Single-atom catalyst in 2D transition metal dichalcogenide for efficient hydrogen evolution

논문상세정보
' Single-atom catalyst in 2D transition metal dichalcogenide for efficient hydrogen evolution' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • density functional theory calculations
  • hydrogen evolution reaction
  • molybdenum disulfide
  • single atom catalyst
  • transition metal dichalcogenides
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
94 0

0.0%

' Single-atom catalyst in 2D transition metal dichalcogenide for efficient hydrogen evolution' 의 참고문헌

  • P. Materials for hydrogen storage : Past , present , and future
    Jena 206-211 [2011]
  • L. E. Reducing greenhouse gas emissions and improving air quality : Two global challenges
    Erickson 36 , 982-988 , 12665 . [2017]
  • K. N. Electrodialysis water splitting technology
    Mani 58 , 117-138 . [1991]
  • H. Atomic layer deposition of metal and nitride thin films : Current research efforts and applications for semiconductor device processing .
    Kim 21 , 2231-2261 . [2003]
  • E. Addressing the fundamental materials challenges in advanced solardriven water splitting technologies
    Miller 253 [2017]
  • C. Chemical technology - Application highlights - Water splitting .
    Boothby 132 , I90-I90 . [2007]
  • 99.. Cheng, N.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T.-K.; Liu, L.-M.; Botton, G. A.; Sun, X. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638 .
  • 98. Kornienko, N.; Resasco, J.; Becknell, N.; Jiang, C.-M.; Liu, Y.-S.; Niel, K.; Sun, X.; Guo, J.; Leone, S. R.; Yang, P. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. A. Chem. Soc. 2015, 137, 7448-7455.
    [2015]
  • 97. Liu, D.; Li, X.; Chen, S.; Yan, H.; Wang, C.; Wu, C.; Haleem, Y. A.; Duan, S.; Lu, J.; Ge, B.; Ajayan, P. M.; Luo, Y.; Jiang, J.; Song, L. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512-518.
  • 96. Guimaraes, R. R.; Goncalves, J. M.; Bjorneholm, O.; Araujo, C. M.; Brito, A. M.; Araki, K.; Methods for electrocatalysis: Advanced Materials and Allied Applications 2020, 67-111, Springer International Publishing.
  • 95. Menon, D.; Devadas, M. S. Engaging preservice secondary science teachers in an NGSS-based energy lesson: A nanoscience context. J. Chem. Edu. 2019, 96, 528-534.
    [2019]
  • 94. Liu, Y.; Wu, J.; Hackenberg, K. P.; Zhang, J.; Wang, Y. M.; Yang, Y.; Keyshar, K.; Gu, J.; Ogitsu, T.; Vajtai, R.; Lou, J.; Ajayan, P. M.; Wood, B. C.; Yakobson, B. I. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2017, 2, 17127.
  • 93. Er, D.; Ye, H.; Frey, N. C.; Kumar, H.; Lou, J.; Shenoy, V. B. Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides. Nano Lett. 2018, 18, 3943-3949.
    [2018]
  • 92. Boandoh, S.; Agyapong-Fordjour, F. O.-T.; Choi, S. H.; Lee, J. S.; Park, J.-H.; Ko, H.; Han, G.; Yun, S. J.; Park, S.; Kim, Y.-M.; Yang, W.; Lee, Y. H.; Kim, S. M.; Kim, K. K. Wafer-Scale van der Waals heterostructures with ultraclean interfaces via the aid of viscoelastic polymer. ACS Appl. Mater. Inter. 2019, 11, 1579-1586.
  • 91. Ling, F.; Kang, W.; Jing, H.; Zeng, W.; Chen, Y.; Liu, X.; Zhang, Y.; Qi, L.; Fang, L.; Zhou, M. Enhancing hydrogen evolution on the basal plane of transition metal dichacolgenide van der Waals heterostructures. npj Comp. Mater. 2019, 5, 20.
    [2019]
  • 90. Noh, S. H.; Hwang, J.; Kang, J.; Seo, M. H.; Choi, D.; Han, B. Tuning the catalytic activity of heterogeneous two-dimensional transition metal dichalcogenides for hydrogen evolution. J. Mater. Chem. A 2018, 6, 20005-20014.
    [2018]
  • 9. Badal, F. R.; Das, P.; Sarker, S. K.; Das, S. K. A survey on control issues in renewable energy integration and microgrid. Prot. Contr. Mod. Pow. 2019, 4, 01228.
    [2019]
  • 89. Xiong, Q.; Zhang, X., Wang, H.; Liu, G., Wang, G.; Zhang, H.; Zhao, H. Onestep synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem. Commun. 2018, 54, 3859-3862.
    [2018]
  • 88. Yang, Q.; Wang, Z.; Dong, L.; Zhao, W.; Jin, Y.; Fang, L.; Hu, B.; Dong, M. Activating MoS2 with super-high nitrogen-doping concentration as efficient catalyst for hydrogen evolution reaction. J. Phys. Chem. C 2019, 123, 10917-10925.
    [2019]
  • 87. Yu, W.; Li, J.; Herng, T. S.; Wang, Z.; Zhao, X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J.; Chen, Z.; Chen, Z.; Li, Z.; Lu, J.; Pennycook, S. J.; Feng, Y. P.; Ding, J.; Loh, K. P. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.
  • 86. Yang, J.; Mohmad, A. R.; Wang, Y.; Fullon, R.; Song, X.; Zhao, F.; Bozkurt, I.; Augustin, M.; Santos, E. J. G.; Shin, H. S.; Zhang, W.; Voiry, D.; Jeong, H. Y.; Chhowalla, M. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 2019, 18, 1309-1314.
  • 85. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, aad4998.
    [2017]
  • 84. Lee, J.; Kim, C.; Choi, K.; Seo, J.; Choi, Y.; Choi, W.; Kim, Y.-M.; Jeong, H. Y.; Lee, J. H.; Kim, G.; Park, H. In-situ coalesced vacancies on MoSe2 mimicking noble metal: Unprecedented Tafel reaction in hydrogen evolution. Nano Energy 2019, 63, 103846.
  • 83. Li, G.; Chen, Z.; Li, Y.; Zhang, D.; Yang, W.; Liu, Y.; Cao, L. Engineering substrate interaction to improve hydrogen evolution catalysis of monolayer MoS2 films beyond Pt. ACS Nano 2020 14, 1707-1714.
    [2020]
  • 82. Yu, Y.; Huang, S.-Y.; Li, Y.; Steinmann, S. N.; Yang, W.; Cao, L. Layerdependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553-558.
    [2014]
  • 81. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Norskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. A. Chem. Soc. 2005, 127, 5308- 5309.
    [2005]
  • 80. Liang, H.; Shi, H.; Zhang, D.; Ming, F.; Wang, R.; Zhuo, J.; Wang, Z. Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem. Mater. 2016, 28, 5587-5591.
    [2016]
  • 79. Voiry, D.; Chhowolla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano 2018, 12, 9635-9638.
    [2018]
  • 78. Miao, J.; Xiao, F.-X.; Yang, H. B.; Khoo, S. Y.; Chen, J.; Fan, Z.; Hsu, Y.-Y.; Chen, H. M.; Zhang, H.; Zhang, B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 2015, 1, e1500259.
  • 77. Ojha, K., Saha, S., Dagar, P. and Ganguli, A. K. Nanocatalysts for hydrogen evolution reactions. Phys. Chem. Chem. Phys. 2018, 20, 6777-6799.
    [2018]
  • 76. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.
    [2015]
  • 75. Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 160583.
    [2017]
  • 74. Cheng, C.-C.; Lu, A.-Y.; Tseng, C.-C.; Yang, X.; Hedhili, M. N.; Chen, M.-C.; Wei, K.-H.; Li, L.-J. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy 2016, 30, 846-852.
    [2016]
  • 73. Ekspong, J.; Sharifi, T.; Shchukarev, A.; Klechikov, A.; Wagberg, T.; Gracia- Espino, E. Stabilizing active edge sites in semicrystalline molybdenum sulfide by anchorage on nitrogen-doped carbon nanotubes for hydrogen evolution reaction. Adv. Funct. Mater. 2016, 26, 6766-6776.
    [2016]
  • 72. Yang, J.; Wang, Y.; Lagos, M. J.; Manichev, V.; Fullon, R.; Song, X.; Voiry, D.; Chakraborty, S.; Zhang, W.; Batson, P. E.; Feldman, L.; Gustafsson, T.; Chhowalla, M. Single atomic vacancy catalysis. ACS Nano 2019, 13, 9958-9964.
    [2019]
  • 71. Zhu, J.; Wang, Z. -C.; Dai, H.; Wang, Q.; Yang, R.; Yu, H.; Liao, M.; Zhang, J.; Chen, W.; Wei, Z.; Li, N.; Du, L.; Shi, D.; Wang, W.; Zhang, L., Jiang, Y.; Zhang, G. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat. Commun. 2019, 10, 1348.
  • 70. Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850-855.
  • 7. Wendling, Z. A.; Attari, S. Z.; Carley, S. R.; Krause, R. M.; Warren, D. C.; Rupp, J. A.; Graham, J. D. On the importance of strengthening moderate beliefs in climate science to foster support for immediate action. Sustainability 2013, 5, 5153- 5170.
    [2013]
  • 69. Huang, X.; Leng, M.; Xiao, W.; Li, M.; Ding, J.; Tan, T. L.; Lee, W. S. V.; Xue, J. Activating basal planes and S-terminated edges of MoS2 toward More efficient hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1604943.
    [2017]
  • 68. Zhang, W.; Liao, X.; Pan, X.; Yan, M.; Li, Y.; Tian, X.; Zhao, Y.; Xu, L.; Mai, L. Superior hydrogen evolution reaction performance in 2H-MoS2 to that of 1T Phase. Small 2019, 15, 1900964.
    [2019]
  • 67. Jaksic, M. M. Volcano plots along the periodic table, their causes and consequences on electrocatalysis for hydrogen electrode reactions. J. New. Mat. Electr. Sys. 2000, 3, 153-168.
    [2000]
  • 66. Li, Y.; Chu, F.; Liu, Y.; Kong, Y.; Tao, Y.; Li, Y.; Qin, Y. An ultrafine ruthenium nanocrystal with extremely high activity for the hydrogen evolution reaction in both acidic and alkaline media. Chem. Commun. 2018, 54, 13076-13079.
    [2018]
  • 65. Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vazquez- Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruna, H. D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. A. Chem. Soc. 2004, 126, 4043-4049.
    [2004]
  • 64. Lee, D.; Kim, Y.; Kwon, Y.; Lee, J.; Kim, T. -W.; Noh, Y.; Kim, W. B.; Seo, M. H.; Kim, K.; Kim, H. J. Boosting the electrocatalytic glycerol oxidation performance with highly-dispersed Pt nanoclusters loaded on 3D graphene-like microporous carbon. Appl. Catal. B. Environ. 2019, 245, 555-568.
  • 63. Yu, W. L.; Zhe, C.; Shitao, Y.; Junwei, D.; Yuling, S.; Fusheng, L.; Ming, L. Highly dispersed Pt catalyst supported on nanoporous carbon derived from waste PET bottles for reductive alkylation. RSC Adv. 2019, 9, 31092-31101.
    [2019]
  • 62. Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J. and Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. of Chem. Res. 2013, 46, 1740-1748.
    [2013]
  • 61. Qiao, B. T.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt-1/FeOx. Nat. Chem. 2011, 3, 634-641.
    [2011]
  • 60. Liu, D.; He, Q.; Ding, S.; Song, L. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy Mater. 2020, 10, 2001482.
    [2020]
  • 6. Sparkman, G.; Attari, S. Z. Credibility, communication, and climate change. How lifestyle inconsistency and do-gooder derogation impact decarbonization advocacy. Energ. Res. Soc. Sci. 2020, 59, 101290.
    [2020]
  • 59. Wang, A.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018 2, 65-81.
    [2018]
  • 58. Pu, Z.; Amiinu, I. S.; Cheng, R.; Wang, P.; Zhang, C.; Mu, S.; Zhao, W.; Su, F.; Zhang, G.; Liao, S.; Sun, S. Single-atom catalysts for electrochemical hydrogen evolution reaction: Recent advances and future perspectives. Nano-Micro Lett. 2020, 12, 21.
    [2020]
  • 57. Yan, M.; Pan, X.; Wang, P.; Chen, F.; He, L.; Jiang, G.; Wang, J.; Liu, J. Z.; Xu, X.; Liao, X.; Yang, J.; Mai, L. Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett. 2017, 17, 4109- 4115.
  • 56. Huang, Y.; Sun, Y.; Zheng, X.; Aoki, T.; Pattengale, B.; Huang, J.; He, X.; Bian, W., Younan, S.; Williams, N.; Hu, J.; Ge, J.; Pu, N.; Yan, X.; Pan, X.; Zhang, L.; Wei, Y.; Gu, J. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 2019, 10, 982.
  • 55. Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical hydrogen evolution from MoS2 nanocatalysts. Science 2007, 317, 100.
    [2007]
  • 54. Cheng, L.; Huang, W.; Gong, Q.; Liu, C.; Liu, Z.; Li, Y.; Dai, H. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew. Chem. Intl. Ed. 2014, 53, 7860-7863.
    [2014]
  • 53. Liu, T.; Ding, J.; Su, Z.; Wei, G. Porous two-dimensional materials for energy applications: Innovations and challenges. Mater. Today Energ. 2017, 6, 79-95.
    [2017]
  • 52. Balaji, Y.; Smets, Q.; Szabo, A.; Mascaro, M.; Lin, D.; Asselberghs, I.; Radu, I.; Luisier, M.; Groeseneken, G. MoS2/MoTe2 Heterostructure tunnel FETs using gated schottky contacts. Adv. Funct. Mater. 2020, 30, 1905970.
    [2020]
  • 51. Boandoh, S.; Choi, S. H.; Park, J. H.; Park, S. Y.; Bang, S.; Jeong, M. S.; Lee, J. S.; Kim, H. J.; Yang, W.; Choi, J. -Y.; Kim, S. M.; Kim, K. K. A novel and facile route to synthesize atomic-layered MoS2 film for large-area electronics. Small 2017, 13, 1701306.
  • 50. Yuan, N. F. Q.; Mak, K. F.; Law, K. T. Possible topological superconducting phases of MoS2. Phys. Rev. Lett. 2014, 113, 097001.
    [2014]
  • 5. Lundberg, D. C.; Tang, J. A.; Attari, S. Z. Easy but not effective. Why "turning off the lights" remains a salient energy conserving behaviour in the United States. Energ. Res. Soc. Sci. 2019, 58, 101257.
    [2019]
  • 49. Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489-1492.
    [2014]
  • 48. Shi, S.; Sun, Z.; Hu, Y. H. Synthesis, stabilization and applications of 2- dimensional 1T metallic MoS2. J. Mater. Chem. A. 2018, 6, 23932-23977.
    [2018]
  • 47. Cui, X.; Kong, Z.; Gao, E.; Huang, D.; Hao, Y.; Shen, H.; Di, C.; Xu, Z.; Zheng, J.; Zhu, D. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 2018, 9, 1301.
    [2018]
  • 46. Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116-130.
    [2017]
  • 45. Yan, J.; Rath, A.; Wang, H.; Yu, S. H.; Pennycook, S. J.; Chua, D. H. Study of unique and highly crystalline MoS2/MoO2 nanostructures for electro chemical applications. Mater. Resear. Lett. 2019, 7, 275-281.
    [2019]
  • 44. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G.; Ross, P. N; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.
    [2007]
  • 43. Lu, B.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P.; Li, N.; Gao, P.; Ping, Y.; Chen, S. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.
  • 42. Qi, K.; Yu, S.; Wang, Q.; Zhang, W.; Fan, J.; Zheng, W.; Cui, X. Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity. J. Mater.. Chem. A 2016, 4, 4025-4031.
    [2016]
  • 41. Deng, J.; Li, H.; Xiao, J.; Tu, Y.; Deng, D.; Yang, H.; Tian, H.; Li, J.; Ren, P.; Bao, X. Triggering the electrocatalytic hydrogen evolution activity of the inert twodimensional MoS2 surface via single-atom metal doping. Energy and Environ. Sci. 2015, 8, 1594-1601.
  • 40. Zeng, Q.; Xia, K.; Zhang, Y.; Wu, T. Z. Well controlled 3D iridium oxide/platinum nanocomposites with greatly enhanced electrochemical performances. Adv. Mater. Interfaces 2019, 6, 1900356.
    [2019]
  • 4. Attari, S. Z.; DeKay, M. L.; Davidson, C. I.; De Bruin, W. B. Public perceptions of energy consumption and savings. P. Natl. Acad. Sci. 2010, 107, 16054-16059.
    [2010]
  • 39. Povia, M.; Abbot, D. F.; Herranz, J.; Heinritz, A.; Lebedev, D.; Kim, B. J.; Fabbri, E.; Patru, A.; Kohlbrecher, J.; Schaublin, R.; Nachtegaal, M.; Coperet, C.; Schimidt, T. J. Operando X-ray characterization of high surface area iridium oxides to decouple their activity losses for the oxygen evolution reaction. Energy and Environ. Sci. 2019, 12, 3038-3052.
  • 38. Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L M.; Pielnhofer, F.; Scheurer, C.; Muller, K.; Starke, U.; Reuter, K.; Lotsch, B. V. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.
  • 37. Chen, J. Y.; Cui, P.; Zhao, G.; Rui, K.; Lao, M.; Chen, Y.; Zheng, X.; Jiang, Y.; Pan, H.; Dou, S. X.; Sun, W. Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. Angew. Chem. Int. Ed. 2019, 58, 12540-12544.
  • 36. Bohm, D.; Beetz, M.; Schuster, M.; Peters, K.; Hufnagel, A. G.; Doblinger, M.; Boller, B.; Bein, T.; Fattakhova-Rohlfing, D. Efficient OER catalyst with low Ir volume density obtained by homogeneous deposition of iridium oxide nanoparticles on macroporous antimony-doped tin oxide support. Adv. Funct. Mater. 2020, 30,1906670.
    [2020]
  • 35. Bernt, M.; Siebel, A.; Gasteiger, H. A. Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings. J. Electrochem. Soc. 2018, 165, F305-F314.
    [2018]
  • 34. Badwal, S. P. S.; Giddey, S. S.; Munnings, C.; Bhatt, A. I.; Hollenkamp, A. F. Emerging electrochemical energy conversion and storage technologies. Front. Chem. 2014, 2, 79.
    [2014]
  • 33. Sun, Q. M.; Wang, N.; Xu, Q.; Yu, J. H. Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials. Adv. Mater. 2020, 2001818.
    [2020]
  • 32. Lai, Q. W.; Sun, Y.;Wang, T.; Modi, P.; Cazorla, C.; Demirci, U. B.; Fernandez, J. R. A.; Leardini, F.; Aguey-Zinsou, K. F. How to design hydrogen storage materials? Fundamentals, synthesis, and storage tanks. Adv. Sustain. Syst. 2019, 3, 1900043.
    [2019]
  • 31. Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energ. 2019, 44, 11901-11919.
    [2019]
  • 3. Shrum, T. R.; Markowitz, E.; Buck, H.; Gregory, R.; Linden, S.; Attari, S. Z.; Boven, L. V. Behavioural frameworks to understand public perceptions of and risk response to carbon dioxide removal. Interface Focus 2020, 10, 20200002.
    [2020]
  • 29. Huang, S. P.; Shufu, D.; Wang, Z.; Jiang, Q.; Jiang, H.; Su, W.; Feng, Q.; Huang, T.; Yuan, M.; Ren, M.; Chen, X. Affecting factors and application of the stable hydrogen isotopes of alkane gases. Petrol. Explor. Dev. 2019, 46, 518-530.
  • 28. Alsubaie, A. A.; Fowler, M.; Elkamel, A. Hydrogen supply via power-to-gas application in the renewable fuels regulations of petroleum fuels. Can. J. Chem. Eng. 2019, 97, 1999-2008.
    [2019]
  • 27. Moreira, J.; Lima, V. B.; Goulart, L. A.; Lanza, M. R. V. Electrosynthesis of hydrogen peroxide using modified gas diffusion electrodes (MGDE) for environmental applications: Quinones and azo compounds employed as redox modifiers. Appl. Catal. B. Environ 2019, 248, 95-107.
    [2019]
  • 26. Ding, S. P.; Hulsey, M. J.; Perez-Ramirez, J.; Yang, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897-2929.
    [2019]
  • 25. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorf, I.; Norskov, J., K.; Jaramillo, T., F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, aad4998.
    [2017]
  • 24. Ugwu, A.; Donat, F.; Zaabout, A.; Muller, C.; Albertsen, K.; Cloete, S.; Diest, G.; Amina, S. Hydrogen production by water splitting using gas switching technology. J. Powd. Technol. 2020, 370, 48-63.
    [2020]
  • 23. Terada, A.; Iwatsuki, J.; Ishikura, S.; Noguchi, H.; Kubo, S.; Okuda, H.; Kasahara, S.; Tanaka, N.; Ota, H.; Onuki, K.; Hino, R. Development of hydrogen production technology by thermochemical water splitting IS process - Pilot test plan. J. Nucl. Sci. Technol. 2007, 44, 477-482.
  • 22. Sathre, R.; Greenblatt, J. B.; Walczak, K.; Sharp, I. D.; Stevens, J. C.; Ager, J.; W.; Houle, F., A. Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology. Energ. and Environ. Sci. 2016, 9, 803-819.
    [2016]
  • 21. Voldsund, M.; Jordal, K.; Anantharaman, R. Hydrogen production with CO2 capture. Int. J. Hydrogen Energ. 2016, 41, 4969-4992.
    [2016]
  • 2. Miniard, D.; Kantenbacher, J.; Attari, S. Z. Shared vision for a decarbonized future energy system in the United States. P. Natl. Acad. Sci. 2020, 117, 7108-7114.
    [2020]
  • 19. Tokimatsu, K.; Hook, M.; McLellan, B.; Wachtmeister, H.; Murakami, S.; Yasuoka, R.; Nishio, M. Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy. Appl. Energ. 2018, 225, 1158-1175.
    [2018]
  • 17. Franchi, G.; Capocelli, M.; De Falco, M.; Piemonte, V.; Barba, D. Hydrogen production via steam reforming: A critical analysis of MR and RMM technologies. Membranes 2020, 10, 3390.
    [2020]
  • 16. Gnanapragasam, N. V.; Reddy, B. V.; Rosen, M. A. Hydrogen production from coal gasification for effective downstream CO2 capture. Int. J. Hydrogen Energ. 2010, 35, 4933-4943.
    [2010]
  • 15. Santos, D. M. F.; Sequeira, C. A. C.; Figueiredo, J. L. Hydrogen production by alkaline water electrolysis. Química Nova 2013, 36, 1176-1193.
    [2013]
  • 13. Boettcher, S. W. Benchmarks and protocols for electrolytic, photoelectrochemical, and solar-thermal water-splitting technologies. ACS Energy Lett. 2020, 5, 70-71.
    [2020]
  • 120. B. Song, S.K. Yun, J. Jiang, K. Beach, W. Choi, Y. Kim, H. Terrones, Y. J. Song, D. L. Duong, Y. H. Lee, Evidence of itinerant holes for long-range magnetic order in tungsten diselenide semiconductor with vanadium dopants Phys. Rev. B 2021, 103, 094432.
  • 12. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332-337.
    [2001]
  • 119. Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D.; Wu, C.; Qin, Z.; Bao, J., Yu, Y.; Chen; S.; Ren, Z. Non-noble metal-nitride based electrocatalysts for highperformance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.
    [2019]
  • 118. Voiry, D.; Fullon, R.; Yang, J.; Silva, C. C. C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G.; Mohite, A. D.; Dong, L.; Er, D.; Shenoy, V. B.; Asefa, T.; Chhowalla, M. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003-1009.
  • 117. Zhou, H; Yu, F.; Sun, J.; Zhu, H.; Mishra, I. K.; Chen, S.; Ren, Z. Highly efficient hydrogen evolution from edge-oriented WS2(1–x)Se2x particles on threedimensional porous NiSe2 foam. Nano Lett. 2016, 16, 7604-7609.
    [2016]
  • 116. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.
    [2005]
  • 115. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
    [1994]
  • 114. Román-Pérez, G.; Soler, J. M. Efficient Implementation of a van der Waals Density Functional: Application to double-wall carbon nanotubes. Phys. Rev. Lett. 2009, 103, 096102.
    [2009]
  • 113. Perdew, J. P., Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
    [1996]
  • 112. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169- 11186.
    [1996]
  • 111. Cheng, C.-C.; Lu, A.-Y.; Tseng, C.-C.; Yang, X.; Hedhili, M. N.; Chen, M.-C.; Wei, K.-H.; Li, L. J. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy 2016, 30, 846-852.
    [2016]
  • 110. He, Y.; Tang, P.; Hu, Z.; He, Q.; Zhu, C.; Wang, L.; Zeng, Q.; Golani, P.; Gao, G.; Fu, W.; Huang, Z.; Gao, C.; Xia, J.; Wang, X.; Wang, X.; Zhu, C.; Ramasse, Q. M.; Zhang, A.; An, B.; Zhang, Y.; Marti-Sanchez, S.; Morante, J. R; Wang, L.; Tay, B. K.; Yakobson, B. I.; Trampert, A.; Zhang, H.; Wu, M.; Wang, Q. J.; Arbiol, J.; Liu, Z. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11, 57.
  • 11. Ferrario, A. M.; Vivas, F. J.; Manzano, F. S.; Andujar, J. M.; Bocci, E.; Martirano, L. Hydrogen vs. battery in the long-term operation. A comparative between energy management strategies for hybrid renewable microgrids. Electronics 2020, 9, 698.
    [2020]
  • 109. Zhang, Y.; Chen, X.; Huang, Y.; Zhang, C.; Li, F.; Shu, H. The role of intrinsic defects in electrocatalytic activity of monolayer VS2 basal planes for the hydrogen evolution reaction. J. Phys. Chem. C 2017, 121, 1530-1536.
    [2017]
  • 108. Tsai, C.; Chan, K.; Nørskov, J. K.; Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 2015, 640, 133-140.
    [2015]
  • 107. Boochani, A.; Veisi, S. The vanadium effect on electronic and optical response of MoS2 graphene-like: Using DFT. Silicon 2018, 10, 2855-2863.
    [2018]
  • 106. Lau, T. H. M.; Lu, X.; Kulhavy, J.; Wu, S.; Lu, L.; Wu, T.-S.; Kato, R.; Foord, J. S.; Soo, Y.-L.; Suenega, K.; Tsang, S. C. E. Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution. Chem. Sci. 2018, 9, 4769-4776.
  • 105. Luo, Y.; Zhang, S.; Pan, H.; Xiao, S.; Guo, Z.; Tang, L.; Khan, U.; Ding, B.- F.; Li, M.; Cai, Z.; Zhao, Y.; Lv, Wei, Feng, Q.; Zou, X.; Lin, J.; Cheng, H.-M.; Liu, B. Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution. ACS Nano 2020, 14, 767-776.
  • 103. Leskelä, M.; Ritala, M. Atomic layer deposition chemistry: Recent developments and future challenges. Angew. Chemie. Int'l. Ed. 2003, 42, 5548-5554.
    [2003]
  • 102. Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, Li, J.; Wei, S.; Lu, J. Singleatom Pd/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-Butadiene. J. A. Chem. Soc. 2015, 137, 10484-10487.
    [2015]
  • 101. Sun, S.; Zhang, G.; Gauquelin, N.; Chen, N.; Zhou, J.; Yang, S.; Chen, W.; Meng, X.; Geng, D.; Banis, M. N.; Li, R.; Ye, S.; Knights, S.; Botton, G. A.; Sham, T.-K.; Sun, X. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1775.
  • 100. Zhang, L.; Zhao, Z.-J.; Banis, M. N.; Li, L.; Zhao, Y.; Song, Z.; Wang, Z.; Sham, T.-K.; Li, R.; Zheng, M.; Gong, J.; Sun, X. Selective atomic layer deposition of RuOx catalysts on shape-controlled Pd nanocrystals with significantly enhanced hydrogen evolution activity. J. Mater. Chem. A 2018, 6, 24397-24406.
  • 10. Chaube, A.; Chapman, A.; Shigetomi, Y.; Huff, K.; Stubbins, J. The role of hydrogen in achieving long term Japanese energy system goals. Energies 2020, 13, 4539.
    [2020]
  • 1. Attari, S. Z.; Krantz, D. H.; Weber, E. U. Climate change communicators' carbon footprints affect their audience's policy support. Climat. Change 2019, 154, 529-545.
    [2019]