빅데이터와 머신 러닝 모델을 이용한 COVID-19의 발생률 중증도 사망률에 대한 인플루엔자의 영향 연구 = Study on the effect of influenza on incidence, severity, and mortality of COVID-19 using big data and machine learning models

유연석 2022년
논문상세정보
' 빅데이터와 머신 러닝 모델을 이용한 COVID-19의 발생률 중증도 사망률에 대한 인플루엔자의 영향 연구 = Study on the effect of influenza on incidence, severity, and mortality of COVID-19 using big data and machine learning models' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • COVID-19
  • Incidence
  • Influenza
  • Machine Learning
  • Modeling
  • SARS-CoV-2
  • Severity
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
7,760 0

0.0%

' 빅데이터와 머신 러닝 모델을 이용한 COVID-19의 발생률 중증도 사망률에 대한 인플루엔자의 영향 연구 = Study on the effect of influenza on incidence, severity, and mortality of COVID-19 using big data and machine learning models' 의 참고문헌

  • 9. Lee Y, Min P, Lee S, Kim SW. Prevalence and duration of Lee Y, Min P, Lee S, Kim SW. Prevalence and duration of acute loss of smell or taste in COVIDacute loss of smell or taste in COVID--19 patients. J Korean 19 patients. J Korean Med Sci 2020;35:e174.Med Sci 2020;35:e174.
  • 8. Grohskopf LA, Liburd LC, RedGrohskopf LA, Liburd LC, Redfield RR. Addressing influenza field RR. Addressing influenza vaccination disparities during the COVIDvaccination disparities during the COVID--19 pandemic. JAMA 19 pandemic. JAMA 2020;324:10292020;324:1029––30.
  • 7. Talavera B, GarcíaTalavera B, García--Azorín D, MartínezAzorín D, Martínez--Pías E, Trigo J, Pías E, Trigo J, HernándezHernández--Pérez I, VallePérez I, Valle--Peñacoba G et al. Anosmia is Peñacoba G et al. Anosmia is associated with lower inassociated with lower in--hospital mortality in COVIDhospital mortality in COVID--19. J 19. J Neurol Sci. 2020 Oct 1;419:117163.Neurol Sci. 2020 Oct 1;419:117163.
  • 6. Ozaras R, Cirpin R, Duran A, et al. Influenza and COVIDOzaras R, Cirpin R, Duran A, et al. Influenza and COVID--19 19 coinfection: Report of six cases and review of the literature. J coinfection: Report of six cases and review of the literature. J Med Virol 2020 Jun 4.Med Virol 2020 Jun 4. doi: 10.1002/jmv.26125.doi: 10.1002/jmv.26125.
  • 5. Khorramdelazad H, Kazemi MH, Najafi A, Keykhaee M, Emameh RZ, Falak R. Immunopathological similarities be tween COVID 19 and influenza: Investigating the consequences of co--infection. Microb Pathog 2020 Nov infection. Microb Pathog 2020 Nov 3:104554.3:104554.
  • 4. Petersen E, Koopmans M, Go U, et al. Comparing SARS CoV 2 with SARS CoV and influenza pandemics. Lancet Infect Dis 2020 Sep;20(9):e238 e244.
  • 3. Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med. 2019 Apr 4;380(14):1 347 1358.
  • 23. Magro G. SARSMagro G. SARS--CoVCoV--2 and COVID2 and COVID--19: is interleukin19: is interleukin--6 (IL6 (IL--6) 6) the ‘culprit lesion’ of ARDS onset? What is there besides the ‘culprit lesion’ of ARDS onset? What is there besides TTocilizumab? SGP130Fc. Cytokine X, 2020, ocilizumab? SGP130Fc. Cytokine X, 2020, 10.1016/j.cytox.2020.100029.10.1016/j.cytox.2020.100029.
  • 22. Farnoosh G, Ghanei M, Khorramdelazad H, et al. Are Iranian Farnoosh G, Ghanei M, Khorramdelazad H, et al. Are Iranian sulfur sulfur mustardmustard--exposed survivors more vulnerable to SARSexposed survivors more vulnerable to SARS--CoVCoV--2: some similarity in their pathogenesis. Disaster Med 2: some similarity in their pathogenesis. Disaster Med Public Health Prep 2020;1Public Health Prep 2020;1–12.
  • 21. Leon LR. Invited review: Cytokine regulation of fever: Studies Leon LR. Invited review: Cytokine regulation of fever: Studies using gene knockout mice. J Appl Physiol 2002;92(6):2648using gene knockout mice. J Appl Physiol 2002;92(6):2648–55.
  • 20. Brandes M, Klauschen F, Kuchen S, Germain RN. A systems Brandes M, Klauschen F, Kuchen S, Germain RN. A systems analysis identifies a feedforward inflammatory circuitanalysis identifies a feedforward inflammatory circuit leading to leading to lethal influenza infection. Cell 2013;154(1):197–212.
    [2013]
  • 2. Goh GK, Dunker AK, Foster JA, Uversky VN. Rigidity of the outer shell predicted by a protein intrinsic disorder model sheds light on the COVID 19 (Wuhan 2019 nCoV) infectivity. Biomolecules 2020;10.
  • 19. Unkel Unkel B, Hoegner K, Clausen BE, et al. Alveolar epithelial cells B, Hoegner K, Clausen BE, et al. Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. J Clin orchestrate DC function in murine viral pneumonia. J Clin Invest 2012;122(10):3652Invest 2012;122(10):3652–64.
  • 18. Iwasaki A, Pillai PS. Innate immunity to influenza virus Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol 2014;14(5):315infection. Nat Rev Immunol 2014;14(5):315––28.28.
  • 17. Van de Sandt CE, Kreijtz JH, Rimmelzwaan GF. Evasion of Van de Sandt CE, Kreijtz JH, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune influenza A viruses from innate and adaptive immune responses. Viruses 2012;4(9):1438responses. Viruses 2012;4(9):1438–76.
  • 16. Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, Maddur MS, et alet al. Antibiotics. Antibiotics--Driven Gut Microbiome Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell. Perturbation Alters Immunity to Vaccines in Humans. Cell. 2019;178(6):13132019;178(6):1313--1328.e13.1328.e13.
  • 15. Lee KH, Gordon A, Shedden K, Kuan G, Ng S, Balmaseda A,Lee KH, Gordon A, Shedden K, Kuan G, Ng S, Balmaseda A, et al. The respiratory microbiome and susceptibThe respiratory microbiome and susceptibility to ility to influenza virus infection. PLoS One. 2019influenza virus infection. PLoS One. 2019;14(1):e0207898.;14(1):e0207898.
  • 14. Toapanta FR, Ross TM. Impaired immune responses in the Toapanta FR, Ross TM. Impaired immune responses in the lungs of aged mice following influenza infection. Respir Res. lungs of aged mice following influenza infection. Respir Res. 2009;10(1):112.2009;10(1):112.
    [2009]
  • 13. Iwasaki A, Pillai PS. Innate immunity to influenza virus Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol 2014 May;14(5):315infection. Nat Rev Immunol 2014 May;14(5):315––28. doi: 28. doi: 10.1038/nri3665. PMID: 24762827;10.1038/nri3665. PMID: 24762827; PMCID: PMC4104278.PMCID: PMC4104278.
  • 12. Calica Utku A, Budak G, Karabay O, Guclu E, Okan HD, VatanCalica Utku A, Budak G, Karabay O, Guclu E, Okan HD, Vatan A. Main symptoms in patients presenting in the COVIDA. Main symptoms in patients presenting in the COVID--19 19 period. Scott Med J 2020, DOI: 10.1177/36933020949253.period. Scott Med J 2020, DOI: 10.1177/36933020949253.
  • 11. Sanli DET, Altundag A, Kandemirli SG, Yildirim D, Sanli AN, Sanli DET, Altundag A, Kandemirli SG, Yildirim D, Sanli AN, Saatci O, Saatci O, et alet al. Relationship between disease seve. Relationship between disease severity and rity and serum ILserum IL--6 levels in COVID6 levels in COVID--19 anosmia. Am J Otolaryngol. 19 anosmia. Am J Otolaryngol. 2021 Jan2021 Jan--Feb;42(1):102796.Feb;42(1):102796.
  • 10. BaronBaron--SancSanchez J, Santiago C, Goizuetahez J, Santiago C, Goizueta--San Martin G, Arca R, San Martin G, Arca R, Fernandez R. Smell and taste disorders in Spanish patients with mild COVIDwith mild COVID--19. Neurologia 2020.19. Neurologia 2020.
  • 1. https://www.who.int/emergencies/diseases/novel coronavirus 2019
    [2019]