위성기반 전국토 GNSS 정밀측위 서비스를 위한 Homogeneous Network RTK 기법에 관한 연구 = Study on Homogeneous Network RTK Method for Satellite Based Nationwide GNSS Precision Positioning Service

임철순 2022년
논문상세정보
' 위성기반 전국토 GNSS 정밀측위 서비스를 위한 Homogeneous Network RTK 기법에 관한 연구 = Study on Homogeneous Network RTK Method for Satellite Based Nationwide GNSS Precision Positioning Service' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Nationwide Precise Positioning
  • fkp
  • gnss
  • network-rtk
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
251 0

0.0%

' 위성기반 전국토 GNSS 정밀측위 서비스를 위한 Homogeneous Network RTK 기법에 관한 연구 = Study on Homogeneous Network RTK Method for Satellite Based Nationwide GNSS Precision Positioning Service' 의 참고문헌

  • [93] RTKLIB, “RTKLIB: An Open Source Program Package for GNSS Positioning.” [Online]. Available: http://www.rtklib.com/
  • [92] W. Gurtner, “RINEX: The Receiver Independent Exchange Format Version 2.11,” Astronomical Institute, University of Berne, 2007.
    [2007]
  • [91] GNSS Data Center, “GNSS CORS.” [Online]. Available: https://gnssdata.or.kr/cors/getCorsView.do
  • [89] IGS, “RINEX.”, [Online]. Available: https://www.igs.org/wg/rinex/
  • [87] RACELOGIC “LabSat 3 Wideband.” [Online]. Available: https://www.labsat.co.uk/index.php/en/products/labsat-3-wideband
  • [82] RTCM Special Committee 104, “RTCM Standard 10403.2 Differential GNSS Services - Version 3,” 10403.2, 2013.
    [2013]
  • [80] P. J. G. Teunissen, P. J. De Jonge, and C. C. J. M. Tiberius, “Performance of the LAMBDA Method for Fast GPS Ambiguity Resolution,” Navigation, Journal of the Institute of Navigation, vol. 44, no. 3, pp. 373-383, Sep. 1997.
    [1997]
  • [7] M. Miya, et al., “Centimeter Level Augmentation Service (CLAS) in Japanese Quasi-Zenith Satellite System, its User Interface, Detailed Design, and Plan,” in Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016) , 2016, pp. 2864-2869.
    [2016]
  • [75] D. Odijk, “Fast precise GPS positioning in the presence of ionospheric delays,” Ph.D. Dissertation, Delft University of Technology, Delft, Netherlands, 2002.
    [2002]
  • [6] M. Miya et al., “Centimeter Level Augmentation Service (CLAS) in Japanese Quasi-Zenith Satellite System, Design for Satellite Based RTK-PPP Services,” in Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015) , 2015, pp. 1958-1962.
    [2015]
  • [69] D. Odijk, and P. J. G. Teunissen, “Improving the Speed of CORS Network RTK Ambiguity Resolution,” in Proceedings of IEEE/ ION PLANS 2010, 2010, pp. 79-84.
    [2010]
  • [68] R. Dach et al., Bernese GNSS Software Version 5.2. Astronomical Institute, University of Bern, 2015.
    [2015]
  • [66] G. G. Liu, “Ionosphere Weighted Global Positioning System Carrier Phase Ambiguity Resolution,” M.S. Thesis, University of Calgary, Calgary, Canada, 2001.
    [2001]
  • [60] Z. Liu, “Ionosphere tomographic modeling and applications using Global Positioning System (GPS) measurements,” Ph.D. Dissertation, University of Calgary, Calgary, Canada, 2004.
    [2004]
  • [5] M. Miya et al., “Centimeter Level Augmentation Service (CLAS) in Japanese Quasi-Zenith Satellite System, its User Interface, Detailed Design, and Plan,” in Proceedings of the 27th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2014) , 2014, pp. 645-652.
    [2014]
  • [57] T. Schüler, “On Ground-Based GPS Tropospheric Delay Estimation,” Ph.D. Dissertation, University of the Federal Armed Forces Munich, Munich, Germany, 2001.
    [2001]
  • [56] Y. Ahn et al., “Estimation of Troposphere Decorrelation Using the Combined Zenith-dependent Parameter,” in Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008) , 2008, pp. 261-270.
    [2008]
  • [4] I. Mikami, K. Asari, and M. Saito, “L6 Adaptor for QZSS CLAS to Develop Smartphones Market,” in Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018) , 2018, pp. 376-391.
    [2018]
  • [49] G. S. Kumar, G. S. B. Rao, and M. N. V. S. S. Kumar, “GPS Signal Short-Term Propagation Characteristics Modeling in Urban Areas for Precise Navigation Applications,” Journal of Global Positioning Systems, vol. 4, no. 2, pp. 129-199, May 2013.
    [2013]
  • [48] Y. Kim, “A Study on Cycle Slip Detection of Single Frequency GNSS Receiver using Low Cost INS,” Ph.D. Dissertation, Seoul National University, Seoul, Korea, 2016.
    [2016]
  • [47] K. M. Cove et al., “Improved Tropospheric Delay Estimation for Long Baseline, Carrier-Phase Differential GPS Positioning in a Coastal Environment,” in Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004) , 2014, pp. 925-932.
  • [45] T. Takasu, and A. Yasuda, “Kalman-Filter-Based Integer Ambiguity Resolution Strategy for Long-Baseline RTK with Ionosphere and Troposphere Estimation,” in Proceedings of the 23rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2010) , 2010, pp. 161-171.
    [2010]
  • [44] D. Kim, and R. B. Langley, “Improving Long-Range RTK,” Inside GNSS March 2008, pp. 50-56, 2008.
    [2008]
  • [40] A. A. Angel, “Galileo Ionospheric Correction Algorithm: A Smart and Ready-to-go Implementation,” in Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020) , 2020, pp. 1961-1967.
    [2020]
  • [3] S. Kogure, “Update of QZSS,” in Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021) , 2021, pp. 1228-1240.
  • [37] Galileo GNSS, “Galileo service interruption for Ground Segment Upgrade.” [Online]. Available: https://galileognss.eu/galileo-serviceinterruption- ground-segment-upgrade.
  • [36] Test and Assessment Research Center of China Satellite Navigation Office, “Constellation Status.” [Online]. Available: http:// www.csno-tarc.cn/en/system/constellation.
  • [35] European Union Agency for the Space Programme, “Constellation Information.” [Online]. Available: https://www.gsc-europa.eu/systemservice- status/constellation-information.
  • [34] GLONASS Information and Analytical Center, “GLONASS Constellation Status.” [Online]. Available: https://www.glonass-iac.ru/ en/sostavOG.
  • [33] “GPS Constellation.” [Online]. Available: https://www.navcen.uscg. gov/?Do=constellationStatus.
  • [32] J. S. Subirana, J. M. J. Zornoza, and M. H. Pajares, GNSS Data Prcessing. Vol. I: Fundamentals and Algorithms, ESA Communications, 2013.
    [2013]
  • [31] J. Shen, and C. Geng, “Updated on the BeiDou Navigation Satellite System (BDS),” in Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020) , 2020, pp. 978-1015.
    [2020]
  • [30] E. Chatre, and J. Benedicto, “2020 - GALILEO Programme Update,” in Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020) , 2020, pp. 950-977.
    [2020]
  • [2] E. D. Kaplan and C. J. Hegarty, Understanding GPS: Principles and Applications, 2nd ed. Artech House, 2006.
    [2006]
  • [29] S. Karutin, “The Status of GLONASS System,” in Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020) , 2020, pp. 938-949.
    [2020]
  • [28] R. Colburn, “Global Positioning System Status and Modernization,” in Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020) , 2020, pp. 929-937.
    [2020]
  • [27] C. Lim, and B. Park, “Proposal of Homogeneous Network RTK Method for Satellite Based Nationwide GNSS Precision Positioning Service,” in Proceedings of the 2021 IPNT Conference, 2021, pp. 87-89.
  • [26] U. Weinbach et al., “Introducing the Next Generation of Trimble’s RTX Positioning Service,” in Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021) , 2021, pp. 424-442.
  • [25] European Union Agency for the Space Programme, “Galileo High Accuracy Service (HAS).” [Online]. Available: https://www.gsc-europa. eu/galileo/services/galileo-high-accuracy-service-has.
  • [21] J. Won, “Development of PPP-RTK Algorithms for Moving Platforms Using Combined GPS/GLONASS Measurements,” Ph.D. Dissertation, Inha University, Incheon, Korea, 2015.
    [2015]
  • [20] R. Hirokawa et al., “Compact SSR Messages with Integrity Information for Satellite Based PPP-RTK Service,” in Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016) , 2016, pp. 3372–3376.
    [2016]
  • [1] P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance, 2nd ed. Ganga-Jamuna Press, 2006.
    [2006]
  • [19] N. Motooka et al., “CLASLIB: An open-source toolkit for low-cost high-precision PPP-RTK positioning,” in Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019) , 2019, pp. 3695-3707.
    [2019]
  • [18] M, Kim, “Development of PPP Algorithms based on GPS Code Pseudoranges by Applying Real-Time SSR Corrections,” M.S. Thesis, Inha University, Incheon, Korea, 2016.
    [2016]
  • [16] D. Han, “A Study on Improving the Accuracy of SBAS Ionosphere Correction by Applying Double-difference Carrier Phase Measurements,” Ph.D. Dissertation, Seoul National University, Seoul, Korea, 2018.
    [2018]
  • [15] D. Kim, “A Study on Correction Generation Algorithms for Wide Area Differential GNSS,” Ph.D. Dissertation, Seoul National University, Seoul, Korea, 2007.
    [2007]
  • [14] D. Kim, “Compact Wide-Area RTK: A Study on Carrier Phase Based Correction Generation Algorithms for Centimeter-Level Satellite Augmentation System,” Ph.D. Dissertation, Seoul National University, Seoul, Korea, 2020.
    [2020]
  • [13] J. Song, “A Study on Improving Performance of Network RTK through Tropospheric Modeling for Land Vehicle Applications,” Ph.D. Dissertation, Seoul National University, Seoul, Korea, 2016.
    [2016]
  • [12] B. Park, “A Study on Reducing Temporal and Spatial Decorrelation Effect in GNSS Augmentation System: Consideration of the Correction Message Standardization,” Ph.D. Dissertation, Seoul National University, Seoul, Korea, 2008.
    [2008]
  • Weighting Ionospheric Corrections to Improve Fast GPS Positioning Over Medium Distances
    D. Odijk pp . 1113-1123 [2000]
  • VMF3/GPT3 : refined discrete and empirical troposphere mapping functions ,
    D. Landskron , and J . B ? hm vol . 92 , no . 4 , pp . 349-360 [2018]
  • Two-Quartic Tropospheric Refractivity Profile for Correcting Satellite Data
    H. S. Hopfield vol . 74 , no . 18 , pp.4487-4449 , Aug. [1969]
  • Towards PPP-RTK : Ambiguity resolution in real-time precise point positioning ,
    J. Geng et al. vol . 47 , no . 10 , pp . 1664-1673 . [2011]
  • Three-step Algorithm for Rapid Ambiguity Resolution between Reference Stations within Network RTK
    W. Shengli et al. vol . 69 , no . 6 , pp . 1310-1324 [2016]
  • Three-dimensional GPS ionospheric tomography over Japan using constrained least squares
    G. K. Seemala et al. vol . 119 , no . 4 , pp . 3044-3052 [2014]
  • The least-squares ambiguity decorrelation adjustment : a method for fast GPS integer ambiguity estimation
    P. J. G. Teunissen vol . 70 , pp . 65-82 [1995]
  • The impact of the ionospheric correction latency on long-baseline instantaneous kinematic GPS positioning ,
    I. Kashani , P. Wielgosz , and D. G. Brzezinska , vol . 39 , no . 305 , pp . 238-281 , [2007]
  • The Ionosphere-weighted GPS baseline precision in canonical form
    P. J. G. Teunissen vol . 72 , no . 2 , pp . 107-117 , Feb. [1998]
  • Study on desirable ionospheric corrections accuracy for network-RTK positioning and its impact on time-to-fix and probability of successful single-epoch ambiguity resolution
    J. Paziewski vol . 57 , no . 4 , pp . 1098-1111 [2016]
  • Review and principles of PPP-RTK methods
    P. J. G. Teunissen , and A. Khodabandeh vol . 89 , no . 3 , pp . 217-240 , [2015]
  • Regional Ionosphere Mapping with Kriging and Multiquadric Methods
    P. Wielgosz , D. G. Brzezinska , and I. Kashani , vol . 2 , no . 1 , pp . 48-55 [2003]
  • Real-Time PPP-RTK Performance Analysis Using Ionospheric Corrections from Multi-Scale Network Configurations ,
    D. Psychas , and S. Verhagen , vol . 20 , no . 11 , p. 3012 , [2020]
  • Real-Time Global Ionospheric Map and Its Application in Single-Frequency Positioning ,
    L. Zhang et al. vol . 19 , no . 5 , p. 1138 , [2019]
  • Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach FARA : Theory and First Results
    E. Frei and G. Beutler , vol . 15 , no . 6 , pp . 325-356 [1990]
  • Precise point positioning for the efficient and robust analysis of GPS data from large networks
    J. F. Zumberge et al. vol . 102 , no . B3 , pp . 5005-5017 , [1997]
  • Precise Ionosphere Modeling Using Regional GPS Network Data
    Y. Gao and Z. Liu vol . 1 , no . 1 , pp . 18-24 [2002]
  • Performance Analysis of BDS Medium-Long Baseline RTK Positioning Using an Empirical Troposphere Model ,
    B. Shu et al. , vol . 18 , no . 4 , p. 1199 [2018]
  • PPP-RTK : Results of CORS Network-Based PPP with Integer Ambiguity Resolution
    P. J. G. Teunissen , D. Odijk , and B. Zhang , vol . 42 , no . 4 , pp . 223-230 , [2010]
  • PPP-RTK : Precise Point Positioning using State-Space Representation in RTK Networks ,
  • PPP with Ambiguity Resolution ( AR ) using RTCM-SSR
  • MLAMBDA : a modified LAMBDA method for integer least-squares estimation
    X. W. Chang , X. Yang , and T. Zhou vol . 79 , no . 9 , pp . 552-565 , Dec. [2005]
  • Long baseline GNSS relative positioning with estimating ionospheric and tropospheric delays and their gradients
    Y. Kubo et al. vol . 8 , no . 3 ( B ) , pp . 2375-2388 [2012]
  • Long Baseline GPS RTK with Estimating Tropospheric Delays
    B. Choi , K. Roh , and S. Lee vol . 3 , no . 3 , pp . 123-129 , [2014]
  • Ionospheric correction for spaceborne single-frequency GPS based on single layer model ,
    X. Yang , and J. Li , and S. Zhang vol . 123 , no . 4 , pp . 767-778 , [2014]
  • Ionospheric Tomography using A Regional GPS Network over South Korea
    B. Choi , J . Park , and J. Chung vol . 5 , no . 1-2 , pp . 47-51 , [2006]
  • Ionosphere Weighted GPS Cycle Ambiguity Resolution
    G. G. Liu pp . 889-899 [2002]
  • Instantaneous Ambiguity ResolutionKinematic Systems in Geodesy , Surveying , and Remote Sensing
    R. Hatch pp . 299-308 [1991]
  • Improved Ambiguity Resolution by Regional Differential Modelling of the Ionosphere
    L. Wanninger pp . 55-62 [1995]
  • Global mapping functions for the atmosphere delay at radio wavelengths
    A. E. Niell vol . 101 , no . B2 , pp . 3227-3246 , Feb. [1996]
  • Global Mapping Function ( GMF ) : A new empirical mapping function based on numerical weather model data
    J. Boehm et al. , vol . 33 , no . 7 , pp . 3-6 [2006]
  • GPS network design and error mitigation for real-time continuous array monitoring systems
    S. Han , and C. Rizos , pp . 1827-1836 [1996]
  • Feasibility Study on Integration of SSR Correction into Network RTK to Provide More Robust Service ,
    C. Lim et al. , vol . 7 , no . 4 , pp . 295-305 [2018]
  • Dynamic Performance Evaluation of Various GNSS Receivers and Positioning Modes with Only One Flight Test
    C. Lim et al. , vol . 8 , no . 12 , p. 1518 , [2019]
  • Development of Online GNSS Precise Post-Processing System Using Data From GNSS Data Center
    C. Lim et al. pp . 179-182 . [2020]
  • Development of Code-PPP Based on Multi-GNSS Using Compact SSR of QZSS-CLAS ,
    H. Lee , and K. Park vol . 38 , no . 6 , pp . 521-531 , [2020]
  • Development and assessment of GPS virtual reference stations for RTK positioning ,
    G. R. Hu et al. vol . 77 , no . 5 , pp . 292-302 , Aug. [2003]
  • Determination of the optimized single-layer ionospheric height for electron content measurements over China
    M. Li et al. vol . 92 , no . 2 , pp.169-183 , [2018]
  • Determination of GPS Total Electron Content using Single Layer Model ( SLM ) Ionospheric Mapping Function
    N. Ya ’ acob , M. Abdullah , and M. Ismail , vol . 8 , no . 9 , pp . 154-159 , Sep. [2008]
  • Design and characteristics of the GPS ionospheric time delay algorithm for single frequency users ,
    J . A. Klobuchar pp . 280-286 . [1986]
  • Carrier Phase Based Regional Area Differential GPS for Decimeter-Level Positioning and Navigation
    Y. Gao , Z. Li , and J. F. McLellan pp . 1305-1313 . [1997]
  • Broadcast vs. precise GPS ephemerides : a historical perspective
    D. L. Warren , and J. F. Raquet , vol . 7 , no . 3 , pp . 151-156 , Sep. [2003]
  • Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites
    J. Saastamoinen vol . 15 , pp . 247-251 , [1972]
  • An Instantaneous Ambiguity Resolution Technique for Medium-Range GPS Kinematic Positioning ,
    S. Han , and C. Rizos , vol . 47 , no . 1 , pp . 17-31 , [2000]