Shape morphing metasurfaces for control of electromagnetic wave using hybrid printing technology

정희준 2022년
논문상세정보
' Shape morphing metasurfaces for control of electromagnetic wave using hybrid printing technology' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 3d printing
  • 4D printing
  • Metasurface
  • additive manufacturing
  • electromagnetic absorber
  • inkjet-printing
  • mechanically reconfigurable
  • reconfigurable intelligent surface
  • reconfigurable metasurface
  • screen-printing
  • self-deformation
  • shape morphing
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
707 0

0.0%

' Shape morphing metasurfaces for control of electromagnetic wave using hybrid printing technology' 의 참고문헌

  • [9] F. Wang, S. Huang, L. Li, W. Chen, and Z. Xie, “Dual-band tunable perfect metamaterial absorber based on graphene,” Appl. Opt., vol. 57, no. 24, p. 6916, 2018.
    [2018]
  • [97] Y. Yoo, H. Jeong, D. Lim, and S. Lim, “Stretchable screen-printed metasurfaces for wireless strain sensing applications,” Extrem. Mech. Lett., vol. 41, p. 100998, 2020.
    [2020]
  • [96] Z. Sun, R. Liu, H. Cao, H. Gong, M. Du, and S. Li, “Dual-axis metasurface strain sensor based on polarization–phase-deformation relationship,” Sensors (Switzerland), vol. 20, no. 5, 2020.
    [2020]
  • [95] J. Wang, L. Qin, and W. Xu, “Flexible and high precision thermal metasurface,” Commun. Mater., vol. 2, no. 1, pp. 1–10, 2021.
  • [94] M. A. Baqir and P. K. Choudhury, “ On the VO 2 metasurface-based temperature sensor ,” J. Opt. Soc. Am. B, vol. 36, no. 8, p. F123, 2019.
    [2019]
  • [93] D. U. Yildirim et al., “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics, vol. 6, no. 7, pp. 1812–1822, 2019.
    [2019]
  • [90] M. Zhou et al., “Self-Focused Thermal Emission and Holography Realized by Mesoscopic Thermal Emitters,” ACS Photonics, vol. 8, no. 2, pp. 497– 504, 2021.
  • [8] F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1201–1209, 2013.
    [2013]
  • [89] Z. Wang et al., “Thermally Reconfigurable Hologram Fabricated by Spatially Modulated Femtosecond Pulses on a Heat-Shrinkable Shape Memory Polymer for Holographic Multiplexing,” ACS Appl. Mater. Interfaces, vol. 13, no. 43, pp. 51736–51745, 2021.
  • [86] R. Kargar, K. Rouhi, and A. Abdolali, “Reprogrammable multifocal THz metalens based on metal–insulator transition of VO2-assisted digital metasurface,” Opt. Commun., vol. 462, no. October 2019, p. 125331, 2020.
  • [85] K. Zangeneh Kamali et al., “Reversible Image Contrast Manipulation with Thermally Tunable Dielectric Metasurfaces,” Small, vol. 15, no. 15, pp. 1–6, 2019.
    [2019]
  • [83] K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica, vol. 4, no. 6, p. 601, 2017.
    [2017]
  • [82] I. Bashir and M. Carley, “Development of 3D boundary element method for the simulation of acoustic metamaterials/metasurfaces in mean flow for aerospace applications,” Int. J. Aeroacoustics, vol. 19, no. 6–8, pp. 324–346, 2020.
    [2020]
  • [81] J. A. Gordon et al., “Fluid interactions with metafilms/metasurfaces for tuning, sensing, and microwave-assisted chemical processes,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 83, no. 20, pp. 1–5, 2011.
    [2011]
  • [80] N. L. Kazanskiy, S. N. Khonina, M. A. Butt, A. Kaźmierczak, and R. Piramidowicz, “State-of-the-art optical devices for biomedical sensing applications—a review,” Electron., vol. 10, no. 8, pp. 1–29, 2021.
  • [7] Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A Mater. Sci. Process., vol. 102, no. 1, pp. 99–103, 2011.
    [2011]
  • [79] X. Liu, J. Gao, L. Xu, X. Cao, Y. Zhao, and S. Li, “A Coding Diffuse Metasurface for RCS Reduction,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 724–727, 2017.
    [2017]
  • [77] L. Shao, W. Zhu, M. Y. Leonov, and I. D. Rukhlenko, “Dielectric 2-bit coding metasurface for electromagnetic wave manipulation,” J. Appl. Phys., vol. 125, no. 20, 2019.
    [2019]
  • [76] H. Heo, M. Sofield, J. Ju, and A. Neogi, “Acoustic metasurface-aided broadband noise reduction in automobile induced by tire-pavement interaction,” Materials (Basel)., vol. 14, no. 15, 2021.
  • [75] C. Rizza, V. Loscri, and M. Ojaroudi, “A Millimeter-Wave Reconfigurable Intelligent Metasurface Design for Vehicular Networks Applications,” IEEE Veh. Technol. Conf., vol. 2020-Novem, 2020.
    [2020]
  • [73] K. Lee et al., “Design of a metasurface superstrate for improved reception of wireless power at ka-band,” 2020 IEEE Wirel. Power Transf. Conf. WPTC 2020, vol. 2, pp. 112–114, 2020.
    [2020]
  • [72] K. V. Mishra, J. A. Hodge, and A. I. Zaghloul, “Reconfigurable metasurfaces for radar and communications systems,” 2019 URSI Asia- Pacific Radio Sci. Conf. AP-RASC 2019, no. March, pp. 2019–2022, 2019.
    [2019]
  • [71] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. S. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, no. June 2018, pp. 116753–116773, 2019.
    [2019]
  • [6] M. Aznabet, M. Navarro-Cia, S. A. Kuznetsov, and A. V. Gelfand, “Polypropylense-substrate-based SRR- and CSRR- metasurfaces for submillimeter waves,” Opt. Express, vol. 16, no. 22, pp. 9746–9752, 2008.
    [2008]
  • [69] L. Du, W. Zhang, J. Ma, and Y. Tang, “Reconfigurable Intelligent Surfaces for Energy Efficiency in Multicast Transmissions,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 6266–6271, 2021.
  • [68] M. Manjappa et al., “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun., vol. 9, no. 1, pp. 1–10, 2018.
    [2018]
  • [67] D. H. Le and S. Lim, “Four-Mode Programmable Metamaterial Using Ternary Foldable Origami,” ACS Appl. Mater. Interfaces, vol. 11, no. 31, pp. 28554–28561, 2019.
    [2019]
  • [66] M. Wang, Y. Shim, and M. Rais-Zadeh, “A low-loss directly heated twoport RF phase change switch,” IEEE Electron Device Lett., vol. 35, no. 4, pp. 491–493, 2014.
    [2014]
  • [64] N. El-Hinnawy et al., “Low-loss latching microwave switch using thermally pulsed non-volatile chalcogenide phase change materials,” Appl. Phys. Lett., vol. 105, no. 1, 2014.
    [2014]
  • [63] H. Jeong, J. H. Park, Y. H. Moon, C. W. Baek, and S. Lim, “Thermal frequency reconfigurable electromagnetic absorber using phase change material,” Sensors, vol. 18, no. 10, p. 3506, 2018.
    [2018]
  • [61] H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology, vol. 29, no. 2, 2018.
    [2018]
  • [5] M. T. Nouman, J. H. Hwang, and J. H. Jang, “Ultrathin terahertz quarterwave plate based on split ring resonator and wire grating hybrid metasurface,” Sci. Rep., vol. 6, no. September, pp. 1–9, 2016.
    [2016]
  • [59] M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, and R. A. M. Wolters, “Lowcost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater., vol. 4, no. 4, pp. 347–352, 2005.
    [2005]
  • [58] A. M. Reconfigurable and F. S. Using, “Communication,” vol. 66, no. 9, pp. 4953–4957, 2018.
    [2018]
  • [57] S. Ghosh and S. Lim, “Fluidically reconfigurable multifunctional frequencyselective surface with miniaturization Characteristic,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 8, pp. 3857–3865, 2018.
    [2018]
  • [56] H. Jeong and S. Lim, “Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane,” Sci. Rep., vol. 8, no. 1, pp. 1–9, 2018.
    [2018]
  • [53] K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express, vol. 25, no. 5, p. 5571, 2017.
    [2017]
  • [52] S. Tian, H. Liu, and L. Li, “Design of 1-bit digital reconfigurable reflective metasurface for beam-scanning,” Appl. Sci., vol. 7, no. 9, pp. 1–8, 2017.
    [2017]
  • [4] D. Gomon, E. Sedykh, V. Soboleva, A. Zaitsev, and M. Khodzitsky, “Influence of the incidence radiation polarization on the absorptivity of Electrical Ring Resonator Metasurface in Terahertz frequency range,” J. Phys. Conf. Ser., vol. 1062, no. 1, 2018.
    [2018]
  • [49] R. Phon, S. Ghosh, and S. Lim, “Novel Multifunctional Reconfigurable Active Frequency Selective Surface,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1709–1718, 2019.
    [2019]
  • [48] R. Phon and S. Lim, “Dynamically Self-Reconfigurable Multifunctional All- Passive Metasurface,” ACS Appl. Mater. Interfaces, vol. 12, no. 37, pp. 42393–42402, 2020.
    [2020]
  • [47] G. K. Shirmanesh, R. Sokhoyan, P. C. Wu, P. C. Wu, H. A. Atwater, and H. A. Atwater, “Electro-optically Tunable Multifunctional Metasurfaces,” ACS Nano, vol. 14, no. 6, pp. 6912–6920, 2020.
    [2020]
  • [46] Q. Ma, G. D. Bai, H. B. Jing, C. Yang, L. Li, and T. J. Cui, “Smart metasurface with self-adaptively reprogrammable functions,” Light Sci. Appl., vol. 8, no. 1, 2019.
    [2019]
  • [45] S. Vellucci, A. Monti, M. Barbuto, A. Toscano, and F. Bilotti, “Satellite Applications of Electromagnetic Cloaking,” IEEE Trans. Antennas Propag., vol. 65, no. 9, pp. 4931–4934, 2017.
    [2017]
  • [44] H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2sensing,” Appl. Phys. Lett., vol. 105, no. 12, pp. 1–5, 2014.
    [2014]
  • [43] L. Chen, Q. F. Nie, Y. Ruan, and H. Y. Cui, “Thermal sensing metasurface with programmable wave-front manipulation,” J. Appl. Phys., vol. 128, no. 7, 2020.
    [2020]
  • [41] J. Cai, C. Zhang, C. Liang, S. Min, X. Cheng, and W. Di Li, “Solution- Processed Large-Area Gold Nanocheckerboard Metasurfaces on Flexible Plastics for Plasmonic Biomolecular Sensing,” Adv. Opt. Mater., vol. 7, no. 19, pp. 1–9, 2019.
    [2019]
  • [40] D. Chowdhury, M. C. Giordano, G. Manzato, R. Chittofrati, C. Mennucci, and F. Buatier De Mongeot, “Large-Area Microfluidic Sensors Based on Flat-Optics Au Nanostripe Metasurfaces,” J. Phys. Chem. C, vol. 124, no. 31, pp. 17183–17190, 2020.
    [2020]
  • [3] S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, “Electromagnetic metasurfaces: physics and applications,” Adv. Opt. Photonics, vol. 11, no. 2, p. 380, 2019.
    [2019]
  • [39] U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, “Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection,” APL Mater., vol. 7, no. 7, 2019.
    [2019]
  • [38] T. J. Cui, S. Liu, and L. L. Li, “Information entropy of coding metasurface,” Light Sci. Appl., vol. 5, no. 11, pp. e16172–12, 2016.
    [2016]
  • [35] K. Chen, N. Zhang, G. Ding, J. Zhao, T. Jiang, and Y. Feng, “Active Anisotropic Coding Metasurface with Independent Real-Time Reconfigurability for Dual Polarized Waves,” Adv. Mater. Technol., vol. 5, no. 2, pp. 1–9, 2020.
    [2020]
  • [33] D. verma Atul, “d M us pt,” Certain distance degree based Topol. indices Zeolite LTA Fram., no. December 2016, pp. 11–14, 2018.
    [2018]
  • [30] M. I. Khan, Z. Khalid, and F. A. Tahir, “Linear and circular-polarization conversion in X-band using anisotropic metasurface,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019.
    [2019]
  • [2] K. Achouri and C. Caloz, “Design, concepts, and applications of electromagnetic metasurfaces,” Nanophotonics, vol. 7, no. 6, pp. 1095–1116, 2018.
    [2018]
  • [29] H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4615–4623, 2013.
    [2013]
  • [28] B. Ratni, A. De Lustrac, G. P. Piau, and S. N. Burokur, “Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface,” Appl. Phys. Lett., vol. 111, no. 21, 2017.
    [2017]
  • [27] S. Sun, W. Jiang, S. Gong, and T. Hong, “Reconfigurable Linear-to-Linear Polarization Conversion Metasurface Based on PIN Diodes,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 9, pp. 1722–1726, 2018.
    [2018]
  • [26] Q. Zheng, C. Guo, and J. Ding, “Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 8, pp. 1459– 1463, 2018.
    [2018]
  • [25] X. Gao, L. Singh, W. Yang, J. Zheng, H. Li, and W. Zhang, “Bandwidth broadening of a linear polarization converter by near-field metasurface coupling,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.
    [2017]
  • [24] V. Neder, Y. Ra’Di, A. Alù, and A. Polman, “Combined Metagratings for Efficient Broad-Angle Scattering Metasurface,” ACS Photonics, vol. 6, no. 4, pp. 1010–1017, 2019.
    [2019]
  • [22] J. Xu, M. Cua, E. H. Zhou, Y. Horie, A. Faraon, and C. Yang, “Wideangular- range and high-resolution beam steering by a metasurface-coupled phased array,” Opt. Lett., vol. 43, no. 21, p. 5255, 2018.
    [2018]
  • [21] M. Abdelsalam, A. M. Mahmoud, and M. A. Swillam, “Polarization independent dielectric metasurface for infrared beam steering applications,” Sci. Rep., vol. 9, no. 1, pp. 1–7, 2019.
    [2019]
  • [20] K. K. Katare, A. Biswas, and M. J. Akhtar, “Microwave beam steering of planar antennas by hybrid phase gradient metasurface structure under spherical wave illumination,” J. Appl. Phys., vol. 122, no. 23, 2017.
    [2017]
  • [209] Y. Zhang et al., “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol., vol. 16, no. 6, pp. 661–666, 2021.
  • [208] L. Long, S. Taylor, X. Ying, and L. Wang, “Thermally-switchable spectrally-selective infrared metamaterial absorber/emitter by tuning magnetic polariton with a phase-change VO2 layer,” Mater. Today Energy, vol. 13, pp. 214–220, 2019.
    [2019]
  • [207] L. Wang, D. Xia, Q. Fu, Y. Wang, X. Ding, and B. Yang, “Thermally tunable ultra-thin metamaterial absorber at P band,” J. Electromagn. Waves Appl., vol. 33, no. 11, pp. 1406–1415, 2019.
    [2019]
  • [206] W. Yang et al., “Angular-Adaptive Reconfigurable Spin-Locked Metasurface Retroreflector,” Adv. Sci., vol. 8, no. 21, pp. 1–10, 2021.
  • [205] J.-B. Gros, V. Popov, M. A. Odit, V. Lenets, and G. Lerosey, “A Reconfigurable Intelligent Surface at mmWave Based on a Binary Phase Tunable Metasurface,” IEEE Open J. Commun. Soc., vol. 2, no. May, pp. 1055–1064, 2021.
  • [204] H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2524–2531, 2011.
    [2011]
  • [203] X. Wan et al., “Reconfigurable Sum and Difference Beams Based on a Binary Programmable Metasurface,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 3, pp. 381–385, 2021.
  • [202] I. Yildirim, A. Uyrus, and E. Basar, “Modeling and Analysis of Reconfigurable Intelligent Surfaces for Indoor and Outdoor Applications in Future Wireless Networks,” IEEE Trans. Commun., vol. 69, no. 2, pp. 1290– 1301, 2021.
  • [201] T. Ma, Y. Xiao, X. Lei, W. Xiong, and Y. Ding, “Indoor Localization With Reconfigurable Intelligent Surface,” IEEE Commun. Lett., vol. 25, no. 1, pp. 161–165, 2020.
    [2020]
  • [200] E. Basar and I. Yildirim, “Reconfigurable Intelligent Surfaces for Future Wireless Networks: A Channel Modeling Perspective,” IEEE Wirel. Commun., vol. 28, no. 3, pp. 108–114, 2021.
  • [1] L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mater., vol. 4, no. 6, pp. 818–833, 2016.
    [2016]
  • [19] Z. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express, vol. 21, no. 9, p. 10739, 2013.
    [2013]
  • [199] P. Wang, J. Fang, X. Yuan, Z. Chen, and H. Li, “Intelligent Reflecting Surface-Assisted Millimeter Wave Communications: Joint Active and Passive Precoding Design,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 14960–14973, 2020.
    [2020]
  • [198] J. He, H. Wymeersch, and M. Juntti, “Channel Estimation for RIS-Aided mmWave MIMO Systems via Atomic Norm Minimization,” IEEE Trans. Wirel. Commun., vol. 20, no. 9, pp. 5786–5797, 2021.
  • [197] A. Ranjha and G. Kaddoum, “URLLC Facilitated by Mobile UAV Relay and RIS: A Joint Design of Passive Beamforming, Blocklength, and UAV Positioning,” IEEE Internet Things J., vol. 8, no. 6, pp. 4618–4627, 2021.
  • [196] L. Wei, C. Huang, G. C. Alexandropoulos, and C. Yuen, “Parallel factor decomposition channel estimation in ris-assisted multi-user MISO communication,” Proc. IEEE Sens. Array Multichannel Signal Process. Work., vol. 2020-June, 2020.
    [2020]
  • [195] F. H. Kumbhar, N. Saxena, and A. Roy, “Reliable Relay: Autonomous Social D2D Paradigm for 5G LoS Communications,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1593–1596, 2017.
    [2017]
  • [194] T. Tang, T. Hong, C. Liu, W. Zhao, and M. Kadoch, “Design of 5G dualantenna passive repeater based on machine learning,” 2019 15th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2019, pp. 1907–1912, 2019.
    [2019]
  • [193] D. Ha, D. Choi, H. Kim, J. Kum, J. Lee, and Y. Lee, “Passive repeater for removal of blind spot in NLOS path for 5G Fixed Wireless Access (FWA) system,” 2017 IEEE Antennas Propag. Soc. Int. Symp. Proc., vol. 2017- Janua, pp. 2049–2050, 2017.
    [2017]
  • [192] S. Sun, T. A. Thomas, T. S. Rappaport, H. Nguyen, I. Z. Kovacs, and I. Rodriguez, “Path loss, shadow fading, and line-of-sight probability models for 5G urban macro-cellular scenarios,” 2015 IEEE Globecom Work. GC Wkshps 2015 - Proc., 2015.
    [2015]
  • [191] A. M. Al-Samman, T. A. Rahman, M. H. Azmi, and M. N. Hindia, “Largescale path loss models and time dispersion in an outdoor line-of-sight environment for 5G wireless communications,” AEU - Int. J. Electron. Commun., vol. 70, no. 11, pp. 1515–1521, 2016.
    [2016]
  • [18] Y. Jin, R. Kumar, O. Poncelet, O. Mondain-Monval, and T. Brunet, “Flat acoustics with soft gradient-index metasurfaces,” Nat. Commun., vol. 10, no. 1, pp. 1–6, 2019.
    [2019]
  • [189] A. I. Sulyman, A. M. T. Nassar, M. K. Samimi, G. R. MacCartney, T. S. Rappaport, and A. Alsanie, “Erratum: Radio propagation path loss models for 5g cellular networks in the 28 ghz and 38 ghz millimeter-wave bands (IEEE Communications Magazine (2014) 52: 9 (78-86)),” IEEE Commun. Mag., vol. 53, no. 1, p. 303, 2015.
  • [188] G. R. Maccartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” GLOBECOM - IEEE Glob. Telecommun. Conf., pp. 3948–3953, 2013.
    [2013]
  • [187] Y. Liu, C. X. Wang, and J. Huang, “Recent Developments and Future Challenges in Channel Measurements and Models for 5G and beyond High- Speed Train Communication Systems,” IEEE Commun. Mag., vol. 57, no. 9, pp. 50–56, 2019.
    [2019]
  • [186] S. Piltyay, A. Bulashenko, and I. Demchenko, “Wireless Sensor Network Connectivity in Heterogeneous 5G Mobile Systems,” 2020 IEEE Int. Conf. Probl. Infocommunications Sci. Technol. PIC S T 2020 - Proc., pp. 625–630, 2021.
  • [185] P. Kaliyammal Thiruvasagam, V. J. Kotagi, and C. S. R. Murthy, “The More the Merrier: Enhancing Reliability of 5G Communication Services With Guaranteed Delay,” IEEE Netw. Lett., vol. 1, no. 2, pp. 52–55, 2019.
    [2019]
  • [183] C. Lin, L. Liu, Y. Liu, and J. Leng, “4D Printing of Bioinspired Absorbable Left Atrial Appendage Occluders: A Proof-of-Concept Study,” ACS Appl. Mater. Interfaces, vol. 13, no. 11, pp. 12668–12678, 2021.
  • [182] H. A. Alshahrani, “Review of 4D printing materials and reinforced composites: Behaviors, applications and challenges,” J. Sci. Adv. Mater. Devices, vol. 6, no. 2, pp. 167–185, 2021.
  • [181] H. Wei, X. Wan, Y. Liu, and J. Leng, “4D printing of shape memory polymers: Research status and application prospects,” Zhongguo Kexue Jishu Kexue/Scientia Sin. Technol., vol. 48, no. 1, pp. 2–16, 2018.
    [2018]
  • [17] J. J. Liang, G. L. Huang, J. N. Zhao, Z. J. Gao, and T. Yuan, “Wideband Phase-Gradient Metasurface Antenna with Focused Beams,” IEEE Access, vol. 7, pp. 20767–20772, 2019.
    [2019]
  • [179] K. Shah, D. Chalise, and A. Jain, “Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells,” J. Power Sources, vol. 330, pp. 167–174, 2016.
    [2016]
  • [178] C. F. Lopez, J. A. Jeevarajan, and P. P. Mukherjee, “Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules,” J. Electrochem. Soc., vol. 162, no. 9, pp. A1905–A1915, 2015.
    [2015]
  • [177] H. J. Lee and J. J. Lee, “Evaluation of the characteristics of a shape memory alloy spring actuator,” Smart Mater. Struct., vol. 9, no. 6, pp. 817–823, 2000.
    [2000]
  • [176] B. Panton, Y. N. Zhou, and M. I. Khan, “A stabilized, high stress selfbiasing shape memory alloy actuator,” Smart Mater. Struct., vol. 25, no. 9, p. 5027, 2016.
    [2016]
  • [175] J. E. Shim, Y. J. Quan, W. Wang, H. Rodrigue, S. H. Song, and S. H. Ahn, “A smart soft actuator using a single shape memory alloy for twisting actuation,” Smart Mater. Struct., vol. 24, no. 12, p. 5033, 2015.
    [2015]
  • [172] V. A. Kurkin, V. N. Ezhkov, S. V Barabash, E. V Avdeeva, M. V Lyashenko, and E. S. Petrova, “Rhodiola rosea L.: multiple processing of raw material,” Farmatsiya Moscow Russ. Fed., vol. 18, no. 1, pp. 40–42, 2006.
    [2006]
  • [171] F. Han, M. Li, H. Ye, and G. Zhang, “Materials, electrical performance, mechanisms, applications, and manufacturing approaches for flexible strain sensors,” Nanomaterials, vol. 11, no. 5, pp. 1–31, 2021.
  • [170] A. Sydney Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, and J. A. Lewis, “Biomimetic 4D printing,” Nat. Mater., vol. 15, no. 4, pp. 413– 418, 2016.
    [2016]
  • [16] L. Xu, D. Chen, T. Itoh, J. L. Reno, and B. S. Williams, “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam,” Opt. Express, vol. 24, no. 21, p. 24117, 2016.
    [2016]
  • [169] S. Y. Hann, H. Cui, M. Nowicki, and L. G. Zhang, “4D printing soft robotics for biomedical applications,” Addit. Manuf., vol. 36, no. December 2019, p. 101567, 2020.
  • [168] H. T. Lee, M. S. Kim, G. Y. Lee, C. S. Kim, and S. H. Ahn, “Shape Memory Alloy (SMA)-Based Microscale Actuators with 60% Deformation Rate and 1.6 kHz Actuation Speed,” Small, vol. 14, no. 23, pp. 1–7, 2018.
    [2018]
  • [167] A. V. Irzhak et al., “Actuators based on composite material with shapememory effect,” J. Commun. Technol. Electron., vol. 55, no. 7, pp. 818–830, 2010.
    [2010]
  • [166] B. J. De Blonk and D. C. Lagoudas, “Actuation of elastomeric rods with embedded two-way shape memory alloy actuators,” Smart Mater. Struct., vol. 7, no. 6, pp. 771–783, 1998.
    [1998]
  • [165] T. Yao, Y. Wang, B. Zhu, D. Wei, Y. Yang, and X. Han, “4D printing and collaborative design of highly flexible shape memory alloy structures: A case study for a metallic robot prototype,” Smart Mater. Struct., vol. 30, p. 015018, 2020.
    [2020]
  • [162] M. Nowottnick and R. Diehm, “Soldering technology for 3D PCB assemblies with microwave heating,” IEEE Int. Symp. Ind. Electron., pp. 3273–3277, 2007.
    [2007]
  • [161] M. I. M. Ghazali, E. Gutierrez, J. C. Myers, A. Kaur, B. Wright, and P. Chahal, “Affordable 3D printed microwave antennas,” in Proceedings - Electronic Components and Technology Conference, 2015, vol. 2015-July, pp. 240–246.
    [2015]
  • [160] G. W. Dahlmann, E. M. Yeatman, P. Young, I. D. Robertson, and S. Lucyszyn, “Fabrication, RF characteristics and mechanical stability of selfassembled 3D microwave inductors,” Sensors Actuators, A Phys., vol. 97– 98, pp. 215–220, 2002.
    [2002]
  • [15] K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas Propag., vol. 55, no. 5, pp. 1239–1245, 2007.
    [2007]
  • [159] X. T. A. Chu, B. N. Ta, L. T. H. Ngo, M. H. Do, P. X. Nguyen, and D. N. H. Nam, “Microwave Absorption Properties of Iron Nanoparticles Prepared by Ball-Milling,” J. Electron. Mater., vol. 45, no. 5, pp. 2311–2315, 2016.
    [2016]
  • [158] X. Shang, M. Lancaster, and Y. L. Dong, “W-band waveguide filter based on large TM120 resonators to ease CNC milling,” Electron. Lett., vol. 53, no. 7, pp. 488–490, 2017.
    [2017]
  • [157] R. Antonije, Djordjevic, O. Dragan I, and Z. Alenka G, “Modeling and design of milled microwave printed circuit boards,” Microw. Opt. Technol. Lett., vol. 53, no. 2, pp. 264–270, 2011.
    [2011]
  • [156] M. Luo, A. W. Martinez, C. Song, F. Herrault, and M. G. Allen, “A microfabricated wireless RF pressure sensor made completely of biodegradable materials,” J. Microelectromechanical Syst., vol. 23, no. 1, pp. 4–13, 2014.
    [2014]
  • [155] G. Chitnis, T. Maleki, B. Samuels, L. B. Cantor, and B. Ziaie, “A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring,” IEEE Trans. Biomed. Eng., vol. 60, no. 1, pp. 250–256, 2013.
    [2013]
  • [154] M. A. Campeau et al., “Effect of manufacturing and experimental conditions on the mechanical and surface properties of silicone elastomer scaffolds used in endothelial mechanobiological studies,” Biomed. Eng. Online, vol. 16, no. 1, pp. 1–23, 2017.
    [2017]
  • [153] Y. Cui, S. A. Nauroze, and M. M. Tentzeris, “Novel 3D-Printed Reconfigurable Origami Frequency Selective Surfaces with Flexible Inkjet- Printed Conductor Traces,” in IEEE MTT-S International Microwave Symposium Digest, 2019, vol. 2019-June, pp. 1367–1370.
    [2019]
  • [152] B. K. Tehrani, B. S. Cook, and M. M. Tentzeris, “Inkjet-printed 3D interconnects for millimeter-wave system-on-package solutions,” in IEEE MTT-S International Microwave Symposium Digest, 2016, vol. 2016-Augus, pp. 1–4.
    [2016]
  • [151] J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, “Mechanical characterization of 3D-printed polymers,” Addit. Manuf., vol. 20, pp. 44–67, 2018.
    [2018]
  • [14] T. K. Wu and S. W. Lee, “Multiband Frequency Selective Surface with Multiring Patch Elements,” IEEE Trans. Antennas Propag., vol. 42, no. 11, pp. 1484–1490, 1994.
    [1994]
  • [149] H. Jeong, Y. Cui, M. M. Tentzeris, and S. Lim, “Hybrid (3D and inkjet) printed electromagnetic pressure sensor using metamaterial absorber,” Addit. Manuf., vol. 35, no. June, p. 101405, 2020.
    [2020]
  • [148] K. H. Shin, C. R. Moon, T. H. Lee, C. H. Lim, and Y. J. Kim, “Flexible wireless pressure sensor module,” Sensors Actuators, A Phys., vol. 123–124, pp. 30–35, 2005.
    [2005]
  • [147] G. Chitnis, T. Maleki, B. Samuels, L. B. Cantor, and B. Ziaie, “A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring,” IEEE Trans. Biomed. Eng., vol. 60, no. 1, pp. 250–256, 2013.
    [2013]
  • [146] N. Xue, S. P. Chang, and J. B. Lee, “A SU-8-based microfabricated implantable inductively coupled passive RF wireless intraocular pressure sensor,” J. Microelectromechanical Syst., vol. 21, no. 6, pp. 1338–1346, 2012.
    [2012]
  • [145] H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature, vol. 444, no. 7119, pp. 597–600, 2006.
    [2006]
  • [144] M. Sun, Z. N. Chen, and X. Qing, “Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1741–1746, 2013.
    [2013]
  • [143] A. K. Iyer and G. V. Eleftheriades, “Mechanisms of subdiffraction freespace imaging using a transmission-line metamaterial superlens: An experimental verification,” Appl. Phys. Lett., vol. 92, no. 13, pp. 1–4, 2008.
    [2008]
  • [142] T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors, vol. 12, no. 3, pp. 2742–2765, 2012.
    [2012]
  • [141] T. R. Cameron and G. V. Eleftheriades, “Analysis and Characterization of a Wide-Angle Impedance Matching Metasurface for Dipole Phased Arrays,” IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 3928–3938, 2015.
    [2015]
  • [140] R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett., vol. 95, no. 18, pp. 2–5, 2009.
    [2009]
  • [13] J. Romeu and Y. Rahmat-Samii, “Fractal FSS: a novel dual-band frequency selective surface,” IEEE Trans. Antennas Propag., vol. 48, no. 7, pp. 1097– 1105, 2000.
    [2000]
  • [139] J. C. S. Chieh, B. Dick, S. Loui, and J. D. Rockway, “Development of a kuband corrugated conical horn using 3-d print technology,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 201–204, 2014.
    [2014]
  • [138] M. Areir, Y. Xu, D. Harrison, J. Fyson, and R. Zhang, “Development of 3D printing technology for the manufacture of flexible electric double-layer capacitors,” Mater. Manuf. Process., vol. 33, no. 8, pp. 905–911, 2018.
    [2018]
  • [137] N. Bachnak, “3D-MID technology MEMS connectivity at system level,” in Proceedings of the 2012 IEEE 14th Electronics Packaging Technology Conference, EPTC 2012, 2012, vol. 0, pp. 572–576.
  • [135] S. Lee and B. D. Youn, “A new piezoelectric energy harvesting design concept: Multimodal energy harvesting skin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 3, pp. 629–645, 2011.
    [2011]
  • [133] A. S. Westover et al., “A multifunctional load-bearing solid-state supercapacitor,” Nano Lett., vol. 14, no. 6, pp. 3197–3202, 2014.
    [2014]
  • [131] T. Y. Lin, B. Njoman, D. Crouthamel, K. H. Chua, S. Y. Teo, and Y. Y. Ma, “The impact of moisture in mold compound preforms on the warpage of PBGA packages,” Microelectron. Reliab., vol. 44, no. 4, pp. 603–609, 2004.
    [2004]
  • [130] Q. Cao, S. J. Han, G. S. Tulevski, Y. Zhu, D. D. Lu, and W. Haensch, “Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics,” Nat. Nanotechnol., vol. 8, no. 3, pp. 180– 186, 2013.
    [2013]
  • [12] M. T. Islam, M. H. Ullah, M. J. Singh, and M. R. I. Faruque, “A new metasurface superstrate structure for antenna performance enhancement,” Materials (Basel)., vol. 6, no. 8, pp. 3226–3240, 2013.
    [2013]
  • [129] L. Ljungkrona and Z. Lai, “Development of Conductive Adhesive Joining for Surface-Mounting Electronics Manufacturing,” IEEE Trans. Components Packag. Manuf. Technol. Part B, vol. 18, no. 2, pp. 313–319, 1995.
    [1995]
  • [126] A. J. Lopes, E. MacDonald, and R. B. Wicker, “Integrating stereolithography and direct print technologies for 3D structural electronics fabrication,” Rapid Prototyp. J., vol. 18, no. 2, pp. 129–143, 2012.
    [2012]
  • [123] S. I. H. Shah and S. Lim, “Bioinspired DNA Origami Quasi-Yagi Helical Antenna with Beam Direction and Beamwidth Switching Capability,” Sci. Rep., vol. 9, no. 1, pp. 1–9, 2019.
    [2019]
  • [122] H. Jeong and S. Lim, “A Stretchable Electromagnetic Absorber Fabricated Using Screen Printing Technology,” Sensors, vol. 17, pp. 1175–1184, 2017.
    [2017]
  • [121] A. Salim and S. Lim, “Review of recent inkjet-printed capacitive tactile sensors,” Sensors (Switzerland), vol. 17, no. 11, p. 2593, 2017.
    [2017]
  • [11] Z. Wu, L. Li, Y. Li, and X. Chen, “Metasurface Superstrate Antenna with Wideband Circular Polarization for Satellite Communication Application,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 374–377, 2016.
    [2016]
  • [119] S. Choi, S. Eom, M. M. Tentzeris, and S. Lim, “Inkjet-Printed Electromagnet-Based Touchpad Using Spiral Resonators,” J. Microelectromechanical Syst., vol. 25, no. 5, pp. 947–953, 2016.
    [2016]
  • [118] D. Lee, H. K. Sung, and S. Lim, “Flexible subterahertz metamaterial absorber fabrication using inkjet printing technology,” Appl. Phys. B Lasers Opt., vol. 122, no. 7, pp. 1–8, 2016.
    [2016]
  • [117] J. S. Yun, T. W. Park, Y. H. Jeong, and J. H. Cho, “Development of ceramic-reinforced photopolymers for SLA 3D printing technology,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 6, pp. 1–6, 2016.
    [2016]
  • [115] Y. L. Yap, C. Wang, S. L. Sing, V. Dikshit, W. Y. Yeong, and J. Wei, “Material jetting additive manufacturing: An experimental study using designed metrological benchmarks,” Precis. Eng., vol. 50, pp. 275–285, 2017.
    [2017]
  • [114] J. Dilag, T. Chen, S. Li, and S. A. Bateman, “Design and direct additive manufacturing of three-dimensional surface micro-structures using material jetting technologies,” Addit. Manuf., vol. 27, no. January, pp. 167–174, 2019.
    [2019]
  • [113] S. I. Park, D. W. Rosen, S. kyum Choi, and C. E. Duty, “Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing,” Addit. Manuf., vol. 1, pp. 12–23, 2014.
    [2014]
  • [112] A. R. Torrado, C. M. Shemelya, J. D. English, Y. Lin, R. B. Wicker, and D. A. Roberson, “Characterizing the effect of additives to ABS on the mechanical property anisotropy of specimens fabricated by material extrusion 3D printing,” Addit. Manuf., vol. 6, pp. 16–29, 2015.
    [2015]
  • [111] S. M. Gaytan et al., “Fabrication of barium titanate by binder jetting additive manufacturing technology,” Ceram. Int., vol. 41, no. 5, pp. 6610–6619, 2015.
    [2015]
  • [110] N. Afshar-Mohajer, C. Y. Wu, T. Ladun, D. A. Rajon, and Y. Huang, “Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer,” Build. Environ., vol. 93, no. P2, pp. 293–301, 2015.
    [2015]
  • [108] Q. Zhang, J. Ge, J. Goebl, Y. Hu, Z. Lu, and Y. Yin, “Rattle-type silica colloidal particles prepared by a surface-protected etching process,” Nano Res., vol. 2, no. 7, pp. 583–591, 2009.
    [2009]
  • [106] D. S. Hwang, T. Saito, and N. Fujimori, “New etching process for device fabrication using diamond,” Diam. Relat. Mater., vol. 13, no. 11–12, pp. 2207–2210, 2004.
    [2004]
  • [105] B. Bhushan and M. Caspers, “An overview of additive manufacturing (3D printing) for microfabrication,” Microsyst. Technol., vol. 23, no. 4, pp. 1117–1124, 2017.
    [2017]
  • [104] S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev., vol. 117, no. 15, pp. 10212–10290, 2017.
    [2017]
  • [103] S. C. Daminabo, S. Goel, S. A. Grammatikos, H. Y. Nezhad, and V. K. Thakur, “Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems,” Mater. Today Chem., vol. 16, p. 100248, 2020.
    [2020]
  • [102] Z. Han, S. Colburn, A. Majumdar, and K. F. Böhringer, “MEMS-actuated metasurface Alvarez lens,” Microsystems Nanoeng., vol. 6, no. 1, 2020.
    [2020]
  • [101] B. Li, W. Piyawattanametha, and Z. Qiu, “Metalens-based miniaturized optical systems,” Micromachines, vol. 10, no. 5, 2019.
    [2019]
  • Ultrasensitive , Mechanically Responsive Optical Metasurfaces via Strain Amplification ,
    W. Chen . , vol . 12 , no . 11 , pp . 10683 ? 10692 [2018]
  • Ultrafast Digital Printing toward 4D Shape Changing Materials
    L. Huang . vol . 29 , no . 7 , pp . 1 ? 6 [2017]
  • Tuneable Thermal Emission Using Chalcogenide Metasurface ,
    T. Cao . vol . 6 , no . 16 , pp . 1 ? 8 [2018]
  • Tunable polymer multi-shape memory effect
    T. Xie vol . 464 , no . 7286 , pp . 267 ? 270 [2010]
  • Tunable nanowrinkles on shape memory polymer sheets
    C. C. Fu . vol . 21 , no . 44 , pp . 4472 ? 4476 [2009]
  • Transmission-Reflection-Integrated Multifunctional Coding Metasurface for Full-Space Controls of Electromagnetic Waves
    L. Zhang vol . 28 , no . 33 , pp . 1 ? 9 [2018]
  • Three-dimensional printing of transparent fused silica glass ,
    F. Kotz . vol . 544 , no . 7650 , pp . 337 ? 339 [2017]
  • Thermally Dependent Dynamic Meta-Holography Using a Vanadium Dioxide Integrated Metasurface
    X. Liu . vol . 7 , no . 12 , pp . 1 ? 7 [2019]
  • The birth of 3D printing
    C. W. Hull , vol . 58 , no . 6 , pp . 25 ? 29 [2015]
  • The Boom in 3D-Printed Sensor Technology
    Y. Xu . vol . 17 , no . 5 , pp . 1 ? 37 [2017]
  • Structural supercapacitor electrolytes based on bicontinuous ionic liquid-epoxy resin systems
    N. Shirshova . vol . 1 , no . 48 , pp . 15300 ? 15309 [2013]
  • Space-time-coding digital metasurfaces
    L. Zhang . vol . 9 , no . 1 , pp . 1 ? 11 [2018]
  • Smart sensing metasurface with self-defined functions in dual polarizations
    Q. Ma . vol . 9 , no . 10 , pp . 3271 ? 3278 , [2020]
  • Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces : How It Works , State of Research , and the Road Ahead
    Di Renzo . vol . 38 , no . 11 , pp . 2450 ? 2525 , [2020]
  • Reconfigurable step-zoom metalens without optical and mechanical compensations
    R. Fu . vol . 27 , no . 9 , p. 12221 [2019]
  • Reconfigurable nano-kirigami metasurfaces by pneumatic pressure ,
    S. Chen . vol . 8 , no . 7 , p. 1177 , [2020]
  • Programmable via using indirectly heated phase-change switch for reconfigurable logic applications
    K. N. Chen . , vol . 29 , no . 1 , pp . 131 ? 133 [2008]
  • Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems
    J. Zhao . vol . 6 , no . 2 , pp . 231 ? 238 [2019]
  • Programmable coding metasurface for dual-band independent real-time beam control ,
    N. Zhang . vol . 10 , no . 1 , pp . 20 ? 28 , [2020]
  • Plasmonic Metasurfaces for Simultaneous Thermal Infrared Invisibility and Holographic Illusion ,
    X. Xie . vol . 28 , no . 14 , pp . 1 ? 6 [2018]
  • Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing
    W. E. King . vol . 214 , no . 12 , pp . 2915 ? 2925 [2014]
  • Novel Ceramic-Based Material for the Applications of Molded Interconnect Devices ( 3D-MID ) Based on Laser Direct Structuring
    B. Bachy . vol . 20 , no . 7 , pp . 1 ? 10 [2018]
  • Near-infrared tunable metalens based on phase change material Ge2Se2Te5
    W. Bai . vol . 9 , no . 1 , pp . 1 ? 9 [2019]
  • Multifunctional stretchable metasurface for the THz range
    D. Morits . vol . 16 , no . 3 [2014]
  • Metasurface Optical Solar Reflectors Using AZO Transparent Conducting Oxides for Radiative Cooling of Spacecraft ,
    K. Sun . vol . 5 , no . 2 , pp . 495 ? 501 [2018]
  • Low resistance , high dynamic range reconfigurable phase change switch for radio frequency applications
    E. K. Chua . vol . 97 , no . 18 , pp . 95 ? 98 [2010]
  • Investigation of Prediction Accuracy , Sensitivity , and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications
    S. Sun . vol . 65 , no . 5 , pp . 2843 ? 2860 [2016]
  • Investigating the thermal runaway mechanisms of lithiumion batteries based on thermal analysis database ,
    X. Feng . , vol . 246 , no . April , pp . 53 ? 64 [2019]
  • Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system ,
    Y. Yang . , vol . 7 , no . 10 , pp . 9213 ? 9222 [2013]
  • Geometric phase coded metasurface : From polarization dependent directive electromagnetic wave scattering to diffusion-like scattering
    K. Chen . vol . 6 , no . August , pp . 1 ? 10 [2016]
  • Experimental validation of a ku-band dual-circularly polarized metasurface antenna
    A. T. Pereda . vol . 66 , no . 3 , pp . 1153 ? 1159 [2018]
  • Enhanced multimaterial 4D printing with active hinges
    S. Akbari . vol . 27 , no . 6 , p. 065027 [2018]
  • Electromagnetic reprogrammable coding-metasurface holograms
    L. Li vol . 8 , no . 1 , pp . 1 ? 7 [2017]
  • Dual circularly polarized broadside beam antenna based on metasurfaces
    A. Tellechea . vol . 963 , no . 1 , pp . 2944 ? 2953 [2018]
  • Conformal printing of electrically small antennas on three-dimensional surfaces
    J. J. Adams . vol . 23 , no . 11 , pp . 1335 ? 1340 [2011]
  • Coding Metasurfaces for Diffuse Scattering : Scaling Laws , Bounds , and Suboptimal Design
    M. Moccia vol . 5 , no . 19 , pp . 1 ? 11 [2017]
  • Chemical etching of aluminium ,
    O . ? akir vol . 199 , no . 1 , pp . 337 ? 340 [2008]
  • Broadband diffusion of terahertz waves by multi-bit coding metasurfaces ,
    L. H. Gao . Appl. , vol . 4 , no . April , [2015]
  • Broadband RCS reduction for electrically-large open-ended cavity using random coding metasurfaces ,
    Y. Zhou . , vol . 52 , no . 31 [2019]
  • Additively manufactured multi-material free-form structure with printed electronics
    G. L. Goh . , vol . 94 , no . 1 ? 4 , pp . 1309 ? 1316 [2018]
  • A tunable hybrid metamaterial absorber based on vanadium oxide films
    Q. Y. Wen . , vol . 45 , no . 23 [2012]
  • A prospective look : Key enabling technologies , applications and open research topics in 6G networks
    L. Bariah . vol . 8 , pp . 174792 ? 174820 , [2020]
  • A Switchable Metalens Based on Active Tri-Layer Metasurface
    R. Ji . , vol . 14 , no . 1 , pp . 165 ? 171 [2019]
  • A Metasurface Superstrate for Mutual Coupling Reduction of Large Antenna Arrays
    J. Tang . , vol . 8 , pp . 126859 ? 126867 , [2020]
  • 3D printing for the rapid prototyping of structural electronics
    E. MacDonald . vol . 2 , pp . 234 ? 242 [2014]
  • 3D printed wearable flexible SIW and microfluidics sensors for Internet of Things and smart health applications
    W. Su . pp . 544 ? 547 . [2017]