도심지 정밀 측위를 위한 다중 GNSS 및 다중 센서 결합 Kalman-Hatch 듀얼 필터 설계 = Multi-GNSS and Multi-Sensor Integrated Kalman-Hatch Dual-Filter for Precise Positioning in Urban Canyons

김라우 2022년
논문상세정보
' 도심지 정밀 측위를 위한 다중 GNSS 및 다중 센서 결합 Kalman-Hatch 듀얼 필터 설계 = Multi-GNSS and Multi-Sensor Integrated Kalman-Hatch Dual-Filter for Precise Positioning in Urban Canyons' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Hatch Filter
  • Multi-Sensor
  • Urban Positioning
  • gnss
  • ins
  • kalman filter
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
459 0

0.0%

' 도심지 정밀 측위를 위한 다중 GNSS 및 다중 센서 결합 Kalman-Hatch 듀얼 필터 설계 = Multi-GNSS and Multi-Sensor Integrated Kalman-Hatch Dual-Filter for Precise Positioning in Urban Canyons' 의 참고문헌

  • 경사각을 갖는 관성항법시스템 초기 정밀정렬의 오차 분석
    조성윤 제어로봇시스템학회 논문지, 14(6), 595- 602 [2008]
  • Variability in a homogeneous global ocean forced by barometric pressure . Dynamics of atmospheres and oceans
    Ponte , R. M. 18 ( 3-4 ) , 209-234 . [1993]
  • The synergism of GPS code and carrier measurements
    Hatch , R. Vol . 2 , pp . 1213-1231 [1983]
  • Strapdown inertial navigation integration algorithm design part 2 : Velocity and position algorithms . Journal of Guidance , Control , and dynamics
    Savage , P. G. 21 ( 2 ) , 208-221 . [1998]
  • Strapdown inertial navigation integration algorithm design part 1 : Attitude algorithms . Journal of guidance , control , and dynamics
    Savage , P. G. 21 ( 1 ) , 19-28 . [1998]
  • Status , perspectives and trends of satellite navigation
    Hein , G. W. 1 ( 1 ) , 1-12 . [2020]
  • MPU-6000 and MPU 6050 Product Specification Revision 3.4
  • Inertial navigation systems analysis
  • INSGPS 속도계 결합 항법시스템의 구성 및 성능분석 (Doctoral dissertation
    박영범 서울대학교 대학원) [2001]
  • Hatch 필터 기반 GPS/BeiDou/기압 고도계의 결합.
    김라우 국내석사학위논문 한국항공대학교 일반대학원, 경기도 [2017]
  • Data sheet BMP180 Digital pressure sensor .
  • Combined orbits and clocks from IGS second reprocessing
    Griffiths , J 93 , 177-195. https : //doi.org/10.1007/s00190-018-1149-8 [2019]
  • Collaborative vision-integrated pseudorange error removal : Team-estimated differential GNSS corrections with no stationary reference receiver .
    Rife , J . 13 ( 1 ) , 15-24 . [2011]
  • Basic concept of GPS and its applications
    Hoque , M. Z 21 ( 3 ) , 31- 37 [2016]
  • Aerospace avionics systems : a modern synthesis
  • 9. Suwandi, B., Pinastiko, W. S., & Roestam, R. (2019, August). OBD-II Sensor Approaches for The IMU and GPS Based Apron Vehicle Positioning System. In 2019 International Conference on Sustainable Engineering and Creative Computing (ICSECC) (pp. 251-254). IEEE.
    [2019]
  • 89. Kim, L., Lee, Y. D., & Lee, H. K. (2021). Correction of Time and Coordinate Systems for Interoperability of Multi -GNSS. Journal of Positioning, Navigation, and Timing, 10(4), 279-289.
  • 88. Jan Van Sickle, GPS and GNSS for Geospatial Profess ionals, John A. Dutton e-Education Institute, College of Earth and Mineral Sciences, The Pennsylvania State University; V3 Consultants, Lakewood, CO [Internet], available from: https://www.e-education.psu.edu/geog862/ node/1728
  • 86. Brown, R. G., & Hwang, P. Y. (1997). Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions. Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions.
    [1997]
  • 82. Garg, S. C., Morrow, L. D., & Mamen, R. (1978). Strapdown navigation technology: A literature survey. Journal of Guidance and Control, 1(3), 161-172.
    [1978]
  • 8. Chiang, K. W., Tsai, G. J., Chu, H. J., & El -Sheimy, N. (2020). Performance enhancement of INS/GNSS/Refreshed-SLAM integration for acceptable lane-level navigation accuracy. IEEE Transactions on Vehicular Technology, 69(3), 2463-2476.
    [2020]
  • 79. Kim, L. W., Yoo, W. J., & Lee, H. K. (2019, April). Position-Domain Hatch Filter for Integrated GPS/BeiDou/Altimeter. In Proceedings of the ION 2019 Pacific PNT Meeting (pp. 691-701).
    [2019]
  • 77. Ham, F. M., & Brown, R. G. (1983). Observability, eigenvalues, and Kalman filtering. IEEE Transactions on Aerospace and Electronic Systems, (2), 269-273.
    [1983]
  • 76. Ma, Y., Fang, J., Wang, W., & Li, J. (2014). Decoupled observability analyses of error states in INS/GPS integration. The Journal of Navigation, 67(3), 473-494.
    [2014]
  • 74. Wasmeier, P. 2018, Geodetic Transformations, MATLAB Central File Exchange [Internet], cited 2021 Sep 24, available from: https://www.mathworks.com/matlabcentral/fileexchange/9696- geodetic-transformations
  • 73. Yun, S., Lee, H., & Song, J. 2020, Studies on Derivation of Appropriate Geodetic System Transformation Schemes for Spatial Data, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 38, 561-571. https://doi.org/10.7848/ksgpc.2020.38.6.561
    [2020]
  • 72. Elshambaky, H. T., Kaloop, M. R., & Hu, J. W. 2018, A novel three - direction datum transformation of geodetic coordinates for Egypt using artificial neural network approach, Arabian journal of geosciences, 11, 1-14. https://doi.org/10.1007/s12517-018-3441-6
    [2018]
  • 71. Montenbruck, O., Schmid, R., Mercier, F., Steigenberger, P., Noll, C., et al. 2015, GNSS satellite geometry and attitude models, Advances in Space Research, 56, 1015-1029. https://doi.org/10.1016/j.asr.2015.06.019
    [2015]
  • 70. Yang, X., Wang, Q., & Xue, S. 2019, Random optimization algorithm on GNSS monitoring stations selection for ultra -rapid orbit determination and real -time satellite clock offset estimation, Mathematical Problems in Engineering, 2019, Article ID 75 79185. https://doi.org/10.1155/2019/7579185
    [2019]
  • 7. Abosekeen, A., Karamat, T. B., Noureldin, A., & Korenberg, M. J. (2019). Adaptive cruise control radar -based positioning in GNSS challenging environment. IET Radar, Sonar & Navigation, 13( 10), 1666-1677.
    [2019]
  • 69. International GNSS Service 2021b, Products [Internet], cited 2021 Sep 24, available from: https://igs.org/products
    [2021]
  • 68. Lewandowski, W. & Arias, E. F. 2011, GNSS times and UTC. Metrologia, 48, S219. https://doi.org/10.1088/0026-1394/48/4/S14
    [2011]
  • 67. Ma, X., Yu, K., He, X., Montillet, J. P., & Li, Q. 2020, Positioning performance comparison between GPS and BDS with data recorded at four MGEX stations, IEEE Access, 8, 147422-147438. https://doi.org/10.1109/ACCESS.2020.3015490
    [2020]
  • 66. Duan, K. & Mao, X. 2017, GPS/GLONASS/BDS multi -system fusion positioning based on optimized nonlinear filter, In 2017 24th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), St. Petersburg, Russia, 29-31 May 2017, pp.1-4. https://doi.org/10.23919/ICINS.2017.7995622
    [2017]
  • 65. Lewandowski, W. & Thomas, C. 1991, GPS time transfer, Proceedings of the IEEE, 79, 991-1000. https://doi.org/10.1109/5.84976
    [1991]
  • 64. Hachisu, H., Petit, G., & Ido, T. 2017, Absolute frequency measurement with uncertainty below 1 x 10-15 using International Atomic Time, Applied Physics B, 123, 1-5. https://doi.org/10.1007/s00340-016-6603-9
    [2017]
  • 63. Nicolini, L. & Caporali, A. 2018, Investigation on reference frames and time systems in multi -GNSS, Remote Sensing, 10, 80. https://doi.org/10.3390/rs10010080
    [2018]
  • 62. Montenbruck, O., Steigenberger, P., & Hauschild, A. 2015, Broadcast versus precise ephemerides: a multi -GNSS perspective, GPS solutions, 19, 321-333. https://doi.org/10.1007/s10291-014-0390-8
    [2015]
  • 61. International GNSS Service 2021a, MGEX Product Analysis [Internet], cited 2021 Sep 24, available from: https://igs.org/mgex/analysis
    [2021]
  • 6. Kim, S. B., Bazin, J. C., Lee, H. K., Choi, K. H., & Park, S. Y. (2011). Ground vehicle navigation in harsh urban conditions by integrating inertial navigation system, global positioning system, odomete r and vision data. IET radar, sonar & navigation, 5(8), 814-823.
    [2011]
  • 59. Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. 2016, ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, Journal of Geophysical Research: Solid Earth, 121, 6109-6131. https://doi.org/10.1002/2016JB013098
    [2016]
  • 58. Rebischung, P., Altamimi, Z., Ray, J., & Garayt, B. 2016, The IGS contribution to ITRF2014, Journal of Geodesy, 90, 611-630. https://doi.org/10.1007/s00190-016-0897-6
    [2016]
  • 57. Malys, S., Solomon, R., Drotar, J., Kawakami, T., & Johnson, T. 2021, Compatibility of Terrestrial Reference Frames used in GNSS broadcast messages during an 8 week period of 2019, Advances in Space Research, 67, 834-844. https://doi.org/10.1016/j.asr.2020.11.029
  • 56. Dick, W. R. & Thaller, D. 2020, IERS Annual Report 2018, eds. W. R. Dick & D. Thaller, International Earth Rotation and Reference Systems Service.
    [2020]
  • 55. Schuh, H. & Behrend, D. 2012, VLBI: A fascinating technique for geodesy and astrometry, Journal of Geodynamics, 61, 68-80. https://doi.org/10.1016/j.jog.2012.07.007
    [2012]
  • 54. Dow, J. M., Neilan, R. E., & Rizos, C. 2009, The internat ional GNSS service in a changing landscape of global navigation satellite systems, Journal of geodesy, 83, 191-198. https://doi.org/10.1007/s00190-008- 0300-3
    [2009]
  • 53. Pearlman, M. R., Degnan, J. J., & Bosworth, J. M. 2002, The international laser ranging service, Advances in space research, 30, 135-143. https://doi.org/10.1016/S0273-1177(02)00277-6
    [2002]
  • 52. Reil, A. “Receiving BEIDOU, GALILEO and GPS signals with MATLAB R and R&S R IQR, R&S R TSMW Application Note. appl. note, Rohde & Schwarz, 1-27.
  • 51. Bell, D. W., & Mishra, A. (2019). Navigation: Advancements & Benefits. Department of Civil Engineering, University of Ottawa
    [2019]
  • 50. European Union Agency for the Space Programme (2021). What is SBAS? The EU Space Programme. Available from: https://www.euspa.europa.eu/european-space/eu-spaceprogramme/ what-sbas
  • 5. Grejner-Brzezinska, D. A., Toth, C. K., Moore, T., Raquet, J. F., Miller, M. M., & Kealy, A. (2016). Multisensor navigation systems: A remedy for GNSS vulnerabili ties?. Proceedings of the IEEE, 104(6), 1339-1353.
    [2016]
  • 49. Toledo-Moreo, R., Zamora-Izquierdo, M. A., Ubeda-Minarro, B., & Gómez-Skarmeta, A. F. (2007). High-integrity IMM-EKF-based road vehicle navigation with low-cost GPS/SBAS/INS. IEEE Transactions on Intelligent Transportation Systems, 8(3), 491-511.
    [2007]
  • 48. Park, J. U., & Heo, M. B. (2019, September). Korea PNT Update. In 59th Meeting of the Civil GPS Service Interface Committee, Miami, Florida (pp. 16-17).
    [2019]
  • 47. Xie, J., Wang, H., Li, P., & Meng, Y. (2021). Overview of Navigation Satellite Systems. In Satellite Navigation Systems and Technologies (pp. 35-66). Springer, Singapore.
  • 46. Sośnica, K., Bury, G., Zajdel, R., Strugarek, D., Drożdżewski, M., & Kazmierski, K. (2019). Estimating global geodetic parameters using SLR observations to Galileo, GLONASS, BeiDou, GPS, and QZSS. Earth, Planets and Space, 71(1), 1-11.
    [2019]
  • 41. Lin, J., Chen, S. C., Shih, Y., & Chen, S. H. (2009). A study on remote on-line diagnostic system for vehicles by integrating the technology of OBD, GPS, and 3G. World Academy of Science, Engineering and Technology, 56, 435-441.
    [2009]
  • 40. Seo, J. W., Lee, H. K., Lee, J. G., & Park, C. G. (2006). Lever arm compensation for GPS/INS/odometer integrated system. International Journal of Control, Automation, and Systems, 4(2), 247-254.
    [2006]
  • 4. Ye, S., Wan, Z., Zeng, L., Li, C., & Zhang, Y. (2020, December). A vision-based navigation method for eVTOL final approach in urban air mobility (UAM). In 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI) (pp. 645-649). IEEE.
    [2020]
  • 39. Titterton, D., Weston, J. L., & Weston, J. (2004). Strapdown inertial navigation technology (Vol. 17). IET.
    [2004]
  • 38. Freda, P., Angrisano, A., Gaglione, S., & Troisi, S. (2015). Time - differenced carrier phases technique for precise GNSS velocity estimation. GPS Solutions, 19(2), 335-341.
    [2015]
  • 37. Sabatini, A. M., & Genovese, V. (2013). A stochastic approach to noise modeling for barometric altimeters. Sensors, 13(11), 15692 - 15707.
    [2013]
  • 35. Gill, A. E., & Niller, P. P. (1973, February). The theory of the seasonal variability in the ocean. In Deep Sea Research and Oceanographic Abstracts (Vol. 20, No. 2, pp. 141-177). Elsevier.
    [1973]
  • 34. Lee, J. Y., Kim, H. S., Choi, K. H. , Lim, J., Chun, S., & Lee, H. K. (2016). Adaptive GPS/INS integration for relative navigation. GPS solutions, 20(1), 63-75.
    [2016]
  • 33. Lee, H. K., Rizos, C., & Jee, G. I. (2005). Position domain filtering and range domain filtering for carrier -smoothed-code DGNSS: an analytical comparison. IEE Proceedings -Radar, Sonar and Navigation, 152(4), 271-276.
    [2005]
  • 31. Lee, H. K., & Rizos, C. (2003). Performance analysis of pos itiondomain Hatch filter. Submitted to the Royal Institute of Navigation Journal.
    [2003]
  • 30. Lee, H. K., Rizos, C., & Jee, I. G. (2003, July). Design and analysis of DGPS filters with consistent error covariance information. In Proceedings of 6th Intl. Symposium. on Satellite Navigation Technology Including Mobile Positioning and Location Services, Melbourne, Australia (pp. 22-25).
    [2003]
  • 3. Molina-Masegosa, R., & Gozalvez, J. (2017). LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short -range vehicle-to-everything communications. IEEE Vehicular Technology Magazine, 12(4), 30-39.
    [2017]
  • 29. Lee, H. K., & Rizos, C. (2008). Position-domain hatch filter for kinematic differential GPS/GNSS. IEEE Transactions on Aerospace and Electronic Systems, 44(1), 30-40.
    [2008]
  • 28. Bai, X., Wen, W., & Hsu, L. T. (2020). Using Sky-pointing fish-eye camera and LiDAR to aid GNSS single-point positioning in urban canyons. IET Intelligent Transport Systems, 14(8), 908-914.
    [2020]
  • 27. Kassas, Z. Z. M., Maaref, M., Morales, J. J., Khalife, J. J., & Shamei, K. (2020). Robust vehicular localization and map matching in urban environments through IMU, GNSS, and cellular signals. IEEE Intelligent Transportation Systems Magazine, 12(3), 36-52.
    [2020]
  • 26. Sun, R., Yang, Y., Chiang, K. W., Duong, T. T., Lin, K. Y., & Tsai, G. J. (2020). Robust IMU/GPS/VO integration for vehicle navigation in GNSS degraded urban areas. IEEE Sensors Journal, 20(17), 10110- 10122.
    [2020]
  • 25. Chiang, K. W., Tsai, G. J., Li, Y. H., Li, Y., & El -Sheimy, N. (2020). Navigation engine design for automated driving us ing INS/GNSS/3D LiDAR-SLAM and integrity assessment. Remote Sensing, 12(10), 1564.
    [2020]
  • 24. Wen, W., Bai, X., Zhang, G., Chen, S., Yuan, F., & Hsu, L. T. (2020). Multi-Agent Collaborative GNSS/Camera/INS Integration Aided by Inter-Ranging for Vehicular Navigation in Urban Areas. IEEE Access, 8, 124323-124338.
    [2020]
  • 23. Feng, X., Zhang, T., Lin, T., Tang, H., & Niu, X. (2020). Implementation and Performance of a Deeply-Coupled GNSS Receiver with Low-Cost MEMS Inertial Sensors for Vehicle Urban Navigation. Sensors, 20(12), 3397.
    [2020]
  • 22. Zhang, G., Wen, W., Xu, B., & Hsu, L. T. (2020). Extending Shadow Matching to Tightly-Coupled GNSS/INS Integration System. IEEE Transactions on Vehicular Technology, 69(5), 4979-4991.
    [2020]
  • 21. Shi, B., Wang, M., Wang, Y., Bai, Y., Lin, K., & Yang, F. (2021). Effect Analysis of GNSS/INS Processing Strategy for Sufficient Utilization of Urban Environment Observations. Sensors, 21(2), 620.
  • 2020 년도 무인이동체 원천기술개발사 업 연구개발계획서
  • 20. Lim, J., Yoo, W. J., Kim, L. W., Lee, Y. D., & Lee, H. K. (2018). Augmentation of GNSS by low-cost MEMS IMU, OBD-II, and digital altimeter for improved positioning in urban area. Sensors, 18(11), 3830.
    [2018]
  • 2. Chen, S., Hu, J., Shi, Y., Peng, Y., Fang, J., Zhao, R., & Zhao, L. (2017). Vehicle-to-everything (V2X) services supported by LTEbased systems and 5G. IEEE Communications Standards Magazine, 1(2), 70-76.
    [2017]
  • 18. Chowdhary, G., Johnson, E. N., Magree, D., Wu, A., & Shein, A. (2013). GPS‐denied indoor and outdoor monocular vision aided navigation and control of unmanned aircraft. Journal of field robotics, 30(3), 415-438.
    [2013]
  • 17. Adjrad, M., & Groves, P. D. (2017). Enhancing least squares GNSS positioning with 3D mapping without accurate prior knowledge. NAVIGATION, Journal of the Institute of Navigation, 64(1), 75 -91.
    [2017]
  • 16. Cai, H., Hu, Z., Huang, G., Zhu, D., & Su, X. (2018). Integration of GPS, monocular vision, and high definition (HD) map for accurate vehicle localization. Sensors, 18(10), 3270.
    [2018]
  • 15. Abosekeen, A., Iqbal, U., Noureldin, A., & Korenberg, M. J. (2020). A Novel Multi-Level Integrated Navigation System for Challenging GNSS Environments. IEEE Transactions on Intelligent Transportation Systems.
    [2020]
  • 14. Lee, T. N., & Canciani, A. J. (2020). MagSLAM: Aerial simultaneous localization and mapping using Earth's magnetic anomaly field. Navigation, 67(1), 95-107.
    [2020]
  • 13. Li, Z., Liu, Z. , & Zhao, L. (2021). Improved robust Kalman filter for state model errors in GNSS-PPP/MEMS-IMU double state integrated navigation. Advances in Space Research, 67(10), 3156-3168.
  • 12. Li, D., Jia, X., & Zhao, J. (2020). A novel hybrid fusion algorithm for low-cost GPS/INS integrated navigation system during GPS outages. IEEE Access, 8, 53984-53996.
    [2020]
  • 11. Atia, M. M., & Waslander, S. L. (2019). Map-aided adaptive GNSS/IMU sensor fusion scheme for robust urban navigation. Measurement, 131, 615-627.
    [2019]
  • 10. Chang, L., Niu, X., Liu, T., Tang, J., & Qian, C. (2019). GNSS/INS/LiDAR-SLAM integrated navigation system based on graph optimization. Remote Sensing, 11(9), 1009.
    [2019]
  • 1. Bijjahalli, S., Sabatini, R., & Gardi, A. (2019). GNSS performance modelling and augmentation for urban air mobility. Sensors, 19(19), 4209.
    [2019]