Theragnostic nano-bioengineering methods for the diagnosis and treatment of Cancer

최용현 2022년
논문상세정보
' Theragnostic nano-bioengineering methods for the diagnosis and treatment of Cancer' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Lectins
  • Nano-micro systems
  • Theragnosis
  • cancer
  • glycan
  • 나노-마이크로 시스템
  • 당쇄
  • 렉틴
  • 테라그노시스
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
596 0

0.0%

' Theragnostic nano-bioengineering methods for the diagnosis and treatment of Cancer' 의 참고문헌

  • [9] N. Terao, S. Takamatsu, T. Minehira, T. Sobajima, K. Nakayama, Y. Kamada, E. Miyoshi, Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes, World J Gastroenterol, 21 (2015) 3876-3887.
    [2015]
  • [99] M. Yamada, K. Fujii, K. Koyama, S. Hirohashi, T. Kondo, The Proteomic Profile of Pancreatic Cancer Cell Lines Corresponding to Carcinogenesis and Metastasis, Journal of Proteomics & Bioinformatics, 02 (2009) 001-018.
    [2009]
  • [98] H.M. Park, M.P. Hwang, Y.W. Kim, K.J. Kim, J.M. Jin, Y.H. Kim, Y.H. Yang, K.H. Lee, Y.G. Kim, Mass spectrometry-based N-linked glycomic profiling as a means for tracking pancreatic cancer metastasis, Carbohydr Res, 413 (2015) 5-11.
    [2015]
  • [97] A.K. Thakur, L. Movileanu, Real-time measurement of protein-protein interactions at single-molecule resolution using a biological nanopore, Nat Biotechnol, (2018).
    [2018]
  • [96] S. Holst, A.I. Belo, E. Giovannetti, I. van Die, M. Wuhrer, Profiling of different pancreatic cancer cells used as models for metastatic behaviour shows large variation in their N-glycosylation, Sci Rep, 7 (2017) 16623.
    [2017]
  • [95] R. Akasov, S. Haq, F. Haxho, V. Samuel, S.V. Burov, E. Markvicheva, R.J. Neufeld, M.R. Szewczuk, Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly, Oncotarget, 7 (2016) 66119-66134.
    [2016]
  • [94] M. Yoshida, R. Takimoto, K. Murase, Y. Sato, M. Hirakawa, F. Tamura, T. Sato, S. Iyama, T. Osuga, K. Miyanishi, K. Takada, T. Hayashi, M. Kobune, J. Kato, Targeting anticancer drug delivery to pancreatic cancer cells using a fucose-bound nanoparticle approach, PLoS One, 7 (2012) e39545.
    [2012]
  • [92] S. Ning, W. Wei, J. Li, B. Hou, J. Zhong, Y. Xie, H. Liu, X. Mo, J. Chen, L. Zhang, Clinical significance and diagnostic capacity of serum TK1, CEA, CA 19-9 and CA 72-4 levels in gastric and colorectal cancer patients, J Cancer, 9 (2018) 494-501.
    [2018]
  • [91] S. Zhang, S. Shang, W. Li, X. Qin, Y. Liu, Insights on N-glycosylation of human haptoglobin and its association with cancers, Glycobiology, 26 (2016) 684-692.
    [2016]
  • [90] D.J. Gill, K.M. Tham, J. Chia, S.C. Wang, C. Steentoft, H. Clausen, E.A. Bard-Chapeau, F.A. Bard, Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness, Proceedings of the National Academy of Sciences of the United States of America, 110 (2013) E3152-3161.
    [2013]
  • [8] Y. Liang, T. Ma, A. Thakur, H. Yu, L. Gao, P. Shi, X. Li, H. Ren, L. Jia, S. Zhang, Z. Li, M. Chen, Differentially expressed glycosylated patterns of alpha-1-antitrypsin as serum biomarkers for the diagnosis of lung cancer, Glycobiology, 25 (2015) 331-340.
    [2015]
  • [89] U.K. Ballehaninna, R.S. Chamberlain, The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal, J Gastrointest Oncol, 3 (2012) 105-119.
    [2012]
  • [88] A.C. Kolbl, U. Andergassen, U. Jeschke, The Role of Glycosylation in Breast Cancer Metastasis and Cancer Control, Front Oncol, 5 (2015) 219.
    [2015]
  • [87] M.K.B. Ahmat Amin, A. Shimizu, D.P. Zankov, A. Sato, S. Kurita, M. Ito, T. Maeda, T. Yoshida, T. Sakaue, S. Higashiyama, A. Kawauchi, H. Ogita, Epithelial membrane protein 1 promotes tumor metastasis by enhancing cell migration via copine-III and Rac1, Oncogene, 37 (2018) 5416-5434.
    [2018]
  • [86] M. Wimmerova, E. Mitchell, J.F. Sanchez, C. Gautier, A. Imberty, Crystal structure of fungal lectin: six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin, J Biol Chem, 278 (2003) 27059-27067.
    [2003]
  • [85] B.-B. C. Youan, F. S. Coulibaly, Current status of lectin-based cancer diagnosis and therapy, AIMS Molecular Science, 4 (2017) 1-27.
    [2017]
  • [84] E.J. Van Damme, A. Barre, P. Rouge, F. Van Leuven, W.J. Peumans, The NeuAc(alpha-2,6)-Gal/GalNAc-binding lectin from elderberry (Sambucus nigra) bark, a type-2 ribosome-inactivating protein with an unusual specificity and structure, Eur J Biochem, 235 (1996) 128-137.
    [1996]
  • [83] G. Yilmaz, C.R. Becer, Glyconanoparticles and their interactions with lectins, Polymer Chemistry, 6 (2015) 5503-5514.
    [2015]
  • [82] M. Ambrosi, N.R. Cameron, B.G. Davis, Lectins: tools for the molecular understanding of the glycocode, Org Biomol Chem, 3 (2005) 1593-1608.
    [2005]
  • [81] T. Bertok, L. Klukova, A. Sediva, P. Kasak, V. Semak, M. Micusik, M. Omastova, L. Chovanova, M. Vlcek, R. Imrich, A. Vikartovska, J. Tkac, Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples, Anal Chem, 85 (2013) 7324-7332.
    [2013]
  • [80] S. Wan, P.M. Kelly, E. Mahon, H. Stockmann, P.M. Rudd, F. Caruso, K.A. Dawson, Y. Yan, M.P. Monopoli, The "sweet" side of the protein corona: effects of glycosylation on nanoparticle-cell interactions, ACS Nano, 9 (2015) 2157-2166.
    [2015]
  • [7] D. Peiris, A. Markiv, G.P. Curley, M.V. Dwek, A novel approach to determining the affinity of protein-carbohydrate interactions employing adherent cancer cells grown on a biosensor surface, Biosens Bioelectron, 35 (2012) 160-166.
    [2012]
  • [79] H. Tang, K. Partyka, P. Hsueh, J.Y. Sinha, D. Kletter, H. Zeh, Y. Huang, R.E. Brand, B.B. Haab, Glycans related to the CA19-9 antigen are elevated in distinct subsets of pancreatic cancers and improve diagnostic accuracy over CA19-9, Cell Mol Gastroenterol Hepatol, 2 (2016) 201-221 e215.
    [2016]
  • [78] T. Yokose, Y. Kabe, A. Matsuda, M. Kitago, S. Matsuda, M. Hirai, T. Nakagawa, Y. Masugi, T. Hishiki, Y. Nakamura, M. Shinoda, H. Yagi, Y. Abe, G. Oshima, S. Hori, Y. Nakano, K. Honda, A. Kashiro, C. Morizane, S. Nara, S. Kikuchi, T. Shibahara, M. Itonaga, M. Ono, N. Minegishi, S. Koshiba, M. Yamamoto, A. Kuno, H. Handa, M. Sakamoto, M. Suematsu, Y. Kitagawa, O-Glycan-Altered Extracellular Vesicles: A Specific Serum Marker Elevated in Pancreatic Cancer, Cancers (Basel), 12 (2020).
  • [77] C. Williams, F. Royo, O. Aizpurua-Olaizola, R. Pazos, G.J. Boons, N.C. Reichardt, J.M. Falcon-Perez, Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives, J Extracell Vesicles, 7 (2018) 1442985.
    [2018]
  • [76] S. Nie, A. Lo, J. Wu, J. Zhu, Z. Tan, D.M. Simeone, M.A. Anderson, K.A. Shedden, M.T. Ruffin, D.M. Lubman, Glycoprotein biomarker panel for pancreatic cancer discovered by quantitative proteomics analysis, J Proteome Res, 13 (2014) 1873-1884.
    [2014]
  • [75] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019, CA Cancer J Clin, 69 (2019) 7-34.
    [2019]
  • [74] M. Anderluh, F. Berti, A. Bzducha-Wrobel, F. Chiodo, C. Colombo, F. Compostella, K. Durlik, X. Ferhati, R. Holmdahl, D. Jovanovic, W. Kaca, L. Lay, M. Marinovic-Cincovic, M. Marradi, M. Ozil, L. Polito, J.J. Reina- Martin, C.A. Reis, R. Sackstein, A. Silipo, U. Svajger, O. Vanek, F. Yamamoto, B. Richichi, S.J. van Vliet, Emerging glyco-based strategies to steer immune responses, FEBS J, 288 (2021) 4746-4772.
  • [73] H. Laubli, L. Borsig, Altered Cell Adhesion and Glycosylation Promote Cancer Immune Suppression and Metastasis, Front Immunol, 10 (2019) 2120.
    [2019]
  • [72] C. Bull, T.J. Boltje, N. Balneger, S.M. Weischer, M. Wassink, J.J. van Gemst, V.R. Bloemendal, L. Boon, J. van der Vlag, T. Heise, M.H. den Brok, G.J. Adema, Sialic Acid Blockade Suppresses Tumor Growth by Enhancing T-cell-Mediated Tumor Immunity, Cancer Res, 78 (2018) 3574-3588.
    [2018]
  • [71] X. Zhou, G. Yang, F. Guan, Biological Functions and Analytical Strategies of Sialic Acids in Tumor, Cells, 9 (2020).
    [2020]
  • [70] A. Peixoto, M. Relvas-Santos, R. Azevedo, L.L. Santos, J.A. Ferreira, Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks, Front Oncol, 9 (2019) 380.
    [2019]
  • [6] Y.C. Wang, S.E. Peterson, J.F. Loring, Protein post-translational modifications and regulation of pluripotency in human stem cells, Cell Res, 24 (2014) 143-160.
    [2014]
  • [69] N. Rodrigues Mantuano, M. Natoli, A. Zippelius, H. Laubli, Tumorassociated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy, J Immunother Cancer, 8 (2020).
    [2020]
  • [68] D.K. Nambiar, T. Aguilera, H. Cao, S. Kwok, C. Kong, J. Bloomstein, Z. Wang, V.S. Rangan, D. Jiang, R. von Eyben, R. Liang, S. Agarwal, A.D. Colevas, A. Korman, C.T. Allen, R. Uppaluri, A.C. Koong, A. Giaccia, Q.T. Le, Galectin-1-driven T cell exclusion in the tumor endothelium promotes immunotherapy resistance, J Clin Invest, 129 (2019) 5553-5567.
  • [67] M.A. Gray, M.A. Stanczak, N.R. Mantuano, H. Xiao, J.F.A. Pijnenborg, S.A. Malaker, C.L. Miller, P.A. Weidenbacher, J.T. Tanzo, G. Ahn, E.C. Woods, H. Laubli, C.R. Bertozzi, Targeted glycan degradation potentiates the anticancer immune response in vivo, Nat Chem Biol, 16 (2020) 1376-1384.
  • [66] J. Saranya, G. Shilpa, K.G. Raghu, S. Priya, Morus alba Leaf Lectin (MLL) Sensitizes MCF-7 Cells to Anoikis by Inhibiting Fibronectin Mediated Integrin-FAK Signaling through Ras and Activation of P(38) MAPK, Front Pharmacol, 8 (2017) 34.
    [2017]
  • [65] D.C. Massimiliano Perduca Luca, Michele Bovi, Giulio Innamorati, Samuele Cheri, Chiara Cavallini, Maria Teresa Scupoli, Antonio Mori, Maria Teresa Valenti, Runx2 downregulation, migration and proliferation inhibition in melanoma cells treated with BEL. β-trefoil, Oncol Rep, 37 (2017) 2209- 2214.
    [2017]
  • [64] S.K. Bhutia, P.K. Panda, N. Sinha, P.P. Praharaj, C.S. Bhol, D.P. Panigrahi, K.K. Mahapatra, S. Saha, S. Patra, S.R. Mishra, B.P. Behera, S. Patil, T.K. Maiti, Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death, Pharmacol Res, 144 (2019) 8-18.
  • [63] T. Yau, X. Dan, C.C. Ng, T.B. Ng, Lectins with potential for anti-cancer therapy, Molecules, 20 (2015) 3791-3810.
    [2015]
  • [62] N. Bloise, M. Okkeh, E. Restivo, C. Della Pina, L. Visai, Targeting the "Sweet Side" of Tumor with Glycan-Binding Molecules Conjugated133 Nanoparticles: Implications in Cancer Therapy and Diagnosis, Nanomaterials (Basel), 11 (2021).
  • [61] J. Arnaud, A. Audfray, A. Imberty, Binding sugars: from natural lectins to synthetic receptors and engineered neolectins, Chem Soc Rev, 42 (2013) 4798-4813.
    [2013]
  • [60] M. Wang, J. Zhu, D.M. Lubman, C. Gao, Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey, Clin Chem Lab Med, 57 (2019) 407-416.
    [2019]
  • [5] B. Adamczyk, T. Tharmalingam, P.M. Rudd, Glycans as cancer biomarkers, Biochim Biophys Acta, 1820 (2012) 1347-1353.
    [2012]
  • [59] M.S. Macauley, P.R. Crocker, J.C. Paulson, Siglec-mediated regulation of immune cell function in disease, Nat Rev Immunol, 14 (2014) 653-666.
    [2014]
  • [58] W.K. Cheng, C.E. Oon, How glycosylation aids tumor angiogenesis: An updated review, Biomed Pharmacother, 103 (2018) 1246-1252.
    [2018]
  • [57] K.B. Chandler, C.E. Costello, N. Rahimi, Glycosylation in the Tumor Microenvironment: Implications for Tumor Angiogenesis and Metastasis, Cells, 8 (2019).
    [2019]
  • [56] T.A. Martin, W.G. Jiang, Loss of tight junction barrier function and its role in cancer metastasis, Biochim Biophys Acta, 1788 (2009) 872-891.
    [2009]
  • [55] G.P.C.R.-M.A.K.V.H.-V.R.S.M.D.M.M.G.C.P.T.G. A., O-glycan regulation of apoptosis and proliferation in colorectal cancer cell lines., Transactions, 35 (2007) 1372-1374.
    [2007]
  • [54] J. Yokota, Tumor progression and metastasis, carinogenesis, 21 (2000) 497-503.
    [2000]
  • [53] D.S. Chen, I. Mellman, Oncology meets immunology: the cancerimmunity cycle, Immunity, 39 (2013) 1-10.
    [2013]
  • [52] C. Fu, H. Zhao, Y. Wang, H. Cai, Y. Xiao, Y. Zeng, H. Chen, Tumorassociated antigens: Tn antigen, sTn antigen, and T antigen, HLA, 88 (2016) 275-286.
    [2016]
  • [51] M.R. Kudelka, T. Ju, J. Heimburg-Molinaro, R.D. Cummings, Simple sugars to complex disease--mucin-type O-glycans in cancer, Adv Cancer Res, 126 (2015) 53-135.
    [2015]
  • [50] K.S. Lau, J.W. Dennis, N-Glycans in cancer progression, Glycobiology, 18 (2008) 750-760.
    [2008]
  • [4] A.L. Santos, A.B. Lindner, Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease, Oxid Med Cell Longev, 2017 (2017) 5716409.
    [2017]
  • [49] A. Blanas, N.M. Sahasrabudhe, E. Rodriguez, Y. van Kooyk, S.J. van Vliet, Fucosylated Antigens in Cancer: An Alliance toward Tumor Progression, Metastasis, and Resistance to Chemotherapy, Front Oncol, 8 (2018) 39.
    [2018]
  • [48] M. Trinchera, A. Aronica, F. Dall'Olio, Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal Cancers, Biology (Basel), 6 (2017).
    [2017]
  • [47] S.R. Stowell, T. Ju, R.D. Cummings, Protein glycosylation in cancer, Annu Rev Pathol, 10 (2015) 473-510.
    [2015]
  • [46] C. Reily, T.J. Stewart, M.B. Renfrow, J. Novak, Glycosylation in health and disease, Nat Rev Nephrol, 15 (2019) 346-366.
    [2019]
  • [45] A.M. Martins, C.C. Ramos, D. Freitas, C.A. Reis, Glycosylation of Cancer Extracellular Vesicles: Capture Strategies, Functional Roles and Potential Clinical Applications, Cells, 10 (2021).
  • [44] B.S. Batista, W.S. Eng, K.T. Pilobello, K.D. Hendricks-Munoz, L.K. Mahal, Identification of a conserved glycan signature for microvesicles, J Proteome Res, 10 (2011) 4624-4633.
    [2011]
  • [43] J. Ko, E. Carpenter, D. Issadore, Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices, Analyst, 141 (2016) 450-460.
    [2016]
  • [42] P.M.K. Sha Wan, Eugene Mahon, Henning Stöckmann, Pauline M. Rudd, Frank Caruso, Kenneth A. Dawson, Yan Yan, and Marco P. Monopoli, The sweet side of the protein corona, effects of glycosylation on nanoparticle-cell interactions, ACS Nano, 9 (2015) 2157-2166.
    [2015]
  • [40] S. Srinivasan, A. Yeri, P.S. Cheah, A. Chung, K. Danielson, P. De Hoff, J. Filant, C.D. Laurent, L.D. Laurent, R. Magee, C. Moeller, V.L. Murthy, P. Nejad, A. Paul, I. Rigoutsos, R. Rodosthenous, R.V. Shah, B. Simonson, C. To, D. Wong, I.K. Yan, X. Zhang, L. Balaj, X.O. Breakefield, G. Daaboul, R. Gandhi, J. Lapidus, E. Londin, T. Patel, R.L. Raffai, A.K. Sood, R.P. Alexander, S. Das, L.C. Laurent, Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation, Cell, 177 (2019) 446-462 e416.
  • [39] C. Liu, X. Xu, B. Li, B. Situ, W. Pan, Y. Hu, T. An, S. Yao, L. Zheng, Single-Exosome-Counting Immunoassays for Cancer Diagnostics, Nano Lett, 18 (2018) 4226-4232.
    [2018]
  • [38] Y. Wan, G. Cheng, X. Liu, S.J. Hao, M. Nisic, C.D. Zhu, Y.Q. Xia, W.Q. Li, Z.G. Wang, W.L. Zhang, S.J. Rice, A. Sebastian, I. Albert, C.P. Belani, S.Y. Zheng, Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes, Nat Biomed Eng, 1 (2017).
  • [37] N. Chen, W. Fang, Z. Lin, P. Peng, J. Wang, J. Zhan, S. Hong, J. Huang, L. Liu, J. Sheng, T. Zhou, Y. Chen, H. Zhang, L. Zhang, KRAS mutationinduced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma, Cancer Immunol Immunother, 66 (2017) 1175-1187.
    [2017]
  • [36] L.S. Lindstrom, E. Karlsson, U.M. Wilking, U. Johansson, J. Hartman, E.K. Lidbrink, T. Hatschek, L. Skoog, J. Bergh, Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression, J Clin Oncol, 30 (2012) 2601-2608.
    [2012]
  • [35] K. Liang, F. Liu, J. Fan, D. Sun, C. Liu, C.J. Lyon, D.W. Bernard, Y. Li, K. Yokoi, M.H. Katz, E.J. Koay, Z. Zhao, Y. Hu, Nanoplasmonic Quantification of Tumor-derived Extracellular Vesicles in Plasma Microsamples for Diagnosis and Treatment Monitoring, Nat Biomed Eng, 1 (2017).
    [2017]
  • [34] P. Zhang, X. Zhou, M. He, Y. Shang, A.L. Tetlow, A.K. Godwin, Y. Zeng, Ultrasensitive detection of circulating exosomes with a 3Dnanopatterned microfluidic chip, Nat Biomed Eng, 3 (2019) 438-451.
    [2019]
  • [33] S. Zong, L. Wang, C. Chen, J. Lu, D. Zhu, Y. Zhang, Z. Wang, Y. Cui, Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes, Analytical Methods, 8 (2016) 5001-5008.
    [2016]
  • [32] H. Im, H. Shao, Y.I. Park, V.M. Peterson, C.M. Castro, R. Weissleder, H. Lee, Label-free detection and molecular profiling of exosomes with a nanoplasmonic sensor, Nat Biotechnol, 32 (2014) 490-495.
    [2014]
  • [31] S.A. Melo, L.B. Luecke, C. Kahlert, A.F. Fernandez, S.T. Gammon, J. Kaye, V.S. LeBleu, E.A. Mittendorf, J. Weitz, N. Rahbari, C. Reissfelder, C. Pilarsky, M.F. Fraga, D. Piwnica-Worms, R. Kalluri, Glypican-1 identifies cancer exosomes and detects early pancreatic cancer, Nature, 523 (2015) 177-182.
  • [30] D.S. Chulpanova, K.V. Kitaeva, V. James, A.A. Rizvanov, V.V. Solovyeva, Therapeutic Prospects of Extracellular Vesicles in Cancer Treatment, Front Immunol, 9 (2018) 1534.
    [2018]
  • [2] A. Engering, L. Kuhn, D. Fluitsma, E. Hoefsmit, J. Pieters, Differential post-translational modification of CD63 molecules during maturation of human dendritic cells, Eur J Biochem, 270 (2003) 2412-2420.
    [2003]
  • [29] C. Escrevente, N. Grammel, S. Kandzia, J. Zeiser, E.M. Tranfield, H.S. Conradt, J. Costa, Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells, PLoS One, 8 (2013) e78631.
    [2013]
  • [28] Y.M. Park, S.J. Kim, K. Kim, Y.D. Han, S.S. Yang, H.C. Yoon, Lectinbased optical sensing for quantitative analysis of cancer antigen CA15-3 as a breast cancer marker, Sensors and Actuators B: Chemical, 186 (2013) 571- 579.
    [2013]
  • [27] J.M. Winter, C.J. Yeo, J.R. Brody, Diagnostic, prognostic, and predictive biomarkers in pancreatic cancer, J Surg Oncol, 107 (2013) 15-22.
    [2013]
  • [26] M. Su, L. Ge, Q. Kong, X. Zheng, S. Ge, N. Li, J. Yu, M. Yan, Cytosensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells, Biosens Bioelectron, 63 (2015) 232-239.
    [2015]
  • [25] S.N. Lis H, Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition, chem rev, 98 (1998) 637-674.
    [1998]
  • [24] M. Takahashi, Y. Kuroki, K. Ohtsubo, N. Taniguchi, Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins, Carbohydr Res, 344 (2009) 1387-1390.
    [2009]
  • [23] X. Wang, J. Gu, H. Ihara, E. Miyoshi, K. Honke, N. Taniguchi, Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling, J Biol Chem, 281 (2006) 2572-2577.
    [2006]
  • [22] K. Bastian, E. Scott, D.J. Elliott, J. Munkley, FUT8 Alpha-(1,6)- Fucosyltransferase in Cancer, Int J Mol Sci, 22 (2021).
  • [21] J. Munkley, E. Scott, Targeting Aberrant Sialylation to Treat Cancer, Medicines (Basel), 6 (2019).
    [2019]
  • [20] H. Tang, S. Singh, K. Partyka, D. Kletter, P. Hsueh, J. Yadav, E. Ensink, M. Bern, G. Hostetter, D. Hartman, Y. Huang, R.E. Brand, B.B. Haab, Glycan motif profiling reveals plasma sialyl-lewis x elevations in pancreatic cancers that are negative for sialyl-lewis A, Mol Cell Proteomics, 14 (2015) 1323-1333.
  • [1] S.S. Pinho, C.A. Reis, Glycosylation in cancer: mechanisms and clinical implications, Nat Rev Cancer, 15 (2015) 540-555.
    [2015]
  • [19] W.F.M.D. Mathias J. Vierbuchen M.D., Sophie Brackrock M.D., Korff T. Krause M.D., Thomasz J. Zienkiewicz M.D., Quantitative lectinhistochemical and immunohistochemical studies on the occurrence of alpha(2,3)- and alpha(2,6)-linked sialic acid residues in colorectal carcinomas. Relation to clinicopathologic features, Cancer, 76 (1995) 727-735.
    [1995]
  • [18] C.D. Rillahan, A. Antonopoulos, C.T. Lefort, R. Sonon, P. Azadi, K. Ley, A. Dell, S.M. Haslam, J.C. Paulson, Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome, Nat Chem Biol, 8 (2012) 661-668.
    [2012]
  • [17] X. Wang, J. Chen, Q.K. Li, S.B. Peskoe, B. Zhang, C. Choi, E.A. Platz, H. Zhang, Overexpression of alpha (1,6) fucosyltransferase associated with aggressive prostate cancer, Glycobiology, 24 (2014) 935-944.
    [2014]
  • [16] T.H.P. Jia Zhao, David M Lubman, and Diane M Simeone, Protein biomarkers in cancer, natural glycoprotein microarray approaches, Curr opin mol ther, 10 (2008) 602-610.
    [2008]
  • [15] Y. Gao, V.B. Chachadi, P.W. Cheng, I. Brockhausen, Glycosylation potential of human prostate cancer cell lines, Glycoconj J, 29 (2012) 525-537.
    [2012]
  • [153] J. Fares, M.Y. Fares, H.H. Khachfe, H.A. Salhab, Y. Fares, Molecular principles of metastasis: a hallmark of cancer revisited, Signal Transduct Target Ther, 5 (2020) 28.
    [2020]
  • [152] X. Zhou, X. Liu, L. Huang, Macrophage-Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention, Adv Funct Mater, 31 (2021).
  • [151] R. Martinez-Aguilar, S. Romero-Pinedo, M.J. Ruiz-Magana, E.G. Olivares, C. Ruiz-Ruiz, A.C. Abadia-Molina, Menstrual blood-derived stromal cells modulate functional properties of mouse and human macrophages, Sci Rep, 10 (2020) 21389.
    [2020]
  • [150] A. Lesniak, A. Salvati, M.J. Santos-Martinez, M.W. Radomski, K.A. Dawson, C. Aberg, Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency, J Am Chem Soc, 135 (2013) 1438-1444.
    [2013]
  • [14] M.N. Christiansen, J. Chik, L. Lee, M. Anugraham, J.L. Abrahams, N.H. Packer, Cell surface protein glycosylation in cancer, Proteomics, 14 (2014) 525-546.
    [2014]
  • [149] L.Y. Qiao, H.B. Li, Y. Zhang, D. Shen, P. Liu, Y.Q. Che, CD24 Contributes to Treatment Effect in ABC-DLBCL Patients with R-CHOP Resistance, Pharmgenomics Pers Med, 14 (2021) 591-599.
  • [148] C. Dobie, D. Skropeta, Insights into the role of sialylation in cancer progression and metastasis, Br J Cancer, 124 (2021) 76-90.
  • [147] M.R. Tang, J.Y. Guo, D. Wang, N. Xu, Identification of CD24 as a marker for tumorigenesis of melanoma, Onco Targets Ther, 11 (2018) 3401- 3406.
    [2018]
  • [146] K. Gao, W. Tu, X. Yu, F. Ahmad, X. Zhang, W. Wu, X. An, X. Chen, W. Li, W-doped TiO2 nanoparticles with strong absorption in the NIR-II window for photoacoustic/CT dual-modal imaging and synergistic thermoradiotherapy of tumors, Theranostics, 9 (2019) 5214-5226.
    [2019]
  • [145] C. Jandus, K.F. Boligan, O. Chijioke, H. Liu, M. Dahlhaus, T. Demoulins, C. Schneider, M. Wehrli, R.E. Hunger, G.M. Baerlocher, H.U. Simon, P. Romero, C. Munz, S. von Gunten, Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance, J Clin Invest, 124 (2014) 1810-1820.
  • [144] H. Xiao, E.C. Woods, P. Vukojicic, C.R. Bertozzi, Precision glycocalyx editing as a strategy for cancer immunotherapy, Proceedings of the National Academy of Sciences of the United States of America, 113 (2016) 10304-10309.
    [2016]
  • [143] G.Y. Chen, X. Chen, S. King, K.A. Cavassani, J. Cheng, X. Zheng, H. Cao, H. Yu, J. Qu, D. Fang, W. Wu, X.F. Bai, J.Q. Liu, S.A. Woodiga, C. Chen, L. Sun, C.M. Hogaboam, S.L. Kunkel, P. Zheng, Y. Liu, Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction, Nat Biotechnol, 29 (2011) 428-435.
  • [142] X.Y. Zeng, H. Xie, J. Yuan, X.Y. Jiang, J.H. Yong, D. Zeng, Y.Y. Dou, S.S. Xiao, M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression, Cancer Biol Ther, 20 (2019) 956-966.
    [2019]
  • [141] X. Xiang, J. Wang, D. Lu, X. Xu, Targeting tumor-associated macrophages to synergize tumor immunotherapy, Signal Transduct Target Ther, 6 (2021) 75.
  • [140] N.R. Anderson, N.G. Minutolo, S. Gill, M. Klichinsky, Macrophage- Based Approaches for Cancer Immunotherapy, Cancer Research, 81 (2021) 1201-1208.
  • [13] Y. Hu, P. Zuo, B.C. Ye, Label-free electrochemical impedance spectroscopy biosensor for direct detection of cancer cells based on the interaction between carbohydrate and lectin, Biosens Bioelectron, 43 (2013) 79-83.
    [2013]
  • [139] Q. Yang, N. Guo, Y. Zhou, J. Chen, Q. Wei, M. Han, The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy, Acta Pharm Sin B, 10 (2020) 2156-2170.
    [2020]
  • [138] A.D. Guerra, O.W.H. Yeung, X. Qi, W.J. Kao, K. Man, The Anti- Tumor Effects of M1 Macrophage-Loaded Poly (ethylene glycol) and Gelatin-Based Hydrogels on Hepatocellular Carcinoma, Theranostics, 7 (2017) 3732-3744.
    [2017]
  • [137] M. Oshi, Y. Tokumaru, M. Asaoka, L. Yan, V. Satyananda, R. Matsuyama, N. Matsuhashi, M. Futamura, T. Ishikawa, K. Yoshida, I. Endo, K. Takabe, M1 Macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer, Sci Rep, 10 (2020) 16554.
    [2020]
  • [136] D. Hirayama, T. Iida, H. Nakase, The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis, Int J Mol Sci, 19 (2017).
    [2017]
  • [135] N.G. Ring, D. Herndler-Brandstetter, K. Weiskopf, L. Shan, J.P. Volkmer, B.M. George, M. Lietzenmayer, K.M. McKenna, T.J. Naik, A. McCarty, Y. Zheng, A.M. Ring, R.A. Flavell, I.L. Weissman, Anti- SIRPalpha antibody immunotherapy enhances neutrophil and macrophage antitumor activity, Proceedings of the National Academy of Sciences of the United States of America, 114 (2017) E10578-E10585.
  • [134] A.A. Barkal, R.E. Brewer, M. Markovic, M. Kowarsky, S.A. Barkal, B.W. Zaro, V. Krishnan, J. Hatakeyama, O. Dorigo, L.J. Barkal, I.L. Weissman, CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy, Nature, 572 (2019) 392-396.
    [2019]
  • [133] P.S. Hegde, D.S. Chen, Top 10 Challenges in Cancer Immunotherapy, Immunity, 52 (2020) 17-35.
    [2020]
  • [132] K. DePeaux, G.M. Delgoffe, Metabolic barriers to cancer immunotherapy, Nat Rev Immunol, (2021).
    [2021]
  • [131] M. Cully, T cell-regulating therapies for autoimmune diseases take FDA rejection in stride, Nat Rev Drug Discov, 20 (2021) 655-657.
  • [130] M. Tekguc, J.B. Wing, M. Osaki, J. Long, S. Sakaguchi, Tregexpressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PDL1 on antigen-presenting cells, Proceedings of the National Academy of Sciences of the United States of America, 118 (2021).
  • [12] F.-F.C. Jing-Jing Zhang, Ting-Ting Zheng, and Jun-Jie Zhu*, Design and Implementation of Electrochemical Cytosensor for Evaluation of Cell Surface Carbohydrate and Glycoprotein, Anal Chem, 82 (2010) 9.
    [2010]
  • [129] S. Lin, L. Cheng, W. Ye, S. Li, D. Zheng, L. Qin, Q. Wu, Y. Long, S. Lin, S. Wang, G. Huang, P. Li, Y. Yao, X. Sun, Chimeric CTLA4-CD28- CD3z T Cells Potentiate Antitumor Activity Against CD80/CD86-Positive B Cell Malignancies, Front Immunol, 12 (2021) 642528.
  • [128] S. van de Wall, K.C.M. Santegoets, E.J.H. van Houtum, C. Bull, G.J. Adema, Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment, Trends Immunol, 41 (2020) 274-285.
    [2020]
  • [127] B. Weigelin, A.T. den Boer, E. Wagena, K. Broen, H. Dolstra, R.J. de Boer, C.G. Figdor, J. Textor, P. Friedl, Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity, Nat Commun, 12 (2021) 5217.
  • [126] P. Altevogt, M. Sammar, L. Huser, G. Kristiansen, Novel insights into the function of CD24: A driving force in cancer, Int J Cancer, 148 (2021) 546-559.
  • [125] B. Sanchez-Correa, I. Valhondo, F. Hassouneh, N. Lopez-Sejas, A. Pera, J.M. Bergua, M.J. Arcos, H. Banas, I. Casas-Aviles, E. Duran, C. Alonso, R. Solana, R. Tarazona, DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer Cell-Based Cancer Immunotherapy, Cancers (Basel), 11 (2019).
    [2019]
  • [124] C.A. Bradley, CD24 — a novel ‘don’t eat me’ signal, Nat Rev Cancer, 19 (2019).
    [2019]
  • [123] A. Akinleye, Z. Rasool, Immune checkpoint inhibitors of PD-L1 as cancer therapeutics, J Hematol Oncol, 12 (2019) 92.
    [2019]
  • [122] J.A. Marin-Acevedo, B. Dholaria, A.E. Soyano, K.L. Knutson, S. Chumsri, Y. Lou, Next generation of immune checkpoint therapy in cancer: new developments and challenges, J Hematol Oncol, 11 (2018) 39.
    [2018]
  • [121] P. Jain, C. Jain, V. Velcheti, Role of immune-checkpoint inhibitors in lung cancer, Ther Adv Respir Dis, 12 (2018) 1753465817750075.
    [2018]
  • [120] S. Liu, V. Galat, Y. Galat, Y.K.A. Lee, D. Wainwright, J. Wu, NK cellbased cancer immunotherapy: from basic biology to clinical development, J Hematol Oncol, 14 (2021) 7.
  • [11] S.V. Glavey, D. Huynh, M.R. Reagan, S. Manier, M. Moschetta, Y. Kawano, A.M. Roccaro, I.M. Ghobrial, L. Joshi, M.E. O'Dwyer, The cancer glycome: carbohydrates as mediators of metastasis, Blood Rev, 29 (2015) 269-279.
    [2015]
  • [119] M. Billerhart, M. Schonhofer, H. Schueffl, W. Polzer, J. Pichler, S. Decker, A. Taschauer, J. Maier, M. Anton, S. Eckmann, M. Blaschek, P. Heffeter, H. Sami, M. Ogris, CD47-targeted cancer immunogene therapy: Secreted SIRPalpha-Fc fusion protein eradicates tumors by macrophage and NK cell activation, Mol Ther Oncolytics, 23 (2021) 192-204.
  • [118] M. Thelen, K. Wennhold, J. Lehmann, M. Garcia-Marquez, S. Klein, E. Kochen, P. Lohneis, A. Lechner, S. Wagener-Ryczek, P.S. Plum, O. Velazquez Camacho, D. Pfister, F. Dorr, M. Heldwein, K. Hekmat, D. Beutner, J.P. Klussmann, F. Thangarajah, D. Ratiu, W. Malter, S. Merkelbach-Bruse, C.J. Bruns, A. Quaas, M. von Bergwelt-Baildon, H.A. Schlosser, Cancer-specific immune evasion and substantial heterogeneity within cancer types provide evidence for personalized immunotherapy, NPJ Precis Oncol, 5 (2021) 52.
  • [117] V. Salemme, G. Centonze, F. Cavallo, P. Defilippi, L. Conti, The Crosstalk Between Tumor Cells and the Immune Microenvironment in Breast Cancer: Implications for Immunotherapy, Front Oncol, 11 (2021) 610303.
  • [116] F. Galli, J.V. Aguilera, B. Palermo, S.N. Markovic, P. Nistico, A. Signore, Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy, J Exp Clin Cancer Res, 39 (2020) 89.
    [2020]
  • [115] Z. Duan, Y. Luo, Targeting macrophages in cancer immunotherapy, Signal Transduct Target Ther, 6 (2021) 127.
  • [114] C. Geuijen, P. Tacken, L.C. Wang, R. Klooster, P.F. van Loo, J. Zhou, A. Mondal, Y.B. Liu, A. Kramer, T. Condamine, A. Volgina, L.J.A. Hendriks, H. van der Maaden, E. Rovers, S. Engels, F. Fransen, R. den Blanken-Smit, V. Zondag-van der Zande, A. Basmeleh, W. Bartelink, A. Kulkarni, W. Marissen, C.Y. Huang, L. Hall, S. Harvey, S. Kim, M. Martinez, S. O'Brien, E. Moon, S. Albelda, C. Kanellopoulou, S. Stewart, H. Nastri, A.B.H. Bakker, P. Scherle, T. Logtenberg, G. Hollis, J. de Kruif, R. Huber, P.A. Mayes, M. Throsby, A human CD137xPD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade, Nat Commun, 12 (2021) 4445.
  • [113] N.M. Anderson, M.C. Simon, The tumor microenvironment, Curr Biol, 30 (2020) R921-R925.
    [2020]
  • [112] T. Suwa, M. Kobayashi, J.M. Nam, H. Harada, Tumor microenvironment and radioresistance, Exp Mol Med, 53 (2021) 1029-1035.
  • [111] J. Zugazagoitia, C. Guedes, S. Ponce, I. Ferrer, S. Molina-Pinelo, L. Paz-Ares, Current Challenges in Cancer Treatment, Clin Ther, 38 (2016) 1551-1566.
    [2016]
  • [110] S. Senapati, A.K. Mahanta, S. Kumar, P. Maiti, Controlled drug delivery vehicles for cancer treatment and their performance, Signal Transduct Target Ther, 3 (2018) 7.
    [2018]
  • [10] N.M. Fabio Dall’Olio, Marco Trinchera, Mariella Chiricolo, Mechanisms of cancer-associated glycosylation changes front biosci, 17 (2012) 670-699.
    [2012]
  • [109] B.A. Helmink, M.A.W. Khan, A. Hermann, V. Gopalakrishnan, J.A. Wargo, The microbiome, cancer, and cancer therapy, Nat Med, 25 (2019) 377-388.
    [2019]
  • [108] K. Chamoto, P.S. Chowdhury, A. Kumar, K. Sonomura, F. Matsuda, S. Fagarasan, T. Honjo, Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity, Proceedings of the National Academy of Sciences of the United States of America, 114 (2017) E761-E770.
    [2017]
  • [107] Y. Pang, C. Wang, L. Lu, C. Wang, Z. Sun, R. Xiao, Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer, Biosens Bioelectron, 130 (2019) 204-213.
    [2019]
  • [106] B. Li, W. Pan, C. Liu, J. Guo, J. Shen, J. Feng, T. Luo, B. Situ, Y. Zhang, T. An, C. Xu, W. Zheng, L. Zheng, Homogenous Magneto- Fluorescent Nanosensor for Tumor-Derived Exosome Isolation and Analysis, ACS Sens, 5 (2020) 2052-2060.
    [2020]
  • [105] B. Zhou, K. Xu, X. Zheng, T. Chen, J. Wang, Y. Song, Y. Shao, S. Zheng, Application of exosomes as liquid biopsy in clinical diagnosis, Signal Transduct Target Ther, 5 (2020) 144.
    [2020]
  • [103] I. Hauselmann, L. Borsig, Altered tumor-cell glycosylation promotes metastasis, Front Oncol, 4 (2014) 28.
    [2014]
  • [102] S. Venkitachalam, L. Revoredo, V. Varadan, R.E. Fecteau, L. Ravi, J. Lutterbaugh, S.D. Markowitz, J.E. Willis, T.A. Gerken, K. Guda, Biochemical and functional characterization of glycosylation-associated mutational landscapes in colon cancer, Sci Rep, 6 (2016) 23642.
    [2016]
  • [101] E.L. Deer, J. González-Hernández, J.D. Coursen, J.E. Shea, J. Ngatia, C.L. Scaife, M.A. Firpo, S.J. Mulvihill, Phenotype and Genotype of Pancreatic Cancer Cell Lines, Pancreas, 39 (2010) 425-435.
    [2010]
  • [100] M.J. Schultz, A.F. Swindall, S.L. Bellis, Regulation of the metastatic cell phenotype by sialylated glycans, Cancer Metastasis Rev, 31 (2012) 501- 518.
    [2012]
  • The glycosylation landscape of pancreatic cancer
    J. Munkley 17 ( [2019]
  • Identification of Circulating Natural Antibodies against Endogenous Mediators in the Peripheral Blood Sera of Patients with Osteoarthritis of the Knee : A New Diagnostic Frontier
  • History of lectins : from hemagglutinins to biological recognition molecules
    N. Sharon , H. Lis 14 ( [2004]
  • Glycoproteomic strategies : From discovery to clinical application of cancer carbohydrate biomarkers
    K. Ueda 7 ( [2013]