지식재산권 유형에 따른 공정거래법 집행에 관한 연구

류시원 2022년
논문상세정보
' 지식재산권 유형에 따른 공정거래법 집행에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 경쟁
  • 경쟁법
  • 경쟁정책
  • 공정거래법
  • 라이선스
  • 라이선싱
  • 제117조
  • 지식재산권
  • 지식재산권 심사지침
  • 지식재산권법
  • 집행
  • 혁신
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,335 0

0.0%

' 지식재산권 유형에 따른 공정거래법 집행에 관한 연구' 의 참고문헌

  • Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production
    Ko , Y.S. , . 49 ( 14 ) : p. 4615-4636 [2020]
  • Structure and mechanism of ABC transporters
    Wilkens , S. 7 [2015]
  • Solubility of Sebacic Acid in Binary Water + Ethanol Solvent Mixtures .
    Xia , Q. , . , 53 ( 3 ) : p. 838-840 . [2008]
  • Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids
    Zhu , Z. , . , 3 ( 1 ) : p. 64-74 . [2020]
  • Membrane stress caused by octanoic acid in Saccharomyces cerevisiae
    Liu , P. , . 97 ( 7 ) : p. 3239-51 . [2013]
  • Designer ” biodiesel : optimizing fatty ester composition to improve fuel properties .
    Knothe , G. 22 ( 2 ) : p. 1358-1364 . [2008]
  • Biotransformation of dicarboxylic acids from vegetable oil-derived sources : current methods and suggestions for improvement
    Lee , H. , . , 103 ( 4 ) : p. 1545-1555 . [2019]
  • Biodiesel processing and production
    Van Gerpen , J. 86 ( 10 ) : p. 1097-1107 . [2005]
  • Advances in microbial production of medium-chain dicarboxylic acids for nylon materials .
    Li , G. , . , 5 ( 2 ) : p. 221-238 . [2020]
  • 9. Sebacic Acid Market 2022 : Insights with Statistics and Growth Prediction till 2028 with top Countries Data, https://www.marketwatch.com/press-release/sebacic-acid-market- 2022-insights-with-statistics-and-growth-prediction-till-2028-withtop- countries-data-97-pages-report-2022-08-18, Accessed October 2022.
  • 8. Vaccaro, L., et al., Flow approaches towards sustainability. Green Chem., 2014. 16(8): p. 3680-3704.
    [2014]
  • 7. Vasishtha, A., R. Trivedi, and G. Das, Sebacic acid and 2‐octanol from castor oil. Journal of the American Oil Chemists' Society, 1990. 67(5): p. 333-337.
    [1990]
  • 6. Sebacic Acid Market Size, Share and Industry Analysis Report by Application (Plasticizers, Lubricants, Solvents, Adhesives, Chemical Intermediates), Regional Outlook, Application Potential, Competitive Market Share & Forecast, 2019 – 2026, https://www.gminsights.com/industry-analysis/sebacic-acid-market, Accessed October 2022.
  • 55. McGrath, J.P. and A. Varshavsky, The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein. Nature, 1989. 340(6232): p. 400-404.
    [1989]
  • 54. Kuchler, K., R.E. Sterne, and J. Thorner, Saccharomyces cerevisiae STE6 gene product: a novel pathway for protein export in eukaryotic cells. The EMBO journal, 1989. 8(13): p. 3973-3984.
    [1989]
  • 53. Nombela, C., C. Gil, and W.L. Chaffin, Non-conventional protein secretionin yeast. Trends in microbiology, 2006. 14(1): p. 15-21.
    [2006]
  • 52. Zen, K.H., et al., Expression of lactose permease in contiguous fragments as a probe for membrane-spanning domains. Biochemistry, 1994. 33(27): p. 8198-8206.
    [1994]
  • 51. Rose, P.M., et al., Molecular genetic analysis of a human neuropeptide Y receptor: The human homolog of the murine “Y5” receptor may be a pseudogene. Journal of biological chemistry, 1997. 272(6): p. 3622- 3627.
    [1997]
  • 50. Bibi, E. and H.R. Kaback, In vivo expression of the lacY gene in two segments leads to functional lac permease. Proceedings of the National Academy of Sciences, 1990. 87(11): p. 4325-4329.
    [1990]
  • 5. Park, H.-s., et al., Synthesis of elastic biodegradable polyesters of ethylene glycol and butylene glycol from sebacic acid. Acta Biomaterialia, 2012. 8(8): p. 2911-2918.
    [2012]
  • 48. Yazawa, H., et al., Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance. Yeast, 2009. 26(3): p. 167-184.
    [2009]
  • 47. Carolus, H., et al., Genome-wide analysis of experimentally evolved Candida auris reveals multiple novel mechanisms of multidrug resistance. Mbio, 2021. 12(2): p. e03333-20.
  • 46. Dunkel, N., et al., Mutations in the multi‐drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole‐resistant Candida albicans strains. Molecular microbiology, 2008. 69(4): p. 827-840.
    [2008]
  • 45. Cowen, L.E., J.B. Anderson, and L.M. Kohn, Evolution of drug resistance in Candida albicans. Annual Reviews in Microbiology, 2002. 56(1): p. 139-165.
    [2002]
  • 44. Water solubility of Decanoic acid methyl ester, https://hmdb.ca/metabolites/HMDB0033848, Accessed October 2022.
  • 43. Kumari, S., et al., Multiple roles of ABC transporters in yeast. Fungal Genet Biol, 2021. 150: p. 103550.
  • 42. Prasad, R., et al., Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Current genetics, 1995. 27(4): p. 320-329.
    [1995]
  • 41. Furman, C., et al., The deviant ATP-binding site of the multidrug efflux pump Pdr5 plays an active role in the transport cycle. Journal of Biological Chemistry, 2013. 288(42): p. 30420-30431.
    [2013]
  • 40. Cannon, R.D., et al., Efflux-mediated antifungal drug resistance. Clinical microbiology reviews, 2009. 22(2): p. 291-321.
    [2009]
  • 4. Pervaiz, M., et al., Polyamides: developments and applications towards next-generation engineered plastics. Current Organic Synthesis, 2017. 14(2): p. 146-155.
    [2017]
  • 39. Rees, D.C., E. Johnson, and O. Lewinson, ABC transporters: the power to change. Nature reviews Molecular cell biology, 2009. 10(3): p. 218-227.
    [2009]
  • 37. Kolaczkowska, A. and A. Goffeau, Regulation of pleiotropic drug resistance in yeast. Drug Resistance Updates, 1999. 2(6): p. 403-414.
    [1999]
  • 36. Cho, J.S., et al., Designing Microbial Cell Factories for the Production of Chemicals. JACS Au, 2022. 2(8): p. 1781-1799.
  • 34. Galan-Ladero, M., et al., Enzymatic activities of Candida tropicalis isolated from hospitalized patients. Medical mycology, 2010. 48(1): p. 207-210.
    [2010]
  • 32. Berchmans, H.J. and S. Hirata, Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol, 2008. 99(6): p. 1716-21.
    [2008]
  • 30. Fukuda, H., A. Kondo, and H. Noda, Biodiesel fuel production by transesterification of oils. J Biosci Bioeng, 2001. 92(5): p. 405-16.
    [2001]
  • 29. Ma, F. and M.A. Hanna, Biodiesel production: a review. Bioresource technology, 1999. 70(1): p. 1-15.
    [1999]
  • 27. Royce, L.A., et al., The damaging effects of short chain fatty acids on Escherichia coli membranes. Applied microbiology and biotechnology, 2013. 97(18): p. 8317-8327.
    [2013]
  • 26. Stratford, M. and P. Anslow, Comparison of the inhibitory action on Saccharomyces cerevisiae of weak-acid preservatives, uncouplers, and medium-chain fatty acids. FEMS Microbiology Letters, 1996. 142(1): p. 53-58.
    [1996]
  • 25. Alexandre, H., B. Mathieu, and C. Charpentier, Alteration in membrane fluidity and lipid composition, and modulation of H+- ATPase activity in Saccharomyces cerevisiae caused by decanoic acid. Microbiology, 1996. 142(3): p. 469-475.
    [1996]
  • 24. Hettema, E.H. and H.F. Tabak, Transport of fatty acids and metabolites across the peroxisomal membrane. Biochim Biophys Acta, 2000. 1486(1): p. 18-27.
    [2000]
  • 23. Wanders, R.J., J. Komen, and S. Kemp, Fatty acid omega‐oxidation as a rescue pathway for fatty acid oxidation disorders in humans. The FEBS journal, 2011. 278(2): p. 182-194.
    [2011]
  • 22. Sugiharto, Y.E.C., et al., Effect of decanoic acid and 10- hydroxydecanoic acid on the biotransformation of methyl decanoate to sebacic acid. AMB Express, 2018. 8(1): p. 75.
    [2018]
  • 21. Mishra, P., et al., Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production. Biotechnol Bioeng, 2016. 113(9): p. 1993-2004.
    [2016]
  • 20. Gangopadhyay, S., S. Nandi, and S. Ghosh, Biooxidation of fatty acid distillates to dibasic acids by a mutant of Candida tropicalis. J Oleo Sci, 2006. 56(1): p. 13-7.
    [2006]
  • 19. Funk, I., et al., Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis. Journal of Industrial Microbiology and Biotechnology, 2017. 44(10): p. 1491-1502.
    [2017]
  • 18. Cao, W., et al., High-level productivity of α, ω-dodecanedioic acid with a newly isolated Candida viswanathii strain. Journal of Industrial Microbiology and Biotechnology, 2017. 44(8): p. 1191-1202.
    [2017]
  • 17. Picataggio, S., et al., Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Biotechnology (N Y), 1992. 10(8): p. 894-8.
    [1992]
  • 16. Zuza-Alves, D.L., W.P. Silva-Rocha, and G.M. Chaves, An update on Candida tropicalis based on basic and clinical approaches. Frontiers in microbiology, 2017. 8: p. 1927.
    [2017]
  • 15. Ann Chai, L.Y., D.W. Denning, and P. Warn, Candida tropicalis in human disease. Critical reviews in microbiology, 2010. 36(4): p. 282- 298.
    [2010]
  • 14. Werner, N. and S. Zibek, Biotechnological production of bio-based long-chain dicarboxylic acids with oleogenious yeasts. World J Microbiol Biotechnol, 2017. 33(11): p. 194.
    [2017]
  • 13. Jeon, W.-Y., et al., Microbial production of sebacic acid from a renewable source: production, purification, and polymerization. Green Chemistry, 2019. 21(23): p. 6491-6501.
    [2019]
  • 11. China's plan to clean up 'new pollutants', https://chinadialogue.net/en/pollution/chinas-plan-to-clean-up-newpollutants/, Accessed October 2022.
  • 10. China's new environmental policy is closing factories and stopping chemical production, https://www.agchemigroup.eu/tr/blog/post/chinas-new environmental-policy-closing-factories-and-stopping-chemicalproduction, Accessed October 2022.
  • 1. Cornils, B. and P. Lappe, Dicarboxylic Acids, Aliphatic, in Ullmann's Encyclopedia of Industrial Chemistry.