadbeat control for UPS using disturbance observers. IEEE Trans Ind Electron 2005;52:206–12. https://doi.org/10.1109/TIE.2004.837912.
    [2005]
  • [2] Kumaravel S, Narayanankutty R A, Rao V S, et al. Dual input–dual output DC–DC converter for solar PV/battery/ultra-capacitor powered electric vehicle application. IET Power Electron 2019; 12(13): 3351-3358. https://doi.org/10.1049/iet-pel.2019.0123.
    [2019]
  • [28] Wang T, Li Q, Wang X, Qiu Y, Liu M, Meng X, et al. An optimized energy management strategy for fuel cell hybrid power system based on maximum efficiency range identification. J Power Sources 2020;445. https://doi.org/10.1016/j.jpowsour.2019.227333.
    [2020]
  • [28] Stefanutti W, Tedeschi E, Mattavelli P, Saggini S. Digital deadbeat control tuning for dcdc converters using error correlation. PESC Rec - IEEE Annu Power Electron Spec Conf 2006. https://doi.org/10.1109/PESC.2006.1712130.
  • [28] Middlebrook RD. Small-signal modeling of PWM switched-mode power converters. Proceedigns IEEE 1988;76:343–54.
    [1988]
  • [27] Wu J, Zhang N, Tan D, Chang J, Shi W. A robust online energy management strategy for fuel cell/battery hybrid electric vehicles. Int J Hydrogen Energy 2020;45:14093– 107. https://doi.org/10.1016/j.ijhydene.2020.03.091.
  • [27] Keshri R, Kadwane SG, Kumbhare JM, Gawande SP. Ripple free deadbeat control of DC-DC buck converter for distributed generators. IECON Proc (Industrial Electron Conf 2016:6572–7. https://doi.org/10.1109/IECON.2016.7793561.
  • [27] Kazimierczuk MK. Pulse-Width Modulated DC-DC Power Converters. 2012. https://doi.org/10.1002/9780470694640.
  • [25] Paganelli G, Delprat S, Guerra TM, Rimaux J, Santin JJ. Equivalent consumption minimization strategy for parallel hybrid powertrains. IEEE Veh Technol Conf 2002;4:2076–81. https://doi.org/10.1109/VTC.2002.1002989.
    [2002]
  • [24] Zhuo S, Gaillard A, Guo L, Xu L, Paire D, Gao F. Active Disturbance Rejection Voltage Control of a Floating Interleaved DC-DC Boost Converter with Switch Fault Consideration. IEEE Trans Power Electron 2019;34:12396–406. https://doi.org/10.1109/TPEL.2019.2905897.
    [2019]
  • [24] Mariéthoz S, Almér S, Bâja M, Beccuti AG, Patino D, Wernrud A, et al. Comparison of hybrid control techniques for buck and boost DC-DC converters. IEEE Trans Control Syst Technol 2010;18:1126–45. https://doi.org/10.1109/TCST.2009.2035306.
    [2010]
  • [24] Ettihir K, Boulon L, Agbossou K. Optimization-based energy management strategy for a fuel cell/battery hybrid power system. Appl Energy 2016;163:142–53. https://doi.org/10.1016/j.apenergy.2015.10.176.
    [2016]
  • [23] Rodriguez J, Kazmierkowski MP, Espinoza JR, Zanchetta P, Abu-Rub H, Young HA, et al. State of the art of finite control set model predictive control in power electronics. IEEE Trans Ind Informatics 2013;9:1003–16. https://doi.org/10.1109/TII.2012.2221469.
    [2013]
  • [21] Robust control for PWM-based DC-DC buck converters with uncertainty via sampled date output feedback.pdf n.d.
  • [21] Hu Z, Li J, Xu L, Song Z, Fang C, Ouyang M, et al. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles. Energy Convers Manag 2016;129:108–21. https://doi.org/10.1016/j.enconman.2016.09.082.
    [2016]
  • [20] Renaudineau H, Martin JP, Nahid-Mobarakeh B, Pierfederici S. DC-DC converters dynamic modeling with state observer-based parameter estimation. IEEE Trans Power Electron 2015;30:3356–63. https://doi.org/10.1109/TPEL.2014.2334363.
    [2015]
  • [17] Tan SC, Lai YM, Cheung MKH, Tse CK. A pulse-width-modulation based sliding mode controller for buck converters. PESC Rec - IEEE Annu Power Electron Spec Conf 2004;5:3647–53. https://doi.org/10.1109/PESC.2004.1355121.
    [2004]
  • [17] Ouddah N, Boukhnifer M, Raisemche A. Two control energy management schemes for electrical hybrid vehicle. 2013 10th Int Multi-Conference Syst Signals Devices, SSD 2013 2013. https://doi.org/10.1109/SSD.2013.6564135.
    [2013]
  • [16] Bassam AM, Phillips AB, Turnock SR, Wilson PA. Design, modelling and Simulation of a hybrid fuel cell propulsion system for a domestic ferry. PRADS 2016 - Proc 13th Int Symp Pract Des Ships Other Float Struct 2016.
    [2016]
  • [15] Sulaiman N, Hannan MA, Mohamed A, Ker PJ, Majlan EH, Wan Daud WR. Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations. Appl Energy 2018;228:2061–79. https://doi.org/10.1016/j.apenergy.2018.07.087.
    [2018]
  • [14] Maity S. Dynamics and stability issues of a discretized sliding-mode controlled DC-DC buck converter governed by fixed-event-time switching. IEEE Trans Circuits Syst I Regul Pap 2013;60:1657–69. https://doi.org/10.1109/TCSI.2012.2221193.
    [2013]
  • [14] Gupta T. Implementation of a fuzzy controller for dc-dc converters using an inexpensive 8-b microcontroller. IEEE Trans Ind Electron 1997;44:661–9. https://doi.org/10.1109/41.633467.
    [1997]
  • [12] Wang B, Zhao D, Li W, Wang Z, Huang Y, You Y, et al. Current technologies and challenges of applying fuel cell hybrid propulsion systems in unmanned aerial vehicles. Prog Aerosp Sci 2020;116. https://doi.org/10.1016/j.paerosci.2020.100620.
    [2020]
  • [11] Martinez-Treviño BA, El Aroudi A, Vidal-Idiarte E, Cid-Pastor A, Martinez-Salamero L. Sliding-mode control of a boost converter under constant power loading conditions. IET Power Electron 2019;12:521–9. https://doi.org/10.1049/iet-pel.2018.5098.
    [2019]
  • Zolotas A. Optimized Active Disturbance Rejection Control for DCDC Buck Converters With Uncertainties Using a Reduced-Order GPI Observer65:832 ? 41
    Yang J , Cui H , Li S , https : //doi.org/10.1109/TCSI.2017.2725386 . [2018]
  • Wu M. Improving disturbance-rejection performance based on an equivalent-input-disturbance approach
    She JH , Fang M , Ohyama Y , Hashimoto H , 55:380 ? 9 . https : //doi.org/10.1109/TIE.2007.905976 . [2008]
  • Wavelet-transform-based power management of hybrid vehicles with multiple on-board energy sources including fuel cell , battery and ultracapacitor
    Zhang X , Mi CC , Masrur A , Daniszewski D. 185:1533 ? 43 . https : //doi.org/10.1016/j.jpowsour.2008.08.046 . [2008]
  • Voltage loop of boost PWM DC-DC converters with peak current-mode control53:99 ? 105
    Bryant B , Kazimierczuk MK . https : //doi.org/10.1109/TCSI.2005.854611 . [2006]
  • Tian G. A length ratio based neural network energy management strategy for online control of plug-in hybrid electric city bus
    Tian H , Lu Z , Wang X , Zhang X , Huang Y , 177:71 ? 80 . https : //doi.org/10.1016/j.apenergy.2016.05.086 . [2016]
  • Switching sliding-mode control strategy based on multi-type restrictive condition for voltage control of buck converter in auxiliary energy source
    Wang B , Ma G , Xu D , Zhang L , Zhou J . 228:1373 ? 84 . https : //doi.org/10.1016/j.apenergy.2018.06.141 . [2018]
  • Sunwoo M. Electric powertrain modeling of a fuel cell hybrid electric vehicle and development of a power distribution algorithm based on driving mode recognition
    Ryu J , Park Y 195:5735 ? 48 . https : //doi.org/10.1016/j.jpowsour.2010.03.081 . [2010]
  • State and Disturbance Observer-Based Integral Sliding Mode Controlled Boost DC-DC Converters66:1567 ? 71
    Pandey SK , Patil SL , Chaskar UM , Phadke SB . https : //doi.org/10.1109/TCSII.2018.2888570 . [2019]
  • Stability and Sensitivity Analysis of Uniformly Sampled DC-DC Converter with Circuit Parasitics
    Kumar M , Gupta R. https : //doi.org/10.1109/TCSI.2016.2598834 . [2016]
  • Sliding mode controller with modified sliding function for DC-DC Buck Converter
    Naik BB , Mehta AJ . 70:279 ? 87 . https : //doi.org/10.1016/j.isatra.2017.05.009 . [2017]
  • Saggini S. Digital deadbeat control tuning for dcdc converters using error correlation
    Stefanutti W , Tedeschi E , Mattavelli P , 22:1566 ? 70https : //doi.org/10.1109/PESC.2006.1712130 . [2006]
  • Robust time-delay control for the DC-DC boost converter
    Wang YX , Yu DH , Kim YB 61:4829 ? 37https : //doi.org/10.1109/TIE.2013.2290764 . [2014]
  • Robust sliding-mode control of dc/dc boost converter feeding a constant power load .
    Singh S , Fulwani D , Kumar V. 8:1230 ? 7 . https : //doi.org/10.1049/iet-pel.2014.0534 . [2015]
  • Robust MPC ? PIC force control for an electro-hydraulic servo system with pure compressive elastic load .
    Yuan HB , Na HC , Kim YB . 79:170 ? 84 . https : //doi.org/10.1016/j.conengprac.2018.07.009 . [2018]
  • Robust LQR control for PWM converters : An LMI approach
    Olalla C , Leyva R , El Aroudi A , Queinnec I . 56:2548 ? 58https : //doi.org/10.1109/TIE.2009.2017556 . [2009]
  • Robust Feedback-Linearizing Output Voltage Regulator for DC/DC Boost Converter
    Kim SK , Lee KB . 62:7127 ? 35https : //doi.org/10.1109/TIE.2015.2443102 . [2015]
  • Robust DC/DC converter control for polymer electrolyte membrane fuel cell application
    Wang YX , Yu DH , Chen SA , Kim YB 261:292 ? 305https : //doi.org/10.1016/j.jpowsour.2014.03.048 . [2014]
  • Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle .
    Xiong R , Cao J , Yu Q. 211:538 ? 48 . https : //doi.org/10.1016/j.apenergy.2017.11.072 . [2018]
  • Real-time control for air excess ratio of a PEM fuel cell system .
    Wang YX , Kim YB . 19:852 ? 61 . https : //doi.org/10.1109/TMECH.2013.2262054 . [2014]
  • Power source protection method for hybrid polymer electrolyte membrane fuel cell/lithium-ion battery system .
    Wang YX , Ou K , Kim YB 111:381 ? 91https : //doi.org/10.1016/j.renene.2017.03.088 . [2017]
  • Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation .
    Wang Y , Moura SJ , Advani SG , Prasad AK . 44:8479 ? 92 . https : //doi.org/10.1016/j.ijhydene.2019.02.003 . [2019]
  • Power management optimization of fuel cell/battery hybrid vehicles with experimental validation .
    Odeim F , Roes J , W ? lbeck L , Heinzel A . 252:333 ? 43 . https : //doi.org/10.1016/j.jpowsour.2013.12.012 . [2014]
  • Piegari L. Electrical networks fed by fuel-cells for uninterruptible electrical supply
    Pagano M 3:953 ? 8https : //doi.org/10.1109/isie.2002.1025862 . [2002]
  • Parabolic-Modulated Sliding-Mode Voltage Control of a Buck Converter
    Qi W , Li S , Tan SC , Hui SYR 65:844 ? 54https : //doi.org/10.1109/TIE.2017.2716859 . [2018]
  • PBC for direct voltage regulation for the boost DC ? DC converter
    Arora S , Balsara PT , Bhatia DK IET Power Electron12:1942 ? 51https : //doi.org/10.1049/ietpel . 2018.5119 . [2019]
  • Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM52:2158 ? 64
    Bryant B , Kazimierczuk MK . https : //doi.org/10.1109/TCSI.2005.852919 . [2005]
  • On the practical design of a sliding mode voltage controlled buck converter
    Tan SC , Lai YM , Cheung MKH , Tse CK 20:425 ? 37https : //doi.org/10.1109/TPEL.2004.842977 . [2005]
  • On the convergence of an extended state observer for nonlinear systems with uncertainty
    Guo BZ , Zhao ZL 60:420 ? 30https : //doi.org/10.1016/j.sysconle.2011.03.008 . [2011]
  • Novel three-controller average current mode control of DC-DC PWM converters with improved robustness and dynamic response
    Garcer ? G , Figueres E , Mochol ? A . 15:516 ? 28 . https : //doi.org/10.1109/63.844512 . [2000]
  • Near-null response to large-signal transients in an augmented buck converter : A geometric approach .
    Kapat S , Shenoy PS , Krein PT . 27:3319 ? 29 . https : //doi.org/10.1109/TPEL.2011.2181418 . [2012]
  • Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter .
    Wang Y , Zhang X , Liu C , Pan R , Chen Z. 389:93 ? 105https : //doi.org/10.1016/j.jpowsour.2018.04.012 . [2018]
  • Multi-objective genetic optimization of the fuel cell hybrid vehicle supervisory system : Fuzzy logic and operating mode control strategies
    Ahmadi S , Bathaee SMT . 40:12512 ? 21 . https : //doi.org/10.1016/j.ijhydene.2015.06.160 . [2015]
  • Morari M. Hybrid model predictive control of the step-down DCDC converter
    Geyer T , Papafotiou G , 16:1112 ? 24 . https : //doi.org/10.1109/TCST.2008.917221 . [2008]
  • Morari M. A decentralized explicit predictive control paradigm for parallelized DC-DC Circuits .
    Beccuti AG , Kvasnica M , Papafotiou G , 21:136 ? 48 . https : //doi.org/10.1109/TCST.2011.2178071 . [2013]
  • Modeling and analysis of an FC/UC hybrid vehicular power system using a wavelet-fuzzy logic based load sharing and control algorithm
    Erdinc O , Vural B , Uzunoglu M , Ates Y . 34:5223 ? 33 . https : //doi.org/10.1016/j.ijhydene.2008.10.039 . [2009]
  • Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle .
    Wang H , Huang Y , Khajepour A , Song Q . 182:105 ? 14 . https : //doi.org/10.1016/j.apenergy.2016.08.085 . [2016]
  • Model predictive control for power management in a plugin hybrid electric vehicle with a hybrid energy storage system .
    Zhang S , Xiong R , Sun F. 185:1654 ? 62 . https : //doi.org/10.1016/j.apenergy.2015.12.035 . [2017]
  • Min-max game based energy management strategy for fuel cell/supercapacitor hybrid electric vehicles .
    Sun Z , Wang Y , Chen Z , Li X. 267. https : //doi.org/10.1016/j.apenergy.2020.115086 . [2020]
  • Leyva R. Second-order sliding-mode controlled synchronous buck DC-DC converter
    Ling R , Maksimovic D , 31:2539 ? 49https : //doi.org/10.1109/TPEL.2015.2431193 . [2016]
  • Lehnert W. Interactions between a polymer electrolyte membrane fuel cell and boost converter utilizing a multiscale model
    Xu L , Hong P , Fang C , Li J , Ouyang M , 395:237 ? 50 . https : //doi.org/10.1016/j.jpowsour.2018.05.065 . [2018]
  • Improving fuel economy and performance of a fuel-cell hybrid electric vehicle ( fuel-cell , battery , and ultra-capacitor ) using optimized energy management strategy .
    Ahmadi S , Bathaee SMT , Hosseinpour AH . 160:74 ? 84 . https : //doi.org/10.1016/j.enconman.2018.01.020 . [2018]
  • High/low pulse generation of deadbeat based high power DC-DC converter with very short rise time . 2016 IEEE 8th International Power Electronics and Motion Control Conference ( IPEMC-ECCE Asia )
  • H. High performance predictive dead-beat digital controller for dc power supplies
    Bibian S , Jin 17:420 ? 7https : //doi.org/10.1109/TPEL.2002.1004250 . [2002]
  • H. Current management in a hybrid fuel cell power system : A model-predictive control approach .
    Vahidi A , Stefanopoulou A , Peng 14:1047 ? 57 . https : //doi.org/10.1109/TCST.2006.880199 . [2006]
  • General design issues of sliding-mode controllers in DC-DC converters55:1160 ? 74
    Tan SC , Lai YM , Tse CK . https : //doi.org/10.1109/TIE.2007.909058 . [2008]
  • From PID to active disturbance rejection control
    Han J 56:900 ? 6https : //doi.org/10.1109/TIE.2008.2011621 . [2009]
  • Feedforward control of DC-DC PWM boost converter44:143 ? 8
    Kazimierczuk MK . https : //doi.org/10.1109/81.554332 . [1997]
  • Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs .
    Zhang X , Liu L , Dai Y , Lu T. 43:10094 ? 103 . https : //doi.org/10.1016/j.ijhydene.2018.04.075 . [2018]
  • Experimental Evaluation of Internal Model Control Scheme on a DC-DC Boost Converter Exhibiting Nonminimum Phase Behavior
    Kobaku T , Patwardhan SC , Agarwal V. 32:8880 ? 91https : //doi.org/10.1109/TPEL.2017.2648888 . [2017]
  • Evaluation of DSP-based PID and fuzzy controllers for DCDC converters
    Guo L , Hung JY , Nelms RM . 56:2237 ? 48 . https : //doi.org/10.1109/TIE.2009.2016955 . [2009]
  • Energy optimization of logistics transport vehicle driven by fuel cell hybrid power system .
    L ? X , Wang P , Meng L , Chen C. 199. https : //doi.org/10.1016/j.enconman.2019.111887 . [2019]
  • Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine
    Wang Y , Sun Z , Chen Z . 254:113707. https : //doi.org/10.1016/j.apenergy.2019.113707 . [2019]
  • Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms .
    Jiang H , Xu L , Li J , Hu Z , Ouyang M. 177:386 ? 96 . https : //doi.org/10.1016/j.energy.2019.04.110 . [2019]
  • Dynamic programming for new energy vehicles based on their work modes Part II : Fuel cell electric vehicles .
    Zhou W , Yang L , Cai Y , Ying T. 407:92 ? 104. https : //doi.org/10.1016/j.jpowsour.2018.10.048 . [2018]
  • Djerdir A. Online adaptive equivalent consumption minimization strategy for fuel cell hybrid electric vehicle considering power sources degradation .
    Li H , Ravey A , N ’ Diaye A , 192:133 ? 49 . https : //doi.org/10.1016/j.enconman.2019.03.090 . [2019]
  • Disturbance-observer-based control and related methods-An overview [ J ]
    Chen W H , Yang J , Guo L , et al . 63 ( 2 ) : 1083-1095 . [2015]
  • Disturbance-Observer-Based Control for Air Management of PEM Fuel Cell Systems via Sliding Mode Technique .
    Liu J , Gao Y , Su X , Wack M , Wu L. 27:1129 ? 38 . https : //doi.org/10.1109/TCST.2018.2802467 . [2019]
  • D. Robust control of parallel dc-dc buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes
    Mazumder SK , Nayfeh AH , Borojevi ? 17:428 ? 37https : //doi.org/10.1109/TPEL.2002.1004251 . [2002]
  • Control strategies for fuel-cell-based hybrid electric vehicles : From offline to online and experimental results
    Ravey A , Blunier B , Miraoui A . 61:2452 ? 7 . https : //doi.org/10.1109/TVT.2012.2198680 . [2012]
  • Common grounded wide voltage-gain range DC-DC converter for fuel cell vehicles
    Bi H , Jia C. 12:1195 ? 204https : //doi.org/10.1049/ietpel . 2018.6234 . [2019]
  • Challenges for fuel cells in transport applications
    Chalk SG , Miller JF , Wagner FW 86:40 ? 51https : //doi.org/10.1016/S0378-7753 ( 99 ) 00481-4 . [2000]
  • Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle
    Xiong R , Duan Y , Cao J , Yu Q 217:153 ? 65https : //doi.org/10.1016/j.apenergy.2018.02.128 . [2018]
  • An interconnection and damping assignment passivity-based controller for a DC-DC boost converter with a constant power load
    Zeng J , Zhang Z , Qiao W. 50:2314 ? 22 . https : //doi.org/10.1109/TIA.2013.2290872 . [2014]
  • An integrated simulation model for PEM fuel cell power systems with a buck DC-DC converter
    Kuo JK , Wang CF 36:11846 ? 55https : //doi.org/10.1016/j.ijhydene.2011.05.107 . [2011]
  • An autotuning digital controller for DC-DC power converters based on online frequency-response measurement
    Shirazi M , Zane R , Maksimovic D. 24:2578 ? 88 . https : //doi.org/10.1109/TPEL.2009.2029691 . [2009]
  • An Improved PWM-Based Sliding-Mode Controller for a DC-DC Cascade Boost Converter
    Chincholkar SH , Jiang W , Chan CY . 43 . https : //doi.org/10.1109/TCSII.2017.2754292 . [2018]
  • Adaptive two-loop voltage-mode control of DC-DC switching converters
  • Active disturbance rejection control of DC ? DC boost converter : A review with modifications for improved performance
    Ahmad S , Ali A . 12:2095 ? 107https : //doi.org/10.1049/iet-pel.2018.5767 . [2019]
  • Active current sharing and source management in fuel cellbattery hybrid power system .
    Jiang W , Fahimi B . 57:752 ? 61https : //doi.org/10.1109/TIE.2009.2027249 . [2010]
  • A simple control approach for buck converters with current-constrained technique
    Guo T , Wang Z , Wang X , Li S , Li Q . 27:418 ? 25 . https : //doi.org/10.1109/TCST.2017.2758347 . [2019]
  • A hybrid fuel cell power system .
    Jin K , Ruan X , Yang M , Xu M. 56:1212 ? 22 . https : //doi.org/10.1109/TIE.2008.2008336 . [2009]
  • A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems .
    Wang Y , Sun Z , Li X , Yang X , Chen Z . 189. https : //doi.org/10.1016/j.energy.2019.116142 . [2019]
  • A class of extended state observers for uncertain systems [ J ]
    Han J 10 ( 1 ) : 85-88 . [1995]
  • A DSP-based active disturbance rejection control design for a 1-kW Hbridge DC-DC power converter
    Sun B , Gao Z . 52:1271 ? 7 . https : //doi.org/10.1109/TIE.2005.855679 . [2005]