Exposure to enriched environment modulates the synaptic vesicle cycle in mice with spinal cord injury

유지현 2022년
논문상세정보
' Exposure to enriched environment modulates the synaptic vesicle cycle in mice with spinal cord injury' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • enrichedenvironment
  • gene expression profiling
  • neuronal plasticity
  • spinal cord injuries
  • synaptic vesicles
  • transcriptome
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
117 0

0.0%

' Exposure to enriched environment modulates the synaptic vesicle cycle in mice with spinal cord injury' 의 참고문헌

  • dhof T. The synaptic vesicle cycle
    Su ? 27:509- 47 [2004]
  • Tetzlaff W. Rehabilitative training and plasticity following spinal cord injury
    Fouad K 235:91-9 [2012]
  • Peduzzi J. Functional recovery in rats with chronic spinal cord injuries after exposure to an enriched environment
    Fischer F 30:147-55 [2007]
  • 9. Starkey ML, Bleul C, Kasper H, Mosberger AC, Zorner B, Giger S, et al. High-Impact, Self-Motivated Training Within an Enriched Environment With Single Animal Tracking Dose-Dependently Promotes Motor Skill Acquisition and Functional Recovery. Neurorehabil Neural Repair 2014;28:594-605.
    [2014]
  • 8. Koopmans GC, Brans M, Gomez-Pinilla F, Duis S, Gispen WH, Torres- Aleman I, et al. Circulating insulin-like growth factor I and functional recovery from spinal cord injury under enriched housing conditions. Eur J Neurosci 2006;23:1035-46.
    [2006]
  • 7. Berrocal Y, Pearse DD, Singh A, Andrade CM, McBroom JS, Puentes R, et al. Social and environmental enrichment improves sensory and motor recovery after severe contusive spinal cord injury in the rat. J Neurotrauma 2007;24:1761-72.
    [2007]
  • 6. Lankhorst A, ter Laak M, van Laar T, van Meeteren N, de Groot J, Schrama L, et al. Effects of enriched housing on functional recovery after spinal cord contusive injury in the adult rat. J Neurotrauma 2001;18:203- 15.
    [2001]
  • 51. Augustin I, Korte S, Rickmann M, Kretzschmar HA, Sudhof TC, Herms JW, et al. The cerebellum-specific Munc13 isoform Munc13-3 regulates cerebellar synaptic transmission and motor learning in mice. J Neurosci 2001;21:10-7.
    [2001]
  • 50. Chen Z, Cooper B, Kalla S, Varoqueaux F, Young SM, Jr. The Munc13 proteins differentially regulate readily releasable pool dynamics and calcium-dependent recovery at a central synapse. J Neurosci 2013;33:8336-51.
    [2013]
  • 49. Meijer M, Burkhardt P, de Wit H, Toonen RF, Fasshauer D, Verhage M. Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission. Embo j 2012;31:2156-68.
    [2012]
  • 48. Lai C, Ho Y, Hsieh M, Wang H, Cheng J, Chau Y. Spinal Fbxo3- Dependent Fbxl2 Ubiquitination of Active Zone Protein RIM1α Mediates Neuropathic Allodynia through CaV2.2 Activation. J Neurosci 2016;36:9722-38.
    [2016]
  • 47. Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, et al. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 2002;415:321-6.
    [2002]
  • 46. Kaeser PS, Kwon HB, Chiu CQ, Deng L, Castillo PE, Sudhof TC. RIM1alpha and RIM1beta are synthesized from distinct promoters of the RIM1 gene to mediate differential but overlapping synaptic functions. J Neurosci 2008;28:13435-47.
    [2008]
  • 45. Calakos N, Schoch S, Sudhof TC, Malenka RC. Multiple roles for the active zone protein RIM1alpha in late stages of neurotransmitter release. Neuron 2004;42:889-96.
    [2004]
  • 44. Castillo PE, Schoch S, Schmitz F, Sudhof TC, Malenka RC. RIM1alpha is required for presynaptic long-term potentiation. Nature 2002;415:327- 30.
    [2002]
  • 43. Moechars D, Weston MC, Leo S, Callaerts-Vegh Z, Goris I, Daneels G, et al. Vesicular glutamate transporter VGLUT2 expression levels control quantal size and neuropathic pain. J Neurosci 2006;26:12055-66.
    [2006]
  • 42. Leo S, Moechars D, Callaerts-Vegh Z, D'Hooge R, Meert T. Impairment of VGLUT2 but not VGLUT1 signaling reduces neuropathy-induced hypersensitivity. Eur J Pain 2009;13:1008-17.
    [2009]
  • 41. Wang ZT, Yu G, Wang HS, Yi SP, Su RB, Gong ZH. Changes in VGLUT2 expression and function in pain-related supraspinal regions correlate with the pathogenesis of neuropathic pain in a mouse spared nerve injury model. Brain Res 2015;1624:515-24.
    [2015]
  • 40. Schafer MK, Varoqui H, Defamie N, Weihe E, Erickson JD. Molecular Cloning and Functional Identification of Mouse Vesicular Glutamate Transporter 3 and Its Expression in Subsets of Novel Excitatory Neurons. J Bio Chem 2002;277:50734-48.
    [2002]
  • 4. Kazim SF, Bowers CA, Cole CD, Varela S, Karimov Z, Martinez E, et al. Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021;58:5494-516.
  • 39. Wang W, Wang F, Liu J, Zhao W, Zhao Q, He M, et al. SNAP25 ameliorates sensory deficit in rats with spinal cord transection. Mol Neurobiol 2014;50:290-304.
    [2014]
  • 38. Chang S, Reim K, Pedersen M, Neher E, Brose N, Taschenberger H. Complexin stabilizes newly primed synaptic vesicles and prevents their premature fusion at the mouse calyx of held synapse. J Neurosci 2015;35:8272-90.
    [2015]
  • 37. Martin JA, Hu Z, Fenz KM, Fernandez J, Dittman JS. Complexin has opposite effects on two modes of synaptic vesicle fusion. Curr Biol 2011;21:97-105.
    [2011]
  • 36. Trimbuch T, Rosenmund C. Should I stop or should I go? The role of complexin in neurotransmitter release. Nat Rev Neurosci 2016;17:118- 25.
    [2016]
  • 34. Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001;25:402-8.
    [2001]
  • 33. Seo J, Kim H, Park E, Lee J, Kim D, Kim H, et al. Environmental enrichment synergistically improves functional recovery by transplanted adipose stem cells in chronic hypoxic-ischemic brain injury. Cell Transplant 2013;22:1553-68.
    [2013]
  • 32. Kim M, Yu J, Kim C, Choi J, Seo J, Lee M, et al. Environmental enrichment enhances synaptic plasticity by internalization of striatal dopamine transporters. J Cereb Blood Flow Metab 2016;36:2122-33.
    [2016]
  • 31. Seo J, Yu J, Suh H, Kim M, Cho S. Fibroblast growth factor-2 induced by enriched environment enhances angiogenesis and motor function in chronic hypoxic-ischemic brain injury. PLoS One 2013;8:e74405.
    [2013]
  • 30. Cho S, Suh H, Yu J, Kim H, Seo J, Seo C. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2016;17.
    [2016]
  • 3. Baldassarro VA, Sanna M, Bighinati A, Sannia M, Gusciglio M, Giardino L, et al. A Time-Course Study of the Expression Level of Synaptic Plasticity-Associated Genes in Un-Lesioned Spinal Cord and Brain Areas in a Rat Model of Spinal Cord Injury: A Bioinformatic Approach. Int J Mol Sci 2021;22.
  • 29. Kanehisa M. Molecular network analysis of diseases and drugs in KEGG. Methods Mol Biol 2013;939:263-75.
    [2013]
  • 28. Jiao X, Sherman B, Huang da W, Stephens R, Baseler M, Lane H, et al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 2012;28:1805-6.
    [2012]
  • 27. Won Y, Lee M, Choi Y, Ha Y, Kim H, Kim D, et al. Elucidation of Relevant Neuroinflammation Mechanisms Using Gene Expression Profiling in Patients with Amyotrophic Lateral Sclerosis. PLoS One 2016;11:e0165290.
    [2016]
  • 26. Kim M, Yu J, Lee M, Kim A, Jo M, Kim M, et al. Differential Expression of Extracellular Matrix and Adhesion Molecules in Fetal-Origin Amniotic Epithelial Cells of Preeclamptic Pregnancy. PLoS One 2016;11:e0156038.
    [2016]
  • 25. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 1993;15:532-4, 6-7.
    [1993]
  • 24. Perkins JR, Antunes-Martins A, Calvo M, Grist J, Rust W, Schmid R, et al. A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat. Mol Pain 2014;10:7.
    [2014]
  • 23. Duan H, Ge W, Zhang A, Xi Y, Chen Z, Luo D, et al. Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 2015;112:13360-5.
    [2015]
  • 22. Chen G, Fang X, Yu M. Regulation of gene expression in rats with spinal cord injury based on microarray data. Mol Med Rep 2015;12:2465-72.
    [2015]
  • 21. Song G, Cechvala C, Resnick D, Dempsey R, Rao V. GeneChip analysis after acute spinal cord injury in rat. J Neurochem 2001;79:804-15.
    [2001]
  • 20. Bareyre FM, Schwab ME. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 2003;26:555-63.
    [2003]
  • 19. Di Giovanni S, de Biase A, Yakovlev A, Finn T, Beers J, Hoffman E, et al. In vivon and in vitro characterization of novel neuronal plasticity factors identified following spinal cord injury. J Bio Chem 2004;280:2084-91.
    [2004]
  • 18. Gulino R, Dimartino M, Casabona A, Lombardo S, Perciavalle V. Synaptic plasticity modulates the spontaneous recovery of locomotion after spinal cord hemisection. Neurosci Res 2007;57:148-56.
    [2007]
  • 17. Shin H, Kim H, Kwon M, Hwang D, Lee K, Kim B. Molecular and cellular changes in the lumbar spinal cord following thoracic injury: regulation by treadmill locomotor training. PLoS One 2014;9:e88215.
    [2014]
  • 16. Bayat M, Sharifi MD, Haghani M, Shabani M. Enriched environment improves synaptic plasticity and cognitive deficiency in chronic cerebral hypoperfused rats. Brain Res Bull 2015;119:34-40.
    [2015]
  • 15. Lee M, Yu J, Kim J, Seo J, Park E, Kim C, et al. Alteration of synaptic activity-regulating genes underlying functional improvement by longterm exposure to an enriched environment in the adult brain. Neurorehabil Neural Repair 2013;27:561-74.
    [2013]
  • 14. Zhu H, Zhang J, Sun H, Zhang L, Liu H, Zeng X, et al. An enriched environment reverses the synaptic plasticity deficit induced by chronic cerebral hypoperfusion. Neurosci Lett 2011;502:71-5.
    [2011]
  • 13. Pan L, Tan B, Tang W, Luo M, Liu Y, Yu L, et al. Combining task-based rehabilitative training with PTEN inhibition promotes axon regeneration and upper extremity skilled motor function recovery after cervical spinal cord injury in adult mice. Behav Brain Res 2021;405:113197.
  • 12. Regehr WG. Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol 2012;4:a005702.
    [2012]
  • 11. Yang Y, Calakos N. Presynaptic long-term plasticity. Front Synaptic Neurosci 2013;5:8.
    [2013]
  • 10. Rosenmund C, Rettig J, Brose N. Molecular mechanisms of active zone function. Curr Opin Neurobiol 2003;13:509-19.
    [2003]
  • 1. Lazarevic V, Pothula S, Andres-Alonso M, Fejtova A. Molecular mechanisms driving homeostatic plasticity of neurotransmitter release. Front Cell Neurosci 2013;7:244.
    [2013]