Pharmacologic interventions for enhancing differentiation through manipulating signaling cascades in thyroid cancers : 갑상선암 내 신호전달 체계 조절을 통한 분화 증진의 약리학적 중재

오지민 2022년
논문상세정보
' Pharmacologic interventions for enhancing differentiation through manipulating signaling cascades in thyroid cancers : 갑상선암 내 신호전달 체계 조절을 통한 분화 증진의 약리학적 중재' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 질병
  • 3-dimensionalculture
  • Differentiation
  • GLI1
  • thyroid cancer
  • tyrosine kinase inhibitor
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
824 0

0.0%

' Pharmacologic interventions for enhancing differentiation through manipulating signaling cascades in thyroid cancers : 갑상선암 내 신호전달 체계 조절을 통한 분화 증진의 약리학적 중재' 의 참고문헌

  • Translational research : are we on the right track ? 2008 American Society for Clinical Investigation Presidential Address
    Sawyers CL 118 ( 11 ) :3798 ? 801 . [2008]
  • Sodium iodide symporter : its role in nuclear medicine
    Chung J-K 43 ( 9 ) :1188 ? 200 [2002]
  • Sodium Iodide Symporter for Nuclear Molecular Imaging and Gene Therapy : From Bedside to Bench and Back
    Ahn B-C 2 ( 4 ) :392 ? 402 . [2012]
  • Regulation of cellular functions by extracellular matrix
    Teti A 2 ( 10 Suppl ) : S83-87 . [1992]
  • Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer for Reapplication of I-131 Therapy .
    Hong CM , Ahn B-C. 8:260 [2017]
  • Optimization of combination therapy of arsenic trioxide and fractionated radiotherapy for malignant glioma .
    Ning S , Knox SJ 65 ( 2 ) :493 ? 8 . [2006]
  • Kirk R. High drug attrition rates -- where are we going wrong ?
    Hutchinson L , 8 ( 4 ) :189 ? 90 [2011]
  • Genetic alterations involved in the transition from welldifferentiated to poorly differentiated and anaplastic thyroid carcinomas .
    Nikiforov YE 15 ( 4 ) :319 ? 27 . [2004]
  • D. Synergistic inhibition of MEK/ERK and BRAF V600E with PD98059 and PLX4032 induces sodium/iodide symporter ( NIS ) expression and radioiodine uptake in BRAF mutated papillary thyroid cancer cells .
    Zhang H , Chen 11:13 [2018]
  • Cukierman E. Modeling tissue morphogenesis and cancer in 3D
    Yamada KM 130 ( 4 ) :601 ? 10 . [2007]
  • 99. Cheng L, Jin Y, Liu M, Ruan M, Chen L. HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E. Oncotarget. 2017 Mar 21;8(12):19843–54.
    [2017]
  • 98. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 2013 May;3(5):520–33.
    [2013]
  • 97. Fröhlich E, Brossart P, Wahl R. Induction of iodide uptake in transformed thyrocytes: a compound screening in cell lines. Eur J Nucl Med Mol Imaging. 2008 Dec 24;36(5):780.
    [2008]
  • 96. Fröhlich E, Czarnocka B, Brossart P, Wahl R. Antitumor effects of arsenic trioxide in transformed human thyroid cells. Thyroid. 2008 Nov;18(11):1183–93.
    [2008]
  • 95. Modak S, Zanzonico P, Carrasquillo JA, Kushner BH, Kramer K, Cheung N-KV, et al. Arsenic Trioxide as a Radiation Sensitizer for 131IMetaiodobenzylguanidine Therapy: Results of a Phase II Study. J Nucl Med. 2016 Feb;57(2):231–7.
    [2016]
  • 94. Liu H, Tao X, Ma F, Qiu J, Wu C, Wang M. Radiosensitizing effects of arsenic trioxide on MCF-7 human breast cancer cells exposed to 89 strontium chloride. Oncol Rep. 2012 Nov;28(5):1894–902.
    [2012]
  • 92. Ning S, Knox SJ. Increased cure rate of glioblastoma using concurrent therapy with radiotherapy and arsenic trioxide. Int J Radiat Oncol Biol Phys. 2004 Sep 1;60(1):197–203.
    [2004]
  • 91. Chiu H-W, Lin J-H, Chen Y-A, Ho S-Y, Wang Y-J. Combination treatment with arsenic trioxide and irradiation enhances cell-killing effects in human fibrosarcoma cells in vitro and in vivo through induction of both autophagy and apoptosis. Autophagy. 2010 Apr;6(3):353–65.
    [2010]
  • 90. Mastrangelo E, Milani M. Role and inhibition of GLI1 protein in cancer. Lung Cancer (Auckl). 2018;9:35–43.
    [2018]
  • 9. Salehian B, Liem SY, Mojazi Amiri H, Maghami E. Clinical Trials in Management of Anaplastic Thyroid Carcinoma; Progressions and Set Backs: A Systematic Review. Int J Endocrinol Metab. 2019 Jan;17(1):e67759.
    [2019]
  • 89. Alimoghaddam K. A review of arsenic trioxide and acute promyelocytic leukemia. Int J Hematol Oncol Stem Cell Res. 2014 Jul 1;8(3):44–54.
    [2014]
  • 88. Li S, Wang J, Lu Y, Zhao Y, Prinz RA, Xu X. Inhibition of the sonic hedgehog pathway activates TGF-β-activated kinase (TAK1) to induce autophagy and suppress apoptosis in thyroid tumor cells. Cell Death Dis. 2021 May 8;12(5):459.
    [2021]
  • 87. Williamson AJ, Doscas ME, Ye J, Heiden KB, Xing M, Li Y, et al. The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met. Oncotarget. 2016 Mar 1;7(9):10472–85.
    [2016]
  • 86. Lu Y, Zhu Y, Deng S, Chen Y, Li W, Sun J, et al. Targeting the Sonic Hedgehog Pathway to Suppress the Expression of the Cancer Stem Cell (CSC)-Related Transcription Factors and CSC-Driven Thyroid Tumor Growth. Cancers (Basel). 2021 Jan 22;13(3):418.
    [2021]
  • 85. Wickström M, Dyberg C, Shimokawa T, Milosevic J, Baryawno N, Fuskevåg OM, et al. Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo. Int J Cancer. 2013 Apr 1;132(7):1516–24.
    [2013]
  • 84. Chen Q, Xu R, Zeng C, Lu Q, Huang D, Shi C, et al. Down-regulation of Gli transcription factor leads to the inhibition of migration and invasion of ovarian cancer cells via integrin β4-mediated FAK signaling. PLoS One. 2014;9(2):e88386.
    [2014]
  • 83. Lauth M, Bergström A, Shimokawa T, Toftgård R. Inhibition of GLImediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A. 2007 May 15;104(20):8455–60.
    [2007]
  • 82. Fletcher A, Read ML, Thornton CEM, Larner DP, Poole VL, Brookes K, et al. Targeting Novel Sodium Iodide Symporter Interactors ADP-Ribosylation Factor 4 and Valosin-Containing Protein Enhances Radioiodine Uptake. Cancer Res. 2020 Jan 1;80(1):102–15.
    [2020]
  • 81. Feng F, Yehia L, Eng C. Pro-tumorigenic non-pump function of sodium iodide symporter: A reimagined Trojan horse? Oncotarget. 2019 Jan 22;10(7):688–9.
    [2019]
  • 80. Feng F, Yehia L, Ni Y, Chang YS, Jhiang SM, Eng C. A Nonpump Function of Sodium Iodide Symporter in Thyroid Cancer via Cross-talk with PTEN Signaling. Cancer Res. 2018 01;78(21):6121–33.
    [2018]
  • 8. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600–Mutant Anaplastic Thyroid Cancer. J Clin Oncol. 2018 Jan 1;36(1):7–13.
    [2018]
  • 79. Lacoste C, Hervé J, Bou Nader M, Dos Santos A, Moniaux N, Valogne Y, et al. Iodide transporter NIS regulates cancer cell motility and invasiveness by interacting with the Rho guanine nucleotide exchange factor LARG. Cancer Res. 2012 Nov 1;72(21):5505–15.
    [2012]
  • 78. Amit M, Na’ara S, Francis D, Matanis W, Zolotov S, Eisenhaber B, et al. Post-translational Regulation of Radioactive Iodine Therapy Response in Papillary Thyroid Carcinoma. J Natl Cancer Inst. 2017 01;109(12).
    [2017]
  • 77. Smith VE, Sharma N, Watkins RJ, Read ML, Ryan GA, Kwan PP, et al. Manipulation of PBF/PTTG1IP phosphorylation status; a potential new therapeutic strategy for improving radioiodine uptake in thyroid and other tumors. J Clin Endocrinol Metab. 2013 Jul;98(7):2876–86.
    [2013]
  • 76. Smith VE, Read ML, Turnell AS, Watkins RJ, Watkinson JC, Lewy GD, et al. A novel mechanism of sodium iodide symporter repression in differentiated thyroid cancer. J Cell Sci. 2009 Sep 15;122(Pt 18):3393–402.
    [2009]
  • 75. Riesco-Eizaguirre G, Gutiérrez-Martínez P, García-Cabezas MA, Nistal M, Santisteban P. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocr Relat Cancer. 2006 Mar;13(1):257–69.
    [2006]
  • 74. Wapnir IL, van de Rijn M, Nowels K, Amenta PS, Walton K, Montgomery K, et al. Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections. J Clin Endocrinol Metab. 2003 Apr;88(4):1880– 8.
    [2003]
  • 73. Dohán O, Baloch Z, Bánrévi Z, Livolsi V, Carrasco N. Rapid communication: predominant intracellular overexpression of the Na(+)/I(-) symporter (NIS) in a large sampling of thyroid cancer cases. J Clin Endocrinol Metab. 2001 Jun;86(6):2697–700.
    [2001]
  • 72. Bohinc B, Michelotti G, Diehl AM. Hedgehog signaling in human medullary thyroid carcinoma: a novel signaling pathway. Thyroid. 2013 Sep;23(9):1119–26.
    [2013]
  • 71. Heiden KB, Williamson AJ, Doscas ME, Ye J, Wang Y, Liu D, et al. The sonic hedgehog signaling pathway maintains the cancer stem cell selfrenewal of anaplastic thyroid cancer by inducing snail expression. J Clin Endocrinol Metab. 2014 Nov;99(11):E2178-2187.
    [2014]
  • 70. Xu X, Lu Y, Li Y, Prinz RA. Sonic Hedgehog Signaling in Thyroid Cancer. Front Endocrinol (Lausanne). 2017;8:284.
    [2017]
  • 7. Fagin JA, Wells SA. Biologic and Clinical Perspectives on Thyroid Cancer. N Engl J Med. 2016 Sep 15;375(11):1054–67.
    [2016]
  • 69. Wang Y, Ding Q, Yen C-J, Xia W, Izzo JG, Lang J-Y, et al. The crosstalk of mTOR/S6K1 and Hedgehog pathways. Cancer Cell. 2012 Mar 20;21(3):374–87.
    [2012]
  • 68. Song L, Li Z-Y, Liu W-P, Zhao M-R. Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy. Cancer Biol Ther. 2015;16(1):1–7.
    [2015]
  • 67. Ji Z, Mei FC, Xie J, Cheng X. Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem. 2007 May 11;282(19):14048–55.
    [2007]
  • 66. Riobó NA, Lu K, Ai X, Haines GM, Emerson CP. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4505–10.
    [2006]
  • 65. Xu X, Ding H, Rao G, Arora S, Saclarides CP, Esparaz J, et al. Activation of the Sonic Hedgehog pathway in thyroid neoplasms and its potential role in tumor cell proliferation. Endocr Relat Cancer. 2012 Apr;19(2):167–79.
    [2012]
  • 64. Oh JM, Baek SH, Gangadaran P, Hong CM, Rajendran RL, Lee HW, et al. A Novel Tyrosine Kinase Inhibitor Can Augment Radioactive Iodine Uptake Through Endogenous Sodium/Iodide Symporter Expression in Anaplastic Thyroid Cancer. Thyroid. 2020 Apr;30(4):501–18.
    [2020]
  • 63. Cheng W, Liu R, Zhu G, Wang H, Xing M. Robust Thyroid Gene Expression and Radioiodine Uptake Induced by Simultaneous Suppression of BRAF V600E and Histone Deacetylase in Thyroid Cancer Cells. J Clin Endocrinol Metab. 2016 Mar;101(3):962–71.
    [2016]
  • 62. Eustatia-Rutten CFA, Corssmit EPM, Biermasz NR, Pereira AM, Romijn JA, Smit JW. Survival and death causes in differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2006 Jan;91(1):313–9.
    [2006]
  • 61. Deng Y, Li H, Wang M, Li N, Tian T, Wu Y, et al. Global Burden of Thyroid Cancer From 1990 to 2017. JAMA Netw Open. 2020 Jun 1;3(6):e208759.
    [2020]
  • 60. Lee J, Jeong S, Lee CR, Ku CR, Kang S-W, Jeong JJ, et al. GLI1 Transcription Factor Affects Tumor Aggressiveness in Patients With Papillary Thyroid Cancers. Medicine (Baltimore). 2015 Jun;94(25):e998.
    [2015]
  • 6. Tesselaar MH, Crezee T, Swarts HG, Gerrits D, Boerman OC, Koenderink JB, et al. Digitalis-like Compounds Facilitate Non-Medullary Thyroid Cancer Redifferentiation through Intracellular Ca2+, FOS, and Autophagy- Dependent Pathways. Mol Cancer Ther. 2017;16(1):169–81.
    [2017]
  • 59. Parascandolo A, Laukkanen MO, De Rosa N, Ugolini C, Cantisani MC, Cirafici AM, et al. A dual mechanism of activation of the Sonic Hedgehog pathway in anaplastic thyroid cancer: crosstalk with RAS-BRAF-MEK pathway and ligand secretion by tumor stroma. Oncotarget. 2018 Jan 12;9(4):4496–510.
    [2018]
  • 58. Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo H-W. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors. Cancers (Basel). 2016 Feb 15;8(2):E22.
    [2016]
  • 57. Didiasova M, Schaefer L, Wygrecka M. Targeting GLI Transcription Factors in Cancer. Molecules. 2018 Apr 24;23(5):E1003.
    [2018]
  • 56. Sanchez P, Hernández AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12561–6.
    [2004]
  • 55. Qualtrough D, Buda A, Gaffield W, Williams AC, Paraskeva C. Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int J Cancer. 2004 Jul 20;110(6):831–7.
    [2004]
  • 54. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003 Mar 20;422(6929):313–7.
    [2003]
  • 53. Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003 Oct 23;425(6960):851–6.
    [2003]
  • 52. Xie J, Johnson RL, Zhang X, Bare JW, Waldman FM, Cogen PH, et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res. 1997 Jun 15;57(12):2369–72.
    [1997]
  • 51. Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev. 2008 Sep 15;22(18):2454–72.
    [2008]
  • 50. Riobo-Del Galdo NA, Lara Montero Á, Wertheimer EV. Role of Hedgehog Signaling in Breast Cancer: Pathogenesis and Therapeutics. Cells. 2019 Apr 25;8(4):E375.
    [2019]
  • 5. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016 Mar 1;126(3):1052–66.
    [2016]
  • 49. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006 Aug;91(8):2892–9.
    [2006]
  • 48. Liu J, Liu Y, Lin Y, Liang J. Radioactive Iodine-Refractory Differentiated Thyroid Cancer and Redifferentiation Therapy. Endocrinol Metab (Seoul). 2019;34(3):215–25.
    [2019]
  • 47. Oh JM, Ahn B-C. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics. 2021;11(13):6251–77.
  • 46. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209–49.
  • 45. Jin Y, Van Nostrand D, Cheng L, Liu M, Chen L. Radioiodine refractory differentiated thyroid cancer. Crit Rev Oncol Hematol. 2018 May;125:111– 20.
  • 44. Hsu K-T, Yu X-M, Audhya AW, Jaume JC, Lloyd RV, Miyamoto S, et al. Novel approaches in anaplastic thyroid cancer therapy. Oncologist. 2014 Nov;19(11):1148–55.
    [2014]
  • 43. Riesco-Eizaguirre G, Santisteban P. A perspective view of sodium iodide symporter research and its clinical implications. Eur J Endocrinol. 2006 Oct;155(4):495–512.
    [2006]
  • 42. Spitzweg C, Bible KC, Hofbauer LC, Morris JC. Advanced radioiodinerefractory differentiated thyroid cancer: the sodium iodide symporter and other emerging therapeutic targets. Lancet Diabetes Endocrinol. 2014 Oct;2(10):830–42.
    [2014]
  • 41. Liu Y-Y, Zhang X, Ringel MD, Jhiang SM. Modulation of sodium iodide symporter expression and function by LY294002, Akti-1/2 and Rapamycin in thyroid cells. Endocr Relat Cancer. 2012 Jun;19(3):291–304.
    [2012]
  • 40. Portella G, Vitagliano D, Borselli C, Melillo RM, Salvatore D, Rothstein JL, et al. Human N-ras, TRK-T1, and RET/PTC3 oncogenes, driven by a thyroglobulin promoter, differently affect the expression of differentiation markers and the proliferation of thyroid epithelial cells. Oncol Res. 1999;11(9):421–7.
    [1999]
  • 39. Fabbro D, Di Loreto C, Beltrami CA, Belfiore A, Di Lauro R, Damante G. Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms. Cancer Res. 1994 Sep 1;54(17):4744–9.
    [1994]
  • 38. Mu D, Huang R, Li S, Ma X, Lou C, Kuang A. Combining transfer of TTF- 1 and Pax-8 gene: a potential strategy to promote radioiodine therapy of thyroid carcinoma. Cancer Gene Ther. 2012 Jun;19(6):402–11.
    [2012]
  • 37. Damante G, Di Lauro R. Thyroid-specific gene expression. Biochim Biophys Acta. 1994 Aug 2;1218(3):255–66.
    [1994]
  • 36. Rowe CW, Paul JW, Gedye C, Tolosa JM, Bendinelli C, McGrath S, et al. Targeting the TSH receptor in thyroid cancer. Endocr Relat Cancer. 2017 Jun;24(6):R191–202.
    [2017]
  • 35. Tanaka T, Umeki K, Yamamoto I, Sugiyama S, Noguchi S, Ohtaki S. Immunohistochemical loss of thyroid peroxidase in papillary thyroid carcinoma: strong suppression of peroxidase gene expression. J Pathol. 1996 May;179(1):89–94.
    [1996]
  • 34. Takamatsu J, Hosoya T, Tsuji M, Yamada M, Murakami Y, Sakane S, et al. Peroxidase and coupling activities of thyroid peroxidase in benign and malignant thyroid tumor tissues. Thyroid. 1992;2(3):193–6.
    [1992]
  • 33. Hou P, Bojdani E, Xing M. Induction of thyroid gene expression and radioiodine uptake in thyroid cancer cells by targeting major signaling pathways. J Clin Endocrinol Metab. 2010 Feb;95(2):820–8.
    [2010]
  • 32. Ain KB. Management of undifferentiated thyroid cancer. Baillieres Best Pract Res Clin Endocrinol Metab. 2000 Dec;14(4):615–29.
    [2000]
  • 31. Xing M. Recent Advances in Molecular Biology of Thyroid Cancer and Their Clinical Implications. Otolaryngol Clin North Am. 2008 Dec;41(6):1135–46.
    [2008]
  • 30. Arturi F, Russo D, Bidart JM, Scarpelli D, Schlumberger M, Filetti S. Expression pattern of the pendrin and sodium/iodide symporter genes in human thyroid carcinoma cell lines and human thyroid tumors. Eur J Endocrinol. 2001 Aug;145(2):129–35.
    [2001]
  • 3. Nagaiah G, Hossain A, Mooney CJ, Parmentier J, Remick SC. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol. 2011;2011:542358.
    [2011]
  • 29. Venkataraman GM, Yatin M, Marcinek R, Ain KB. Restoration of iodide uptake in dedifferentiated thyroid carcinoma: relationship to human Na+/Isymporter gene methylation status. J Clin Endocrinol Metab. 1999 Jul;84(7):2449–57.
    [1999]
  • 28. Lazar V, Bidart JM, Caillou B, Mahé C, Lacroix L, Filetti S, et al. Expression of the Na+/I- symporter gene in human thyroid tumors: a comparison study with other thyroid-specific genes. J Clin Endocrinol Metab. 1999 Sep;84(9):3228–34.
    [1999]
  • 27. Chiacchio S, Lorenzoni A, Boni G, Rubello D, Elisei R, Mariani G. Anaplastic thyroid cancer: prevalence, diagnosis and treatment. Minerva Endocrinol. 2008 Dec;33(4):341–57.
    [2008]
  • 26. Spitzweg C, Morris JC. The sodium iodide symporter: its pathophysiological and therapeutic implications. Clin Endocrinol (Oxf). 2002 Nov;57(5):559– 74.
    [2002]
  • 25. Beyer S, Lakshmanan A, Liu Y-Y, Zhang X, Wapnir I, Smolenski A, et al. KT5823 differentially modulates sodium iodide symporter expression, activity, and glycosylation between thyroid and breast cancer cells. Endocrinology. 2011 Mar;152(3):782–92.
    [2011]
  • 24. Furuya F, Lu C, Willingham MC, Cheng S-Y. Inhibition of phosphatidylinositol 3-kinase delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer. Carcinogenesis. 2007 Dec;28(12):2451–8.
    [2007]
  • 23. Rapoport B, McLachlan SM. TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocr Rev. 2016 Apr;37(2):114–34.
    [2016]
  • 22. Oh JM, Lee HW, Kalimuthu S, Gangadaran P, Baek SH, Han M-H, et al. Development of an athyroid mouse model using 131I ablation after preparation with a low-iodine diet. Sci Rep. 2017 Oct 16;7(1):13284.
    [2017]
  • 21. Oh JM, Kalimuthu S, Gangadaran P, Baek SH, Zhu L, Lee HW, et al. Reverting iodine avidity of radioactive-iodine refractory thyroid cancer with a new tyrosine kinase inhibitor (K905-0266) excavated by high-throughput NIS (sodium iodide symporter) enhancer screening platform using dual reporter gene system. Oncotarget. 2018 Jan 23;9(6):7075–87.
  • 20. Mian C, Barollo S, Pennelli G, Pavan N, Rugge M, Pelizzo MR, et al. Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. Clin Endocrinol (Oxf). 2008 Jan;68(1):108–16.
    [2008]
  • 2. Bozorg-Ghalati F, Hedayati M, Dianatpour M, Azizi F, Mosaffa N, Mehrabani D. Effects of a Phosphoinositide-3-Kinase Inhibitor on Anaplastic Thyroid Cancer Stem Cells. Asian Pac J Cancer Prev. 2017 27;18(8):2287–91.
    [2017]
  • 19. Di Cristofaro J, Silvy M, Lanteaume A, Marcy M, Carayon P, De Micco C. Expression of tpo mRNA in thyroid tumors: quantitative PCR analysis and correlation with alterations of ret, Braf , ras and pax8 genes. Endocr Relat Cancer. 2006 Jun;13(2):485–95.
    [2006]
  • 18. Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab. 2007 Jul;92(7):2840–3.
    [2007]
  • 17. Rothenberg SM, Daniels GH, Wirth LJ. Redifferentiation of Iodine- Refractory BRAF V600E-Mutant Metastatic Papillary Thyroid Cancer with Dabrafenib-Response. Clin Cancer Res. 2015 Dec 15;21(24):5640–1.
    [2015]
  • 16. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013 Feb 14;368(7):623–32.
    [2013]
  • 15. Nagarajah J, Le M, Knauf JA, Ferrandino G, Montero-Conde C, Pillarsetty N, et al. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine. J Clin Invest. 126(11):4119–24.
  • 145. Chen J-Y, Wang J-J, Lee H-C, Chi C-W, Lee C-H, Hsu Y-C. Combination of peroxisome proliferator-activated receptor gamma and retinoid X receptor agonists induces sodium/iodide symporter expression and inhibits cell growth of human thyroid cancer cells. J Chin Med Assoc. 2020 Oct;83(10):923–30.
  • 144. Lan L, Basourakos S, Cui D, Zuo X, Deng W, Huo L, et al. Inhibiting β- catenin expression promotes efficiency of radioiodine treatment in aggressive follicular thyroid cancer cells probably through mediating NIS localization. Oncol Rep. 2017 Jan;37(1):426–34.
    [2017]
  • 143. Burrows N, Babur M, Resch J, Williams KJ, Brabant G. Hypoxia-inducible factor in thyroid carcinoma. J Thyroid Res. 2011;2011:762905.
  • 142. Liu Y-M, Ying S-P, Huang Y-R, Pan Y, Chen W-J, Ni L-Q, et al. Expression of HIF-1α and HIF-2α correlates to biological and clinical significance in papillary thyroid carcinoma. World J Surg Oncol. 2016 Feb 4;14(1):30.
    [2016]
  • 141. Yang YJ, Na HJ, Suh MJ, Ban MJ, Byeon HK, Kim WS, et al. Hypoxia Induces Epithelial-Mesenchymal Transition in Follicular Thyroid Cancer: Involvement of Regulation of Twist by Hypoxia Inducible Factor-1α. Yonsei Med J. 2015 Nov;56(6):1503–14.
    [2015]
  • 140. Zerilli M, Zito G, Martorana A, Pitrone M, Cabibi D, Cappello F, et al. BRAF(V600E) mutation influences hypoxia-inducible factor-1alpha expression levels in papillary thyroid cancer. Mod Pathol. 2010 Aug;23(8):1052–60.
    [2010]
  • 14. Kogai T, Sajid-Crockett S, Newmarch LS, Liu Y-Y, Brent GA. Phosphoinositide-3-kinase inhibition induces sodium/iodide symporter expression in rat thyroid cells and human papillary thyroid cancer cells. J Endocrinol. 2008 Nov;199(2):243–52.
    [2008]
  • 139. Burrows N, Resch J, Cowen RL, von Wasielewski R, Hoang-Vu C, West CM, et al. Expression of hypoxia-inducible factor 1 alpha in thyroid carcinomas. Endocr Relat Cancer. 2010 Mar;17(1):61–72.
    [2010]
  • 138. Strese S, Fryknäs M, Larsson R, Gullbo J. Effects of hypoxia on human cancer cell line chemosensitivity. BMC Cancer. 2013 Jul 5;13:331.
  • 137. Depping R, von Fallois M, Landesman Y, Kosyna FK. The Nuclear Export Inhibitor Selinexor Inhibits Hypoxia Signaling Pathways And 3D Spheroid Growth Of Cancer Cells. Onco Targets Ther. 2019;12:8387–99.
  • 136. Qin Y, Roszik J, Chattopadhyay C, Hashimoto Y, Liu C, Cooper ZA, et al. Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma. Mol Cancer Ther. 2016 Oct;15(10):2442–54.
    [2016]
  • 135. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019 Nov 11;18(1):157.
    [2019]
  • 134. Han SJ, Kwon S, Kim KS. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int. 2021 Mar 4;21(1):152.
    [2021]
  • 133. Chaicharoenaudomrung N, Kunhorm P, Noisa P. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J Stem Cells. 2019 Dec 26;11(12):1065–83.
    [2019]
  • 132. Forte E, Chimenti I, Rosa P, Angelini F, Pagano F, Calogero A, et al. EMT/MET at the Crossroad of Stemness, Regeneration and Oncogenesis: The Ying-Yang Equilibrium Recapitulated in Cell Spheroids. Cancers (Basel). 2017 Jul 29;9(8):E98.
    [2017]
  • 131. Melissaridou S, Wiechec E, Magan M, Jain MV, Chung MK, Farnebo L, et al. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell Int. 2019;19:16.
    [2019]
  • 130. Berens EB, Holy JM, Riegel AT, Wellstein A. A Cancer Cell Spheroid Assay to Assess Invasion in a 3D Setting. J Vis Exp. 2015 Nov 20;(105).
    [2015]
  • 128. De Rose F, Braeuer M, Braesch-Andersen S, Otto AM, Steiger K, Reder S, et al. Galectin-3 Targeting in Thyroid Orthotopic Tumors Opens New Ways to Characterize Thyroid Cancer. J Nucl Med. 2019 Jun;60(6):770–6.
    [2019]
  • 127. Däster S, Amatruda N, Calabrese D, Ivanek R, Turrini E, Droeser RA, et al. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget. 2017 Jan 3;8(1):1725–36.
    [2017]
  • 126. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006 Aug;6(8):583–92.
    [2006]
  • 125. Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials. 2010 Nov;31(32):8494–506.
    [2010]
  • 124. Goodman TT, Ng CP, Pun SH. 3-D tissue culture systems for the evaluation and optimization of nanoparticle-based drug carriers. Bioconjug Chem. 2008 Oct;19(10):1951–9.
    [2008]
  • 123. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014 May;12(4):207–18.
    [2014]
  • 120. Sant S, Johnston PA. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov Today Technol. 2017 Mar;23:27–36.
  • 12. Kogai T, Brent GA. The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol Ther. 2012 Sep;135(3):355–70.
    [2012]
  • 119. Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation. J R Soc Interface. 2017 Feb;14(127):20160877.
    [2017]
  • 118. Castillo-Rivera F, Ondo-Méndez A, Guglielmi J, Guigonis J-M, Jing L, Lindenthal S, et al. Tumor microenvironment affects exogenous sodium/iodide symporter expression. Transl Oncol. 2021 Jan;14(1):100937.
    [2021]
  • 117. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020 Apr 7;18(1):59.
    [2020]
  • 116. Gianì F, Vella V, Nicolosi ML, Fierabracci A, Lotta S, Malaguarnera R, et al. Thyrospheres From Normal or Malignant Thyroid Tissue Have Different Biological, Functional, and Genetic Features. J Clin Endocrinol Metab. 2015 Sep;100(9):E1168-1178.
    [2015]
  • 115. Lee MA, Bergdorf KN, Phifer CJ, Jones CY, Byon SY, Sawyer LM, et al. Novel three-dimensional cultures provide insights into thyroid cancer behavior. Endocr Relat Cancer. 2020 Feb;27(2):111–21.
    [2020]
  • 114. Cirello V, Vaira V, Grassi ES, Vezzoli V, Ricca D, Colombo C, et al. Multicellular spheroids from normal and neoplastic thyroid tissues as a suitable model to test the effects of multikinase inhibitors. Oncotarget. 2017 Feb 7;8(6):9752–66.
    [2017]
  • 113. Ingeson-Carlsson C, Martinez-Monleon A, Nilsson M. Differential effects of MAPK pathway inhibitors on migration and invasiveness of BRAF(V600E) mutant thyroid cancer cells in 2D and 3D culture. Exp Cell Res. 2015 Nov 1;338(2):127–35.
    [2015]
  • 112. Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010 Apr;10(4):241–53.
    [2010]
  • 110. Moscona A, Moscona H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat. 1952 Jul;86(Pt 3):287– 301.
    [1952]
  • 109. Souza AG, Silva IBB, Campos-Fernandez E, Barcelos LS, Souza JB, Marangoni K, et al. Comparative Assay of 2D and 3D Cell Culture Models: Proliferation, Gene Expression and Anticancer Drug Response. Curr Pharm Des. 2018;24(15):1689–94.
    [2018]
  • 108. Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep. 2015 Apr;33(4):1837–43.
    [2015]
  • 107. Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro--a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol. 2005 Oct;15(5):405–12.
    [2005]
  • 106. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci. 2018 Jun;14(4):910–9.
    [2018]
  • 105. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010 Mar 30;7(3):e1000245.
    [2010]
  • 104. Pinto B, Henriques AC, Silva PMA, Bousbaa H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics. 2020 Dec 6;12(12).
    [2020]
  • 103. Ocana A, Pandiella A, Siu LL, Tannock IF. Preclinical development of molecular-targeted agents for cancer. Nat Rev Clin Oncol. 2010 Dec 7;8(4):200–9.
    [2010]
  • 102. Chew D, Green V, Riley A, England RJ, Greenman J. The Changing Face of in vitro Culture Models for Thyroid Cancer Research: A Systematic Literature Review. Front Surg. 2020;7:43.
  • 101. Ancker OV, Krüger M, Wehland M, Infanger M, Grimm D. Multikinase Inhibitor Treatment in Thyroid Cancer. Int J Mol Sci. 2019 Dec 18;21(1):E10.
    [2019]
  • 1. Antonelli A, Fallahi P, Ulisse S, Ferrari SM, Mazzi V, Domenicantonio AD, et al. Tyrosine kinase inhibitors for the therapy of anaplastic thyroid cancer. International Journal of Endocrine Oncology. 2015 May;2(2):135–42.
    [2015]