Investigation of ferroelastic domain manipulation on molybdenum ditelluride surface using low temperature scanning tunneling microscopy

노희윤 2022년
논문상세정보
' Investigation of ferroelastic domain manipulation on molybdenum ditelluride surface using low temperature scanning tunneling microscopy' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 1T'-phase
  • Domain boundary
  • Domain manipulation
  • Ferroelastic Domain switching
  • Metallic boundary state
  • MoTe2
  • Scanning Tunneling Microscopy
  • Scanning Tunneling Spectroscopy
  • Structural symmetry
  • Topological insulator
  • Transition Metal Dichalcogenides
  • monoclinic
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
60 0

0.0%

' Investigation of ferroelastic domain manipulation on molybdenum ditelluride surface using low temperature scanning tunneling microscopy' 의 참고문헌

  • Symmetry dictated grain boundary state in a two-dimensional topological insulator Nano Lett
    Kim , H. W. et al . 20 , 5837-5843 ( [2020]
  • Symmetry dictated grain boundary state in a two-dimensional topological insulator .
    Kim , H. W. et al . 20 , 5837-5843 ( [2020]
  • Strategies on phase control in transition metal dichalcogenides
    Wang , R. et al . 28 , 1802473 [2018]
  • Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor .
    Hou , W. et al . 14 , 668-673 ( [2019]
  • Room Temperature Semiconductor ? Metal Transition of MoTe2 Thin Films Engineered by Strain
    Song , S. et al 16 , 188-193 [2016]
  • Nanotechnology 31 192001 .
  • 9. Shi, Y.; Kahn, J.; Niu, B.; Fei, Z.; Sun, B.; Cai, X.; Francisco, B. A.; Wu, D.; Shen, Z.-X.; Xu, X.; Cobden, D. H.; Cui, Y.-T. Imaging quantum spin Hall edges in monolayer WTe2. Sci. Adv. 2019, 5, No. eaat8799.
  • 9. Hyun-Jung Kim, Seoung-Hun Kang, Ikutaro Hamada, and Young-Woo Son Origins of the structural phase transitions in MoTe2 and WTe2, Phys. Rev. B 95, 180101(R) (2017)
    [2017]
  • 8. XIAO FENG QIAN, JUNWEI LIU, LIANG FU, JU LI, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. SCIENCE 346, 1344-1347 (2014).
    [2014]
  • 8. Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nature Nanotech. 9, 391-396 (2014).
    [2014]
  • 8. Drozdov, I. K.; Alexandradinata, A.; Jeon, S.; Nadj-Perge, S.; Ji, H.; Cava, R. J.; Andrei Bernevig, B.; Yazdani, A. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 2014, 10, 664.
    [2014]
  • 7. Slager, R.-J.; Mesaros, A.; Juričić, V.; Zaanen, J. Interplay between electronic topology and crystal symmetry: Dislocation-line modes in topological band insulators. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 241403.
    [2014]
  • 7. Li, W. B. & Li, J. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers. Nat. Commun. 7, 10843 (2016).
    [2016]
  • 7. J. A. Stroscio, R. M. Feenstra, and A. P. Fein, Phys. Rev. Lett. 57, 2579 (1986)
    [1986]
  • 7. Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nature Commun. 5, 4214 (2014).
    [2014]
  • 6. Juričić, V.; Mesaros, A.; Slager, R.-J.; Zaanen, J. Universal probes of two-dimensional topological insulators: dislocation and π flux. Phys. Rev. Lett. 2012, 108, 106403.
    [2012]
  • 6. Deng, S., Sumant, A. V. & Berry, V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14-35 (2018).
    [2018]
  • 6. Chhowalla, M., Shin, H., Eda, G. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem 5, 263–275 (2013).
    [2013]
  • 6. A. Selloni, P.Carnevali, E. Tosatti, and C. D. Chen, Phys. Rev. B 31 (2602)
  • 5. Ran, Y.; Zhang, Y.; Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nat. Phys. 2009, 5, 298.
    [2009]
  • 5. Loh, K. P., Bao, Q. L., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tuneable platform for optical applications. Nature Chem. 2, 1015– 1024 (2010).
    [2010]
  • 5. J. Bardeen, Physical review letters 6 (2), 57-59 (1961)
    [1961]
  • 5. Dai, Z., Liu, L. & Zhang, Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 31, 1805417 (2019).
    [2019]
  • 4. Wei, W., Dai, Y. & Huang, B. Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides. Phys. Chem. Chem. Phys. 19, 663-672 (2017).
    [2017]
  • 4. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).
    [2010]
  • 4. König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X.-L.; Zhang, S.-C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766.
    [2007]
  • 4. J. Tersoff and D. R. Hamann, Phys. Rev. B. 31, 805 (1985)
    [1985]
  • 3. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
    [2010]
  • 3. J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983)
    [1998]
  • 3. Bukharaev, A. A., Zvezdin, A. K., Pyatakov, A. P. & Fetisov, Y. K. Straintronics: a new trend in micro- and nanoelectronics and materials science. Phys.-Uspekhi 61, 1175-1212 (2018).
    [2018]
  • 3. Bernevig, B. A.; Hughes, T. L.; Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757.
    [2006]
  • 24. Young. S. M., Kane. C. L. Dirac semimetals in two dimensions. Phys. Rev. Lett. 2015, 115, 126803.
    [2015]
  • 23. Tang, S., Zhang, C., Wong, D. et al. Quantum spin Hall state in monolayer 1T'-WTe2. Nature Phys 13, 683–687 (2017).
    [2017]
  • 23. Phillips, M.; Mele, E. J. Charge and Spin Transport on Graphene Grain Boundaries in a Quantizing Magnetic Field. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96, 041403
    [2017]
  • 22. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).
    [2014]
  • 22. Iaia, D., Chang, G., Chang, TR. et al. Searching for topological Fermi arcs via quasiparticle interference on a type-II Weyl semimetal MoTe2. npj Quant Mater 3, 38 (2018).
    [2018]
  • 21. Kane, C. L. and E. J. Mele, 2007, Topological Insulators in Three Dimensions. Phys. Rev. Lett. 98(10), 106803.
    [2007]
  • 20. Young, S. M.; Kane, C. L. Dirac semimetals in two dimensions. Phys. Rev. Lett. 2015, 115, 126803
    [2015]
  • 20. Wang, G.-Y. et al. Formation mechanism of twin domain boundary in 2D materials: The case for WTe2. Nano Res. 12, 569-573 (2019).
    [2019]
  • 20. Fu, L. and C. L. Kane, Topological Insulators with Inversion Symmetry. 2007, Phys. Rev. B 76, 045302
    [2007]
  • 2. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and opto-electronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).
    [2012]
  • 2. P. K. Hansma and J. Tersoff, Journal of Applied Physics 61 (2), R1-R24 (1987).
    [1987]
  • 2. Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.
    [2005]
  • 2. Atanasov, V. & Saxena, A. Electronic properties of corrugated graphene: the Heisenberg principle and wormhole geometry in the solid state. J. Phys. Condens. Matter 23, 175301 (2011).
    [2011]
  • 19. Xiao, J., Yan, B. First-principles calculations for topological quantum materials. Nat Rev Phys 3, 283–297 (2021).
  • 19. Pedramrazi, Z. et al. Manipulating topological domain boundaries in the single-layer quantum spin Hall insulator 1T′–Se2. Nano Lett. 19, 5634-5639 (2019).
    [2019]
  • 19. Fu, L. and C. L. Kane, 2006, Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 74, 195312
    [2006]
  • 18. Yan, C., Zhang, H., Weinert, M. & Li, L. Topological edge states at single layer WSe2 1T′–H lateral heterojunctions. Appl. Phys. Lett. 116, 203104 (2020).
    [2020]
  • 18. Steve M. Young and Charles L. Kane Phys. Rev. Lett. 115, 126803
  • 18. Kane, C. L. and E. J. Mele, Quantum Spin Hall Effect in Graphene., 2005, Phys. Rev. Lett. 95, 226801.
    [2005]
  • 17. Zahra Pedramrazi. et al., Nano Lett. 2019, 19, 8, 5634–5639
    [2019]
  • 17. Ugeda, M. M. et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nature Commun. 9, 3401 (2018).
    [2018]
  • 17. Jackiw, R. and C. Rebbi, Solitons with fermion number ½. 1976 Phys. Rev. D 13, 3398.
  • 16. Zhou, S., Han, J., Sun, J. & Srolovitz, D. J. MoS2 edges and heterophase interfaces: energy, structure and phase engineering. 2D Materials 4, 025080 (2017).
    [2017]
  • 16. Peng, L., Yuan, Y., Li, G. et al. Observation of topological states residing at step edges of WTe2 . Nat Commun 8, 659 (2017).
    [2017]
  • 16. Haldane, F. D. M., Model for a Quantum Hall Effect without Landau Levels. 1988, Phys. Rev. Lett. 61, 2015
    [2015]
  • 15. Tang, S., Zhang, C., Wong, D. et al. Quantum spin Hall state in monolayer 1T'-WTe2. Nature Phys 13, 683–687 (2017).
    [2017]
  • 15. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, M.I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, 2005, Nature 438, 197.
    [2005]
  • 15. Li, W., Qian, X. & Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. (2021).
  • 14. Huang, H. H., Fan, X., Singh, D. J. & Zheng, W. T. Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247-1268 (2020).
    [2020]
  • 14. Hasan, M. Z. and Kane, C. L., Colloquium: Topological insulators., Rev. Mod. Phys, 82, 4, 3045-3067 (2010)
    [2010]
  • 13. Von Klitzing, K., Developments in the quantum Hall effect., 2005, Phil. Trans. R. Soc. A 363, 2203.
    [2005]
  • 13. Q. Yang, M. Wu, J. Li, Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).
    [2018]
  • 12. Prange, R. E. and S. M. Girvin, 1987, The Quantum Hall Effect., (Springer, New York)
    [1987]
  • 12 . Sharma et al., A room-temperature ferroelectric semimetal., Sci. Adv. 2019, 5, No. eaax5080
    [2019]
  • 11. Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nature Phys. 13, 931-937 (2017).
    [2017]
  • 11. Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D.-H.; Sung, H.-J.; Kan, M.; Kang, H.; Hwang, J.-Y.; Kim, S. W.; Yang, H.; Chang, K. J.; Lee, Y. H. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482.
  • 11. Kane, C. L and Mele. E. J., A New Spin on the Insulating State., Science 314, 1692 (2006).
    [2006]
  • 10. Nayak, A. K.; Reiner, J.; Queiroz, R.; Fu, H.; Shekhar, C.; Yan, B.; Felser, C.; Avraham, N.; Beidenkopf, H. Resolving the topological classification of bismuth with topological defects. Sci. Adv. 2019, 5, No. eaax6996.
    [2019]
  • 10. Berry, J., Zhou, S., Han, J., Srolovitz, D. J. & Haataja, M. P. Dynamic phase engineering of bendable transition metal dichalcogenide monolayers. Nano Lett. 17, 2473-2481 (2017).
    [2017]
  • 1. W. & Li, J. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers. Nature Commun. 7, 10843 (2016).
    [2016]
  • 1. Sutton, A. P.; Balluffi, R. W. Interfaces in Crystalline Materials; Clarendon Press: 1995.
    [1995]
  • 1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon film. Science 306, 666–669 (2004)
    [2004]
  • 1 . C. J. Chen, Introduction to scanning tunneling microscopy. (Oxford University Press, USA, 1993).
    [1993]