Spacecraft formation flying algorithm in practical missions using finite control

송영범 2022년
논문상세정보
' Spacecraft formation flying algorithm in practical missions using finite control' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • SNIPE
  • CANYVAL-C
  • 궤도 제어
  • 소프트웨어 구현
  • 인공위성 편대비행
  • 일반섭동론
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
12 0

0.0%

' Spacecraft formation flying algorithm in practical missions using finite control' 의 참고문헌

  • interface connector
    VACCO p. 8 [2011]
  • [9] D. Selva and D. Krejci, “A survey and assessment of the capabilities of Cubesats for Earth observation,” Acta Astronaut., vol. 74, pp. 50–68, 2012, doi: 10.1016/j.actaastro.2011.12.014.
    [2012]
  • [8] S. J. Chung, S. Bandyopadhyay, R. Foust, G. P. Subramanian, and F. Y. Hadaegh, “Review of formation flying and constellation missions using nanosatellites,” J. Spacecr. Rockets, vol. 53, no. 3, pp. 567–578, 2016, doi: 10.2514/1.A33291.
    [2016]
  • [7] T. Villela, C. A. Costa, A. M. Brandão, F. T. Bueno, and R. Leonardi, “Towards the thousandth CubeSat: A statistical overview,” Int. J. Aerosp. Eng., vol. 2019, 2019, doi: 10.1155/2019/5063145.
    [2019]
  • [5] C. W. T. Roscoe, J. J. Westphal, and E. Mosleh, “Overview and GNC design of the CubeSat Proximity Operations Demonstration (CPOD) mission,” Acta Astronaut., vol. 153, no. October 2017, pp. 410–421, 2018, doi: 10.1016/j.actaastro.2018.03.033.
    [2018]
  • [4] C. Underwood, S. Pellegrino, V. J. Lappas, C. P. Bridges, and J. Baker, “Using CubeSat/micro-satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST),” Acta Astronaut., vol. 114, pp. 112–122, 2015, doi: 10.1016/j.actaastro.2015.04.008.
    [2015]
  • [47] GomSpace, “NanoProp CGP3 Technical Features.”
  • [44] R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics. New York: AIAA Education Series, 1999.
    [1999]
  • [43] L. Breger and J. P. How, “GVE-Based Dynamics and Control for Formation Formation Flying Spacecraft,” 2nd Int. Symp. Form. Fly. Mission. Technol., pp. 1– 12, 2004.
    [2004]
  • [3] G. Gaias and J. S. Ardaens, “In-orbit experience and lessons learned from the AVANTI experiment,” Acta Astronaut., vol. 153, no. February, pp. 383–393, 2018, doi: 10.1016/j.actaastro.2018.01.042.
    [2018]
  • [39] H. Schaub and K. T. Alfriend, “Impulsive feedback control to establish specific mean orbit elements of spacecraft formations,” J. Guid. Control. Dyn., vol. 24, no. 4, pp. 739–745, 2001, doi: 10.2514/2.4774.
    [2001]
  • [38] Kyle Alfriend, S. Vadali, P. Gurfil, J. How, and L. Breger, Spacecraft formation flying: Dynamics, Control and Navigation, 1st ed. Elsevier Ltd, 2010.
    [2010]
  • [37] D. A. Vallado and Wayne D. McClain, Fundamentals of Astrodynamics and Applications, 2nd ed. New York: McGraw-Hill Companies, Inc., 1997.
    [1997]
  • [36] Y. Song et al., “Spacecraft formation flying system design and controls for four nanosats mission,” Acta Astronaut., pp. 1–31.
  • [35] Y. Song, S.-Y. Park, and S. Lee, “Development of spacecraft formation flying system for snipe mission using four nanosats,” in AIAA Scitech 2021 Forum, 2021.
  • [34] S. Kang, Y. Song, and S. Park, “Nanosat Formation Flying Design for SNIPE Mission,” vol. 37, no. 1, pp. 51–60, 2020.
    [2020]
  • [33] J. Hwang, H. Kim, J. Park, and J. Lee, “Limitations of electromagnetic ion cyclotron wave observations in low earth orbit,” J. Astron. Sp. Sci., vol. 35, no. 1, pp. 31–37, 2018, doi: 10.5140/JASS.2017.35.1.31.
    [2018]
  • [32] G. Kim et al., “Development of CubeSat Systems in Formation Flying for the Solar Science Demonstration : the CANYVAL-C Mission,” Adv. Sp. Res., p. Submitted.
  • [30] Z. Dang, H. Zhou, Z. Pan, and S. Tang, “A general method for N-order integralform Gauss’s variational equations under impulsive control,” Aerosp. Sci. Technol., vol. 106, p. 106075, 2020, doi: 10.1016/j.ast.2020.106075.
    [2020]
  • [2] G. Gaias and J. S. Ardaens, “Design challenges and safety concept for the AVANTI experiment,” Acta Astronaut., vol. 123, pp. 409–419, 2016, doi: 10.1016/j.actaastro.2015.12.034.
    [2016]
  • [29] S. Mok, Y. Choi, and H. Bang, Impulsive control of satellite formation flying using orbital period difference, vol. 18, no. PART 1. IFAC, 2010.
    [2010]
  • [28] L. Breger and J. P. How, “Gauss’s variational equation-based dynamics and control for formation flying spacecraft,” J. Guid. Control. Dyn., vol. 30, no. 2, pp. 437–448, 2007, doi: 10.2514/1.22649.
    [2007]
  • [26] “SPACECRAFT FORMATION CONTROL USING ANALYTICAL INTEGRATION OF GAUSS ’ VARIATIONAL EQUATIONS Mohamed Khalil Ben Larbi , Enrico Stoll Institute of Space Systems Technische Universitaet Braunschweig,” 2009.
    [2009]
  • [25] D. Ran, X. Chen, A. K. Misra, and B. Xiao, “Relative position coordinated control for spacecraft formation flying with communication delays,” Acta Astronaut., vol. 137, no. February, pp. 302–311, 2017, doi: 10.1016/j.actaastro.2017.04.011.
    [2017]
  • [24] A. Mostafa, M. I. El-Saftawy, E. I. Abouelmagd, and M. A. López, “Controlling the perturbations of solar radiation pressure on the Lorentz spacecraft,” Symmetry (Basel)., vol. 12, no. 9, pp. 1–21, 2020, doi: 10.3390/sym12091423.
    [2020]
  • [23] Y. Lee, S. Y. Park, J. P. Park, and Y. Song, “Numerical analysis of relative orbit control strategy for CANYVAL-X mission,” J. Astron. Sp. Sci., vol. 36, no. 4, pp. 235–248, 2019, doi: 10.5140/JASS.2019.36.4.235.
    [2019]
  • [22] D. Ivanov, M. Kushniruk, and M. Ovchinnikov, “Study of satellite formation flying control using differential lift and drag,” Acta Astronaut., vol. 152, no. March, pp. 88–100, 2018, doi: 10.1016/j.actaastro.2018.07.047.
    [2018]
  • [21] N. G. Orr, J. K. Eyer, B. P. Larouche, and R. E. Zee, “Precision formation flight: The CanX-4 and CanX-5 dual nanosatellite mission,” in 21st Annual AIAA/USU Conference on Small Satellites, 2007.
    [2007]
  • [1] G. Di Mauro, M. Lawn, and R. Bevilacqua, “Survey on guidance navigation and control requirements for spacecraft formation-flying missions,” J. Guid. Control. Dyn., vol. 41, no. 3, pp. 581–602, 2018, doi: 10.2514/1.G002868.
    [2018]
  • [19] P. Wloszek et al., “FTS CubeSat Constellation Providing 3D Winds 3D WINDS MISSION BACKGROUND,” in, vol. 46801, no. 260, pp. 451–6198, 2013, doi: 10.1046/j.1365-2672.2002.01588.x.
    [2013]
  • [17] L. Alminde, M. Bisgaard, I. A. Portillo, T. A. Gornland, and D. Smith, “GOMX-4: Demonstrating the Building Blocks of Constellations,” pp. 1–5, 2017.
    [2017]
  • [16] R. Walker, “GOMX-4 – the twin European mission for IOD purposes,” 32nd Annu. AIAA/USU Conf. Small Satell., pp. SSC18-VII–07, 2018.
    [2018]
  • [15] N. H. Roth, B. Risi, C. C. Grant, and R. E. Zee, “Flight Results from the CanX-4 and CanX-5 Formation Flying Mission,” 4S Symp., no. 1, pp. 1–15, 2016, doi: 10.1016/j.jcrysgro.2014.02.053.
    [2016]
  • [14] R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-Osorio, F. Pinto, and S. C. Burleigh, “Survey of Inter-Satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View,” IEEE Commun. Surv. Tutorials, vol. 18, no. 4, pp. 2442–2473, 2016, doi: 10.1109/COMST.2016.2564990.
    [2016]
  • [13] P. Muri and J. McNair, “A survey of communication sub-systems for intersatellite linked systems and cubesat missions,” J. Commun., vol. 7, no. 4, pp. 290–308, 2012, doi: 10.4304/jcm.7.4.290-308.
    [2012]
  • [12] M. A. C. Silva, D. C. Guerrieri, A. Cervone, and E. Gill, “A review of MEMS micropropulsion technologies for CubeSats and PocketQubes,” Acta Astronaut., vol. 143, no. December 2017, pp. 234–243, 2018, doi: 10.1016/j.actaastro.2017.11.049.
    [2018]
  • [10] C. L. G. Batista, A. C. Weller, E. Martins, and F. Mattiello-Francisco, “Towards increasing nanosatellite subsystem robustness,” Acta Astronaut., vol. 156, no. October 2018, pp. 187–196, 2019, doi: 10.1016/j.actaastro.2018.11.011.
    [2019]
  • Small satellites for space science : A COSPAR scientific roadmap ,
    R. M. Millan vol . 64 , no . 8 , pp . 1466 ? 1517 , [2019]
  • SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG
    D. Brouwer pp . 378 ? 396 [1959]
  • Propulsion for CubeSats
    K. Lemmer vol . 134 , no . January , pp . 231 ? 243 , [2017]
  • Model Predictive Control for Formation Flying Spacecraft
  • Flight system technologies enabling the twin-CubeSat FIREBIRD-II scientific mission
    D. Klumpar pp . SSC15-V ? 6 [2015]
  • Drift Recovery and Station Keeping Results for the Historic CanX- 4/CanX-5 Formation Flying Mission ,
    J. Newman pp . SSC15-VIII ? 1 [2014]
  • Development of attitude determination and control and thrust modulation algorithms for formation flying of the SNIPE nano-satellite
    S. Lee [2019]
  • Development of CubeSats for CANYVAL-C mission in formation flying
    G.-N. Kim Technol. , no . 978 [2019]
  • CubeSat development for CANYVAL-X mission
    J.-P. Park [2016]
  • Classical element feedback control for spacecraft orbital maneuvers
    B. J. J. Naasz vol . 54 , no . 301 , p. 258 [2002]
  • Analytical Mechanics of Space Systems
    S. Hanspeter Third Edit [2014]
  • A passive system for determining the attitude of a satellite
    H. D. Black vol . 2 , no . 7 , pp . 1350 ? 1351 , [1964]