다화학종 비선형 결합 구성방정식을 이용한 희박 기체 유동 해석 = Rarefied Gas Flow Analysis Using Multi Species Nonlinear Coupled Constitutive Relations

백청 2022년
논문상세정보
' 다화학종 비선형 결합 구성방정식을 이용한 희박 기체 유동 해석 = Rarefied Gas Flow Analysis Using Multi Species Nonlinear Coupled Constitutive Relations' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Aerodynamics
  • Diffusion
  • Hypersonic
  • NCCR model
  • Nonequilibrium effects
  • Rarefied flows
  • cfd
  • multispecies
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
787 0

0.0%

' 다화학종 비선형 결합 구성방정식을 이용한 희박 기체 유동 해석 = Rarefied Gas Flow Analysis Using Multi Species Nonlinear Coupled Constitutive Relations' 의 참고문헌

  • [9] B. C. Eu, Transport Coefficients of Fluids, Springer Series in Chemical physics, Vol.82, Springer, 2006.
    [2006]
  • [8] H. Grad, “On the kinetic theory of rarefied gases,” Communications on pure and applied mathematics, Vol.2, No.4, 1949, pp.331–407.
  • [7] R. Agarwal, K.-Y. Yun, and R. Balakrishnan, “Beyond Navier Stokes-Burnett equations for flow simulations in continuum-transition regime,” the 30th fluid dynamics conference, 1999, p.3580.
    [1999]
  • [6] G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Oxford, 1994.
    [1994]
  • [5] R. K. Agarwal, K. Y. Yun, and R. Balakrishnan, “Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime,” The Physics of Fluids, Vol.13, No.10, 2001, pp.3061–3085.
    [2001]
  • [4] C. Baek, S. Lee, and J. Huh, “Computational Analysis on Jet Interaction of Hit-to-Kill Vehicle with Multi-Species jet,” in The Korea Institute of Military Science and Technology Conference, 2019.
    [2019]
  • [40] P. R. Ess and C. B. Allen, “Parallel computation of two‐dimensional laminar inert and chemically reactive multi‐species gas flows,” International Journal of Numerical Methods for Heat & Fluid Flow, 2005.
    [2005]
  • [3] C. Baek, S. Lee, and J. Huh, “Supersonic Multi-species Jet Interactions of Hitto- Kill Interceptor with High Temperature Effect,” Journal of the Korean Society for Aeronautical & Space Sciences, Vol.48, No.3, 2020, pp.187–194.
    [2020]
  • [38] R. M. Bea, and R. F. Warming, “Implicit numerical methods for the compressible Navier-Stokes and Euler equations,” von Karman Institute for Fluid Dynamics Lecture Series, 1982.
    [1982]
  • [37] G. D. Van Albada, B. Van Leer, and W. W. Roberts, “A Comparative Study of Computational Methods in Cosmic Gas Dynamics,” Astronomy and Astrophysics, Vol.108, No.1, pp.76-84, 1982.
    [1982]
  • [36] B. Van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method.” Journal of computational Physics., Vol.32, No.1, 1976, pp.101-136.
    [1976]
  • [35] R. Sanders, E. Morano, and M. C. Druguet, “Multidimensional Dissipation for Upwind Schemes: Stability and Applications to Gas Dynamics,” Journal of computational Physics, Vol.145, No.2, 1998, pp.511–537.
    [1998]
  • [33] P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal of computational Physics, Vol.43, No.2, 1981, pp.357–372.
    [1981]
  • [32] I. Zahmatkesh, M. M. Alishahi, and H. Emdad, “New velocity-slip and temperature-jump boundary conditions for Navier–Stokes computation of gas mixture flows in microgeometries,” Mechanics Research Communications, Vol.38, No.6, 2011, pp.417–424.
    [2011]
  • [31] N. T. P. Le, C. White, J. M. Reese, and R. S. Myong, “Langmuir-Maxwell and Langmuir-Smoluchowski boundary conditions for thermal gas flow simulations in hypersonic aerodynamics,” International Journal of Heat and Mass Transfer, Vol.55, No.19–20. 2012, pp.5032–5043.
  • [30] A. J. Lofthouse, Nonequilibrium Hypersonic Aerothermodynamics Using the Direct Simulation Monte Carlo and Navier-Stokes Models, Thesis, Michigan Univ Ann Arbor, 2008.
    [2008]
  • [2] P. Gnemmi, R. Adeli, and J. Longo, “Computational comparisons of the interaction of a lateral jet on a supersonic generic missile,” AIAA Atmospheric flight mechanics conference and exhibit, August, 2008, pp.1–9.
    [2008]
  • [29] C. R. Wilke, “A viscosity equation for gas mixtures,” The Journal of Chemical Physcis, Vol.18, No.4, 1950, pp.517–519.
  • [28] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena, Vol.1, John Wiley & Sons, 2006.
    [2006]
  • [26] B. Witschas, M. O. Vieitez, E. J. Van Duijn, O. Reitebuch, W. Van De Water, and W. Ubachs, “Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Applied Optics, Vol.49, No.22, 2010, pp.4217–4227.
    [2010]
  • [24] R. S. Myong, “Gaseous slip models based on the Langmuir adsorption isotherm,” The Physics of Fluids, Vol. 16, No. 1, 2004, pp.104–117.
    [2004]
  • [23] B. Sharma and R. Kumar, “Estimation of bulk viscosity of dilute gases using a nonequilibrium molecular dynamics approach,” Physical Review E, Vol.100, No.1, 2019, pp.1–15.
    [2019]
  • [22] F. M. White, Viscous fluid flow, second edition, McGraw-Hill, Inc., Singapore, 1991.
    [1991]
  • [21] J. D. Anderson Jr, Fundamentals of aerodynamics, fifth edition in SI units, McGraw-Hill, Inc., Singapore, 2010.
    [2010]
  • [20] R. J. Kee et al., CHEMKIN Collection. Reaction Design, Inc., San Diego, CA, 2000.
    [2000]
  • [1] U. S. S. Atmosphere, US standard atmosphere. National Oceanic and Atmospheric Administration, 1976.
    [1976]
  • [19] J. Huh and S. Lee, “Numerical study on lateral jet interaction in supersonic crossflows,” Aerospace Science and Technology, Vol.80, 2018, pp.315–328.
    [2018]
  • [18] S. Lee and D. W. Choi, “On coupling the Reynolds-averaged Navier-Stokes equations with two-equation turbulence model equations,” International Journal for Numerical Methods in Fluids, Vol.50, No.2, 2006, pp.165–197.
    [2006]
  • [17] Y. Jang, J. Huh, N. Lee, S. Lee, and Y. Park, “Comparative Study on the Prediction of Aerodynamic Characteristics of Aircraft with Turbulence Models,” International journal of aeronautical and space sciences, Vol.19, No.1, 2018, pp.13–23.
    [2018]
  • [16] J. W. Ahn and C. Kim, “An axisymmetric computational model of generalized hydrodynamic theory for rarefied multi-species gas flows,” Journal of computational Physics, Vol.228, No.11, 2009, pp.4088–4117.
    [2009]
  • [15] T. K. Mankodi, U. V. Bhandarkar, and R. S. Myong, “Collision cross sections and nonequilibrium viscosity coefficients of N2 and O2 based on molecular dynamics,” The Physics of Fluids, Vol.32, No.3, 2020.
    [2020]
  • [14] Z. Yuan, Z. Jiang, W. Zhao, and W. Chen, “Multiple temperature model of nonlinear coupled constitutive relations for hypersonic diatomic gas flows,” AIP Advances, Vol.10, No.5, 2020.
    [2020]
  • [13] Z. Jiang, W. Zhao, W. Chen, and R. K. Agarwal, “An undecomposed hybrid algorithm for nonlinear coupled constitutive relations of rarefied gas dynamics,” Communications in Computational Physics, Vol.26, No.3, 2019, pp.880–912.
    [2019]
  • [11] R. S. Myong, “On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules,” The Physics of Fluids, Vol.26, No.5, 2014, p.56102.
    [2014]
  • [10] B. C. Eu, Kinetic theory of Nonequilibrium Ensenbles, Irreversible Thermodynamics and Generalized Hydrodynamics, Vol.1 Nonrelativistic Theories, Springer, 2016.
    [2016]
  • Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flowspp.2788 ? 2802
    R. S. Myong [1999]
  • Flux Jacobian matrices and generaled Roe average for an equilibrium real gas
    M. Vinokur [1988]
  • Direct simulation Monte Carlo simulation of thermal fluctuations in gases
    D. Bruno Vol . 31 , No . 4 [2019]
  • Density disturbance ahead of a sphere in rarefied supersonic flow
    D. A. Russell Vol . 11 , No . 8 , [1968]
  • Bulk viscosity of a dilute polyatomic gas
    G. Emanuel Vol.2 , No.12pp . 2252 ? 2254 [1990]