p21 activated kinase 4를 표적으로 근육 재생 촉진 및 간조직 허혈-재관류 손상 치료 = p21 activated kinase 4 is a therapeutic target in the management of muscle regeneration and hepatic ischemia-reperfusion injury

마윤청 2022년
논문상세정보
' p21 activated kinase 4를 표적으로 근육 재생 촉진 및 간조직 허혈-재관류 손상 치료 = p21 activated kinase 4 is a therapeutic target in the management of muscle regeneration and hepatic ischemia-reperfusion injury' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • apoptosis
  • hypoxia/oxygenation
  • inflammation
  • muscle regeneration
  • myeloid
  • pak4
  • ppar-γ
  • pten
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,109 0

0.0%

' p21 activated kinase 4를 표적으로 근육 재생 촉진 및 간조직 허혈-재관류 손상 치료 = p21 activated kinase 4 is a therapeutic target in the management of muscle regeneration and hepatic ischemia-reperfusion injury' 의 참고문헌

  • β-catenin activation in muscle progenitor cells regulates tissue repair .
  • Toward clinical application of the Keap1-Nrf2 pathway
  • The Nrf2-ARE pathway : an indicator and modulator of oxidative stress in neurodegeneration
  • The Genotype-Tissue Expression ( GTEx ) project
    GTEx Consortium 45:580-5 [2013]
  • The Crosstalk between Nrf2 and Inflammasomes
  • Specificity profiling of Pak kinases allows identification of novel phosphorylation sites
  • Sirtuin 2 aggravates postischemic liver injury by deacetylating mitogen-activated protein kinase phosphatase-1
  • STAT3 signaling controls satellite cell expansion and skeletal muscle repair
  • Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines
  • Regulation of muscle stem cell functions : A focus on the p38 MAPK signaling pathway
  • Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains , the redox-sensitive Neh2 degron , and the redox-insensitive Neh6 degron
  • Pten is necessary for the quiescence and maintenance of adult muscle stem cells
  • PI3 kinase regulation of skeletal muscle hypertrophy and atrophy .
    Glass DJ 346:267-78 [2010]
  • PAK4 signaling in health and disease : defining the PAK4-CREB axis
  • P21-activated kinase 4 -- not just one of the PAK
    Dart AE , Wells CM 92:129-38 [2013]
  • Overactivation of the nuclear factor ( erythroid-derived 2 ) -like 2-antioxidant response element pathway in hepatocytes decreases hepatic ischemia/reperfusion injury in mice
  • Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes
  • New insights into PTEN
    Tamguney T , Stokoe D. 120:4071-9 [2007]
  • Neutrophils : a cornerstone of liver ischemia and reperfusion injury
  • Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression
  • Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
  • Ischemia-reperfusion injury and the risk of hepatocellular carcinoma recurrence after deceased donor liver transplantation
  • Ischemia time impacts recurrence of hepatocellular carcinoma after liver transplantation
  • Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury
  • Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ .
  • Group I Paks promote skeletal myoblast differentiation in vivo and in vitro
  • Effects of cyclosporine on reperfusion injury in patients : A meta-analysis of randomized controlled trials
    Song K , Wang S , Qi D. 2015:287058 [2015]
  • Dual effect of hepatic macrophages on liver ischemia and reperfusion injury during liver transplantation
  • Conditional loss of Pten in myogenic progenitors leads to postnatal skeletal muscle hypertrophy but age-dependent exhaustion of satellite cells .
  • Cell-specific overactivation of nuclear erythroid 2 p45-related factor 2-mediated gene expression in myeloid cells decreases hepatic ischemia/reperfusion injury .
  • Canonical and non-canonical mechanisms of Nrf2 activation
  • Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation .
  • Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5
  • An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ
  • Akt1 deficiency diminishes skeletal muscle hypertrophy by reducing satellite cell proliferation .
    Moriya N , Miyazaki M. 314 : R741-R51 [2018]
  • Adult stem cells at work : regenerating skeletal muscle
  • Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity .
  • A novel interaction of PAK4 with PPARγ to regulate Nox1 and radiation-induced epithelial-to-mesenchymal transition in glioma .
  • 9. Piccirillo R, Demontis F, Goldberg AL, Perrimon N. Mechanisms of muscle growth and atrophy in mammals and Drosophila. Dev Dyn 2014; 243:201–215.
    [2014]
  • 9. Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene. 2017;605:20-31.
    [2017]
  • 7. Park MH, Lee HS, Lee CS, You ST, Kim DJ, Park BH, et al. p21-activated kinase 4 promotes prostate cancer progression through CREB. Oncogene. 2013; 32:2475-82.
    [2013]
  • 7. Wilson EM, Rotwein P. Selective control of skeletal muscle differentiation by Akt1. J Biol Chem. 2007;282:5106-10.
    [2007]
  • 7. Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A. Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 2006;281:14841-14851.
    [2006]
  • 6. Qasim SL, Sierra L, Shuck R, Kurenbekova L, Patel TD, Rajapakshe K, et al. p21-activated kinases as viable therapeutic targets for the treatment of high-risk Ewing sarcoma. Oncogene. 2021; 40:1176-90
  • 6. Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature. 2014;510:393-6.
    [2014]
  • 6. Liu T, Lv YF, Zhao JL, You QD, Jiang ZY. Regulation of Nrf2 by phosphorylation: consequences for biological function and therapeutic implications. Free Radic Biol Med 2021.
  • 5. Wells CM, Whale AD, Parsons M, Masters JR, Jones GE. PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion. J Cell Sci. 2010;123(Pt 10):1663-1673.
    [2010]
  • 4. Dart AE, Wells CM. P21-activated kinase 4--not just one of the PAK. Eur J Cell Biol. 2013;92(4-5):129-138.
    [2013]
  • 32. Mal S, Dwivedi AR, Kumar V, Kumar N, Kumar B, Kumar V. Role of peroxisome proliferated activated receptor γ (PPARγ) in different disease states: Recent updates. Curr Med Chem. 2021;28:3193-215.
  • 31. Kang HW, Piao XM, Lee HY, Kim K, Seo SP, Ha YS, et al. Expression of phosphorylated p21-activated kinase 4 is associated with aggressive histologic characteristics and poor prognosis in patients with surgically treated renal cell carcinoma. Investig Clin Urol 2021.
  • 30. Siu MK, Chan HY, Kong DS, Wong ES, Wong OG, Ngan HY, et al. p21-activated kinase 4 regulates ovarian cancer cell proliferation, migration, and invasion and contributes to poor prognosis in patients. Proc Natl Acad Sci U S A 2010;107:18622-18627.
    [2010]
  • 3. Dan C, Kelly A, Bernard O, Minden A. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem. 2001;276(34):32115-32121.
    [2001]
  • 3. Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest. 2010;120:11-9.
  • 28. Fenhammar J, Rundgren M, Forestier J, Kalman S, Eriksson S, Frithiof R. Toll-like receptor 4 inhibitor TAK-242 attenuates acute kidney injury in endotoxemic sheep. Anesthesiology 2011;114:1130-1137.
    [2011]
  • 26. Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 2011;31:1121-1133.
    [2011]
  • 26. Hall JA, Ramachandran D, Roh HC, DiSpirito JR, Belchior T, Zushin PH, et al. Obesity-linked PPARγ S273 phosphorylation promotes insulin resistance through growth differentiation factor 3. Cell Metab. 2020;32:665-75
  • 25. Murray BW, Guo C, Piraino J, Westwick JK, Zhang C, Lamerdin J, et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci U S A 2010;107:9446-9451.
  • 24. Li X, Minden A. PAK4 functions in tumor necrosis factor (TNF) alpha-induced survival pathways by facilitating TRADD binding to the TNF receptor. J Biol Chem 2005;280:41192-41200.
    [2005]
  • 23. He W, Zhao Z, Anees A, Li Y, Ashraf U, Chen Z, et al. p21-activated kinase 4 signaling promotes Japanese encephalitis virus-mediated inflammation in astrocytes. Front Cell Infect Microbiol 2017;7:271.
    [2017]
  • 22. Rane CK, Patel M, Cai L, Senapedis W, Baloglu E, Minden A. Decrypting the PAK4 transcriptome profile in mammary tumor forming cells using Next Generation Sequencing. Genomics 2017.
    [2017]
  • 20. Katsuoka F, Yamamoto M. Small Maf proteins (MafF, MafG, MafK): History, structure, and function. Gene. 2016;586(2):197-205.
    [2016]
  • 20. Sakuma K, Nishikawa J, Nakao R, Watanabe K, Totsuka T, Nakano H, et al. Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Acta Neuropathol. 2003;105:271-80.
  • 2. Maleiner B, Tomasch J, Heher P, Spadiut O, Runzler D, Fuchs C. The importance of biophysical and biochemical stimuli in dynamic skeletal muscle models. Front Physiol. 2018;9:1130.
    [2018]
  • 2. Kudoh K, Uchinami H, Yoshioka M, Seki E, Yamamoto Y. Nrf2 activation protects the liver from ischemia/reperfusion injury in mice. Ann Surg 2014;260:118-127.
    [2014]
  • 18. C. Peralta, M.B. Jimenez-Castro, J. Gracia-Sancho. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu J Hepatol, 59 (2013), pp. 1094-1106
    [2013]
  • 18. Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, Baud V, et al. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J 1998;17:6527-6540.
    [1998]
  • 16. Ryu BJ, Lee H, Kim SH, Heo JN, Choi SW, Yeon JT, et al. PF-3758309, p21-activated kinase 4 inhibitor, suppresses migration and invasion of A549 human lung cancer cells via regulation of CREB, NF-κB, and β-catenin signalings. Mol Cell Biochem 2014;389:69-77.
    [2014]
  • 15. Tyagi N, Bhardwaj A, Singh AP, McClellan S, Carter JE, Singh S. p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-κB pathway. Oncotarget 2014;5:8778-8789.
    [2014]
  • 14. Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature. 2014; 510:393-6.
    [2014]
  • 14. Cerquone Perpetuini A, Re Cecconi AD, Chiappa M, Martinelli GB, Fuoco C, Desiderio G, et al. Group I Paks support muscle regeneration and counteract cancer-associated muscle atrophy. J Cachexia Sarcopenia Muscle. 2018;9:727-46.
  • 13. Jiang BH, Aoki M, Zheng JZ, Li J, Vogt PK. Myogenic signaling of phosphatidylinositol 3‐kinase requires the serine‐threonine kinase Akt/protein kinase
  • 13. Guo J, Wang T, Wu T, Zhang K, Yin W, Zhu M, et al. Synthesis, bioconversion, pharmacokinetic and pharmacodynamic evaluation of N-isopropyl-oxy-carbonyloxymethyl prodrugs of CZh-226, a potent and selective PAK4 inhibitor. Eur J Med Chem. 2020;186:111878.
  • 12. Jiang BH, Zheng JZ, Vogt PK. An essential role of phosphatidylinositol 3‐kinase in myogenic differentiation. Proc Natl Acad Sci U S A 1998; 95:14179–14183.
    [1998]
  • 11. Abmayr, S. M., Balagopalan, L., Galletta, B. J. & Hong, S. J. Cell and molecular biology of myoblast fusion. Int. Rev. Cytol. 225, 33–89 (2003).
    [2003]
  • 11. Park MH, Lee HS, Lee CS, You ST, Kim DJ, Park BH, et al. p21-activated kinase 4 promotes prostate cancer progression through CREB. Oncogene. 2013;32:2475-82.
    [2013]
  • 11. Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994;367:40-46.
    [1994]
  • 10. Wakelam, M. J. The fusion of myoblasts. Biochem. J. 228, 1–12 (1985).
    [1985]
  • 10. Qasim SL, Sierra L, Shuck R, Kurenbekova L, Patel TD, Rajapakshe K, et al. p21-activated kinases as viable therapeutic targets for the treatment of high-risk Ewing sarcoma. Oncogene. 2021;40:1176-90
  • 1. Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene. 2017; 605:20-31.
    [2017]
  • 1. Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle. 2019;10:501-16.
    [2019]
  • 1. Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med 2011;17:1391-1401.
    [2011]