Tropical cyclone trends and data reliability = 태풍 경향성 및 자료의 신뢰성

논문상세정보
' Tropical cyclone trends and data reliability = 태풍 경향성 및 자료의 신뢰성' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기타 공학
  • TCs landfall intensity trend
  • best track data
  • data reliability
  • enso
  • tropical cyclone
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
773 0

0.0%

' Tropical cyclone trends and data reliability = 태풍 경향성 및 자료의 신뢰성' 의 참고문헌

  • Zhao, H., and Wang, C., 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Clim. Dyn. 52, 275-288.
    [2019]
  • Zhao, H., Wu, L., and Zhou, W. 2011: Interannual changes of tropical cyclone intensity in the western North Pacific. J. Meteorol. Soc. Jpn. 89, 243-253.
    [2011]
  • Zhang, B., Zhang, R., Pinker, R. T., Feng, Y, Nie, C., and Guan, Y., 2019: Changes of tropical cyclone activity in a warming world are sensitive to sea surface temperature environment. Environ. Res. Lett. 14, 124052.
    [2019]
  • Yu, K., Lu, Z., and Stander, J., 2003: Quantile regression: applications and current research areas. Statistician 52, 331–350.
    [2003]
  • Yeh, S.-W., Kang, S.-K., Kirtman, B.P., Kim., J.-H., Kwon, M. H., and Kim, C.-H., 2010: Decadal change in relationship between western North Pacific tropical cyclone frequency and the tropical Pacific SST. Meteor. Atmos. Phys. 106, 179-189 (2010).
    [2010]
  • Ye, M., Wu, J., Liu, W., He, X., and Wang, C., 2020: Dependence of tropical cyclone damage on maximum wind speed and socioeconomic factors. Environ. Res. Lett. 15, 094061.
  • Yang, S.-H., Kang, N.-Y., Elsner, J. B., and Chun, Y., 2018: Influence of global warming on western North Pacific tropical cyclone intensities during 2015. J. Clim. 31, 919-925.
    [2018]
  • Yang, J., and Chen, M., 2019: Landfalls of tropical cyclones with rapid intensification in the western North Pacific. Nat. Hazards Earth Syst. Sci. Discuss., 1-22.
    [2019]
  • Willis Re, 2020: Summary of Natural Catastrophe Events 2019, Willis Re eVENTTM Update, in: Insured losses and economic impact due to natural disasters. 8, Willis Re, London, UK, 58 pp.
  • Weinkle, J., Landsea, C., Collins, D., Musulin, R., Crompton, R. P., Klotzbach, P. J., and Pielke, R., 2018: Normalized hurricane damage in the continental United States 1900–2017, Nature Sustainability 1, 808-813.
    [2018]
  • Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H.-R., 2015: Changes in tropical cyclone number and intensity in a warming environment. Science, 309, 1844–1846.
    [2015]
  • Wang, X., and Liu, H., 2015: PDO modulation of ENSO effect on tropical cyclone rapid intensification in the western North Pacific. Clim. Dyn. 46, 15-28.
    [2015]
  • Wang, C., Li, C., Mu, M., and Duan, W., 2013: Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Clim. Dyn. 40, 2887-2902.
    [2013]
  • Wang, B., and Chan, J. C. L., 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Clim. 15, 1643-1658 (2002).
    [2002]
  • Velden, C. S., Olander, T. L., and Zehr, R. M., 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery. Wea. Forecasting, 13, 172–186.
    [1998]
  • Vecchi, G. A., and Knutson, T. R., 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Clim. 21, 3580-3660.
    [2008]
  • Vecchi, G. A., and Knutson, T. R. 2011: Estimating annual numbers of Atlantic Hurricanes missing from the HURDAT database (1878–1965) using ship track density. J. Clim. 24, 1736-1746.
    [2011]
  • Truchelut, R. E., Hart, R. E., and Luthman, B., 2013: Global identification of previously undetected pre-satellite-era tropical cyclone candidates in NOAA/CIRES twentieth-century reanalysis data. J. Appl. Meteorol. Climatol. 52, 2243-2259.
    [2013]
  • Tropical cyclones and climate change assessment : Part Ⅰ . Detection and attribution
    Knutson , T. , 100 , 1987-2007 [2019]
  • Tropical cyclone intensity analysis using satellite data
    Dvorak , V. F. Rep. NEDIS 11 , 1-47 . [1984]
  • Tropical cyclone activity over the western North Pacific associated with El Ni ? o and La Ni ? a events
    Chan , J. C. L. J. Clim . 13 , 2960-2972 . [2000]
  • Torn, R. D., and Synder, C., 2012: Uncertainty of tropical cyclone best-track information. Weather Forecast. 27, 715–729.
    [2012]
  • The theory of hurricanes .
    Emanuel , K. A. 23 , 179-196 . [1991]
  • The hurricane disaster-potential scale
    Simpson , R. H. 27 , 169-186 . [1974]
  • The NCEP/NCAR 40-year reanalysis project .
    Kalnay , E. , 77 , 437-472 . [1996]
  • The NCEP-NCAR 50-year reanalysis : Monthly means CD-ROM and documentation
    Kistler , R. 82 , 247-267 . [2001]
  • The Dvorak tropical cyclone intensity estimation technique : A satellite-based method that has endured for over 30 years .
    Velden , C. , 87 , 1195-1210 . [2006]
  • Tennille, S. A., and Ellis, K. N., 2017: Spatial and temporal trends in location of the lifetime maximum intensity of tropical cyclones. Atmosphere 8, 198.
    [2017]
  • Stowasser, M., Wang, Y., and Hamilton, K., 2007: Tropical cyclone changes in the western North Pacific in the global warming scenario. J. Clim. 20, 2378-2396 (2007).
    [2007]
  • Statistical methods in the atmospheric sciences 2nd ed.
  • Song, J., Klotzbach, P. J., Tang, J., and Wang, Y., 2018: The increasing variability of tropical cyclone lifetime maximum intensity. Sci. Rep. 8, 1-7.
    [2018]
  • Sobel, A. H., and Camargo, S. J., 2005: Influence of western North Pacific tropical cyclones on their large-scale environment. J. Atmos. Sci. 62, 3396-3407.
    [2005]
  • Recent historically low global tropical cyclone activity .
    Maue , R. N. 38 , L14803 . [2011]
  • Pielke Jr., R. A., Gratz, J., Landsea, C. W., Collins, D., Saunders, M., and Musulin, R., 2008: Normalized hurricane damage in the United States: 1900-2005. Nat. Hazards Rev. 9(1), 29-42.
    [2008]
  • Peduzzi, R., Chatenoux, B., Dao, H., De Nono, A., Herold, C., Kossin, J., Mouton, F., and Nordbeck, O., 2012: Global trends in tropical cyclone risk. Nat. Clim. Change 2, 289-294.
    [2012]
  • Pearson, K., 1897: Mathematical contributions to the theory of evolution. Proc. Roy. Soc. London 60A, 489-498.
  • Park, D.-S. R., Ho, C.-H., Nam, C. C., and Kim, H.-S., 2015: Evidence of reduced vulnerability to tropical cyclones in the Republic of Korea. Environ. Res. Lett. 10, 054003.
    [2015]
  • Park, D.-S. R., Ho, C.-H., Kim, J.-H., and Kim, H.-S., 2013: Spatially inhomogeneous trends of tropical cyclone intensity over the western North Pacific for 1977-2010. J. Clim. 26, 5088-2101.
    [2013]
  • Park, D.-S. R, Ho, C.-H., Kim, J.-H., and Kim, H.-S., 2011: Strong landfall typhoons in Korea and Japan in a recent decade. J. Geophys. Res. 116, D07105.
    [2011]
  • Murnane, R. J., and Elsner, J. B., 2012: Maximum wind speed and US hurricane losses. Geophys. Res. Lett. 39, L16707.
    [2012]
  • Moon, I.-J., Kim, S.-H., and Chan, J. C. L., 2019: Climate change and tropical cyclone trend. Nature 570, E3-E5.
    [2019]
  • Min, S.-K., Seong, M.-G., Cha, D.-H., Lee, M., Lott, F. C., Ciavarella, A., Stott, P. A., Kim, M.-K., Boo, K.-O., and Byun, Y.-H., 2021: Has global warming contributed to the largest number of typhoons affecting south Korea in september 2019?. Bull. Am. Meteor. Soc. 102(1), S51-S57.
  • Mesoscale circulation : An introduction to dynamic meteorology 4th ed.
  • Mei, W., and Xie, S.-P., 2016: Intensification of landfalling typhoons over the Northwest Pacific since the late 1970s. Nature Geosci. 9, 753-757.
    [2016]
  • Mei, W., Xie, S.-P., Primeau, F., McWilliams, J. C., and Pasquero, C., 2015: Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv. 1, e1500014.
    [2015]
  • Mann, M. E., and Emanuel, K. A., 2006: Atlantic Hurricane trends linked to climate change. Eos. Trans. Amer. Geophys. Union 87, 233-244.
    [2006]
  • Magee, A. D., Verdon-Kidd, D. C., and Kiem, A. S., 2016: An intercomparison of tropical cyclone best-track products for the southwest Pacific. Nat. Hazards Earth Syst. Sci. 16, 1431-1447.
    [2016]
  • Liu, K. S., and Chan, J. C. L., 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Clim. 21, 4464-4476.
    [2008]
  • Lin, I.-I., et al., 2020: ENSO and Tropical Cyclones. In AGU monograph for the AGU Centennial-ENSO in a Changing Climate; Wiley: Hoboken, N J, USA.
  • Li, L., and Chakraborty, P., 2020: Slower decay of landfalling hurricanes in a warming world. Nature 587, 230–234.
  • Lee, C.-Y., Tippett, M. K., Sobel, A. H., and Camargo, S. J., 2016: Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun. 7, 10625.
    [2016]
  • Landsea, C. W., Vecchi, G. A., Bengtsson, L., and Knutson, T. R., 2010: Impact of duration thresholds on Atlantic tropical cyclone counts. J. Clim. 23, 2508-2519.
    [2010]
  • Landsea, C. W., Gray, W. M., and Avila, L. A., 1996: Downward trends in the frequency of intense Atlantic hurricanes during the past five decades. Geophys. Res. Lett. 23, 1697-1700.
    [1996]
  • Landsea, C. W., 2017: Counting Atlantic tropical cyclones back to 1900. Eos. Trans. Amer. Geophys. Union 88, 197-202.
    [2017]
  • Landsea, C. W., 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452–454.
    [2006]
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. J. Clim. 121, 1703-1713.
    [1993]
  • Kug, J.-S., Jin, F.-F., and An, S.-I., 2009: Two types of El Niño events: Cold tounge El Niño and warm pool El Niño. J. Clim. 22, 1499-1515.
    [2009]
  • Kug, J.-S., Choi, J., An, S.-I., Jin, F.-F., and Wittenberg, A. T., 2010: Warm pool and cold toung El Niño events as simulated by the GFDL 2.1 coupled GCM. J. Clim. 23, 1226-1239.
    [2010]
  • Kossin, J. P., Olander, T. L., and Knapp, K. R., 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Clim. 26, 9960-9976.
    [2013]
  • Kossin, J. P., Knapp, K. R., Vimont, D. J., Murnane, R. J., and Harper, B. A., 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815.
    [2007]
  • Kossin, J. P., Knapp, K. R., Olander, T. L., and Velden, C. S., 2020: Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. 117, 11975-11980.
  • Koenker, R., 2005: Quantile Regression. Econometric Soc.Monogr. No. 38, Cambridge University Press, 349 pp.
    [2005]
  • Knutson, T. R., and Tuleya, R. E., 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Clim. 17, 3477–3495.
    [2004]
  • Knutson T., et al., 2020: Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bull. Am. Meteor. Soc. 101(3), E303-322.
  • Knapp, K. R., and Kruk, M. C., 2010: Quantifying interagency differences in tropical cyclone best-track wind speed estimations. Mon. Wea. Rev. 138, 1459-1473.
    [2010]
  • Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.: 2010: The international best track archive for climate stewardship (IBTrACS). Bull. Am. Meteor. Soc. 91, 363-376.
    [2010]
  • Knaff, J. A., Brown, D. P., Courtney, J., Gallina, G. M., and Beven Ⅱ, J. L., 2010: An evaluation of Dvorak technique-based tropical cyclone intensity estimates. Wea. Forecasting 25, 1362-1379.
    [2010]
  • Kim, H.-M., Webster, P. J., and Curry, J. A., 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO, J. Clim. 24, 1839-1849.
    [2011]
  • Kim, H.-K., Seo, K.-H., Yeh, S.-W., Kang, N.-Y., and Moon, B.-K., 2020: Asymmetric impact of Central Pacific ENSO on the reduction of tropical cyclone genesis frequency over the western North Pacific since the late 1990s. Clim. Dyn. 54, 661-673.
  • Kerns, B. W., and Chen, S. S., 2013: Cloud clusters and tropical cyclogenesis: Developing and nondeveloping systems and their large-scale environment. Mon. Wea. Rev. 141, 192-210.
    [2013]
  • Kang, N.-Y., and Elsner, J. B., 2012b: An empirical framework for tropical cyclone climatology. Clim. Dyn. 39, 669-680.
  • Kang, N.-Y., and Elsner, J. B., 2012a: Consensus on climate trends in western North Pacific tropical cyclones. J. Clim. 25, 7564-7573.
  • Kang, N.-Y., Kim, D., and Elsner, J. B., 2019: The contribution of super typhoons to tropical cyclone activity in response to ENSO. Sci. Rep. 9, 5046.
    [2019]
  • Kang, I.-S., Lee, Y.-M., and An, S.-I., 1995: Interannual variability of typhoon activity over the western Pacific and El Niño. Asia-Pacific J. Atmos. Sci. 31, 15-26 (In Korea with English abstract).
    [1995]
  • Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., and Potter, G. L., 2002: NCEP–DOE AMIP-II reanalysis (R-2), Bull. Am. Meteor. Soc., 83, 1631–1643.
    [2002]
  • Jang, S.-R., and Ha, K.-J., 2008: On the relationship between typhoon intensity and formation region: Effect of developing and decaying ENSO. J. Korea Erath Sci. Soc. 29, 29-44 (2008).
    [2008]
  • Jagger, T. H., and Elsner, J. B., 2009: Modeling tropical cyclone intensity with quantile regression. Int. J. Climatol. 29, 1351-1361.
    [2009]
  • Increasing destructiveness of tropical cyclones over the past 30 years
    Emanuel , K. A. 436 , 686 ? 688 [2005]
  • Improved objective satellite estimates of tropical cyclone intensity . Preprints , 18th Conf . on Hurricanes and Tropical Meteorology , San Diego , CA , Amer . Meteor . Soc. , J25 ? J28
    Zehr , R. [1989]
  • Hurricanes : Their formation , structure and likely role in the tropical circulation , in Meteorology over the Tropical Oceans
    Gray , W. M. 155 ? 218 [1979]
  • Holland, G., and Webster, P. J., 2007: Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Phil. Trans. R. Soc. 355A, 2695-2716.
    [2007]
  • Holland, G., and Bruyère, C. L., 2014: Recent intense hurricane response to global climate change. Clim. Dyn. 42, 617–627.
    [2014]
  • Ho, C.-H., Baik, J.-J., Kim, J.-H., and Gong, D.-Y., 2004: Interdecadal changes in summertime typhoon tracks. J. Clim. 17, 1767-1776.
    [2004]
  • Hagen, A. B., and Landsea, C. W., 2012: On the classification of extreme Atlantic hurricanes utilizing mid-twentieth-century monitoring capabilities. J. Clim. 25, 4461–4475.
    [2012]
  • Guo, Y. P., and Tan, Z. M., 2018: Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño. Nat. Commun. 9, 1507.
    [2018]
  • Graham, N. E., and Barnett, T. P., 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science 238, 657-659.
    [1987]
  • Global reanalysis : Goodbye ERA-interim , hello ERA5 . ECMWF Newsl . 159 , 17 ? 24
  • Federal Emergency Management Agency, 2018: 2017 hurricane season FEMA after-action report. Available: https://www.fema.gov/sites/default/files/ 2020-08/fema_hurricane-season-after-action- report_2017.pdf.
    [2018]
  • Extended reconstructed sea surface temperature version 5 ( ERSSTv5 ) : Upgrades , validations , and intercomparisons
    Huang , B. 30 , 8179-8205 . [2017]
  • Emanuel K. A., and Nolan D., 2004: Tropical cyclone activity and global climate. 26th Conference on Hurricanes and Tropical Meteorology, Miami, FL. American Meteorological Society, pp 240–241.
    [2004]
  • Elsner, J. B., Kossin, J. P., and Jagger, T. H., 2008: The increasing intensity of the strongest tropical cyclones. Nature 455, 92-95.
    [2008]
  • Elsner, J. B, 2020: Continued increases in the intensity of strong tropical cyclones. Bull. Am. Meteor. Soc. 101, E1301–E1303.
  • Doxsey-Whitfield, E., MacManus, K., Adamo, S. B., Pistolesi, L., Squires, J., Borkovska, O., and Baptista, S. R., 2015: Taking advantage of the improved availability of census data: A first look at the gridded population of the world, version 4. Pap. Appl. Geogr. 1, 226–234.
    [2015]
  • Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century
    Emanuel , K. A. 110 , 12219-12224 [2013]
  • Decadal variations of intense typhoon occurrence in the western North Pacific
  • Climate assessment for 1999 . Bull . Amer . Meteorol . Soc . 81 , S1 ? S50
  • Chu, J. H., Sampson, C. R., Levine, A. S., and Fukada, E., 2002: The joint typhoon warning center tropical cyclone best-tracks, 1945-2000. Joint Typhoon Warning Center Report 16, NRL/MR/7540-02.
    [2002]
  • Chavas, D., and Chen, J., 2020: Hurricanes last longer on land in a warming world. Nature 587, 200-201.
  • Chan. J. C. L., and Liu, K. S., 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Clim. 17, 4590-4602.
    [2004]
  • Chan, J. C. L., and Shi, J. E., 1996: Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett. 23, 2765-2767.
    [1996]
  • Chan, J. C. L., 2017: Physical mechanisms responsible for track changes andrRainfall istributions associated with tropical cyclone landfall. Oxford Handbook Onlines, 1-27.
    [2017]
  • Camargo, S. J., and Sobel, A. H., 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Clim. 18, 2996-3006.
    [2005]
  • Bloemendaal, N., Haigh, I. D., de Moel, H., Muis, S., Haarsma, R. J., and Aerts, J. C. J. H.. 2020: Generation of a global synthetic tropical cyclone hazard dataset using STORM. Sci Data, 7, 1-12.
    [2020]
  • Bister, M., and Emanuel, K. A., 1998: Dissipative heating and hurricane activity. Meteor. Atmos. Phys. 65, 233–240.
    [1998]
  • Bengtsson, L., Botzet, M., and Esch. M., 1996: Will greenhouse gas-induced warming over the next 50 years lead to a higher frequency and greater intensity of hurricanes? Tellus 48A, 57-73.
    [1996]
  • Basconcillo, J., and Moon, I. J., 2021: Increasing activity of tropical cyclones in East Asian during the mature boreal autumn linked to long-term climate variability. Nature Partner Journals, (In press).
  • Balaguru, K., Foltz, G. R., and Leung, L. R., 2018: Increasing magnitude of hurricane rapid intensification in the central and eastern tropical Atlantic. Geophys. Res. Lett. 45, 4238–4247.
    [2018]
  • A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures .
    Dvorak , V. F. Memo NESS 45 , 1-19 . [1973]
  • A statistical analysis of tropical cyclone intensity . Mon . Weather Rev . 128 , 1139 ? 1152
  • A global slowdown of tropical-cyclone translation speed
    Kossin , J. P. 558 , E11-E16 . [2018]