Electrical, thermal, and mechanical properties of porous silicon carbide ceramics = 다공성 탄화규소 세라믹스의 전기적, 열적, 기계적 특성

논문상세정보
' Electrical, thermal, and mechanical properties of porous silicon carbide ceramics = 다공성 탄화규소 세라믹스의 전기적, 열적, 기계적 특성' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Boron nitride
  • dopants
  • electrical properties
  • mechanical properties
  • porosity
  • silicon carbide
  • thermal properties
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
660 0

0.0%

' Electrical, thermal, and mechanical properties of porous silicon carbide ceramics = 다공성 탄화규소 세라믹스의 전기적, 열적, 기계적 특성' 의 참고문헌

  • Thermal conductivity of pure and impure silicon , silicon carbide , and diamond
    Slack , G.A. vol . 35 , pp . 3460-3466 . [1964]
  • 99. Malik, R., Kim, H.M., Kim, Y.W., and Kim, K.J., 2018, “Grain-growth-induced high electrical conductivity in SiC–BN composites”, Ceram. Int., vol. 44, pp. 16394–16399.
    [2018]
  • 98. Kim, Y.H., and Kim, Y.W., 2019, “Direct bonding of silicon carbide ceramics sintered with yttria”, J. Eur. Ceram. Soc., vol. 39, pp. 4487–4494.
    [2019]
  • 97. Prochazka, S., and Scanlan, R.M., 1975, “Effect of boron and carbon on sintering of SiC”, J. Am. Ceram. Soc., vol. 58, pp. 72–72.
    [1975]
  • 96. Kim, K.J., Lim, K.Y., Kim, Y.W., and Kim, H.C., 2013, “Temperature dependence of electrical resistivity (4–300 K) in aluminum‐ and boron‐doped SiC ceramics”, J. Am. Ceram. Soc., vol. 96, pp. 2525–2530.
    [2013]
  • 95. She, J., Yang, J.F., Kondo, N., Ohji, T., and Kanzaki, S., 2002, “High-strength porous silicon carbide ceramics by an oxidation-bonding technique”, J. Am. Ceram. Soc., vol. 85, pp. 2852–2854.
    [2002]
  • 94. Kim, H.M., Kang, E.S., Kim, Y.W., Lim, K.Y., and Lee, S.J., 2020, “Pressureless sintering of fully ceramic microencapsulated fuels”, J. Eur. Ceram. Soc., vol. 40, pp. 5180–5185.
    [2020]
  • 93. Eom, J.H., Seo, Y.K., and Kim, Y.W., 2016, “Mechanical and thermal properties of pressureless sintered silicon carbide ceramics with alumina-yttria-calcia”, J. Am. Ceram. Soc., vol. 99, pp. 1735– 1741.
    [2016]
  • 92. Zhan, G.D., Mitomo, M., and Mukherjee, A.K., 2002, “Effects of heat treatment and sintering additives on thermal conductivity and electrical resistivity in fine-grained SiC ceramics”, J. Mater. Res., vol. 17, pp. 2327–2333.
    [2002]
  • 91. Seo, Y.K., Kim, Y.W., Nishimura, T., and Seo, W.S., 2017, “High thermal conductivity of spark plasma sintered silicon carbide ceramics with yttria and Scandia”, J. Am. Ceram. Soc., vol. 100, pp. 1290–1294.
    [2017]
  • 90. Cho, T.Y., and Kim, Y.W., 2017, “Effect of grain growth on the thermal conductivity of liquid-phase sintered silicon carbide ceramics”, J. Eur. Ceram. Soc., vol. 37, pp. 3475–3481.
    [2017]
  • 9. Wan, P., Gao, L., and Wang, J., 2017, “Approaching ultra-low thermal conductivity in β-SiC nanoparticle packed beds through multiple heat blocking mechanisms”, Scripta Mater., vol. 128, pp. 1–5.
    [2017]
  • 89. Kang, E.S., Kim, Y.W., and Nam, W.H., 2021, “Multiple thermal resistance induced extremely low thermal conductivity in porous SiC-SiO2 ceramics with hierarchical porosity”, J. Eur. Ceram. Soc., vol. 41, pp. 1171–1180.
  • 88. Malik, R., Kim, Y.W., and Song, I.H., 2020, “High interfacial thermal resistance induced low thermal conductivity in porous SiC-SiO2 composites with hierarchical porosity”, J. Eur. Ceram. Soc., vol. 40, pp. 594–602.
    [2020]
  • 87. Kim, Y.H., Kim, Y.W., and Seo, W.S., 2020, “Processing and properties of silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity”, J. Eur. Ceram. Soc., vol. 40, pp. 2623– 2633.
    [2020]
  • 86. Kim, G.D., Kim, Y.W., Song, I.H., and Kim, K.J., 2020, “Effects of carbon and silicon on electrical, thermal, and mechanical properties of porous silicon carbide ceramics”, Ceram. Int., vol. 46, pp. 15594–15603.
    [2020]
  • 85. Rajpoot, S., Ha, J.H., Kim, Y.W., and Kim, K.J., 2020, “Electrical, thermal, and mechanical properties of porous SiC-nitride composites”, J. Eur. Ceram. Soc., vol. 40, pp. 3851–3862.
    [2020]
  • 84. Jang, S.H., Kim, Y.W., Kim, K.J., Lee, S.J., and Lim, K.Y., 2016, “Effects of Y2O3–RE2O3 (RE = Sm, Gd, Lu) additives on electrical and thermal properties of silicon carbide ceramics”, J. Am. Ceram. Soc., vol. 99, pp. 265–272.
    [2016]
  • 83. Kim, K.J., Lim, K.Y., and Kim, Y.W., 2014, “Electrical and thermal properties of SiC ceramics sintered with yttria and nitrides”, J. Am. Ceram. Soc., vol. 97, pp. 2943–2949.
    [2014]
  • 82. Kim, K.J., Lim, K.Y., Kim, Y.W., Lee, M.J., and Seo, W.S., 2014, “Electrical resistivity of α-SiC ceramics with Al2O3 or AlN additives, J. Eur. Ceram. Soc., vol. 34, pp.1695–1701.
    [2014]
  • 81. Lim, K.Y., Kim, Y.W., Kim, K.J., 2014, “Electrical properties of SiC ceramics sintered with 0.5 wt% AlN-RE2O3 (RE = Y, Nd, Lu)”, Ceram. Int., vol. 40, pp. 8885–8890.
    [2014]
  • 80. Kim, K.J., Malik, R., Park, J., Kim, Y.W., 2020, “Effects of M2O3–Y2O3 (M = Sc and Al) additives on electrical conductivity of hot-pressed SiC ceramics”, Ceram. Int., vol.46, pp. 5454–5458.
    [2020]
  • 8. Chen, W., and Miyamoto, Y., 2014, “Fabrication of porous silicon carbide ceramics with high porosity and high strength”, J. Eur. Ceram. Soc., vol. 34, pp. 837–840.
    [2014]
  • 79. Kim, Y.W., Cho, T.Y., Kim, K.J., 2015, “Effect of grain growth on electrical properties of silicon carbide ceramics sintered with gadolinia and yttria”, J. Eur. Ceram. Soc., vol. 35, pp. 4137–4142.
    [2015]
  • 78. Kim, K.J., Lim, K.Y., and Kim, Y.W., 2013, “Control of electrical resistivity in silicon carbide ceramics sintered with aluminum nitride and yttria”, J. Am. Ceram. Soc., vol. 96, pp. 3463–3469.
    [2013]
  • 77. Kim, Y.W., Lim, K.Y. and Kim, K.J., 2012, “Electrical resistivity of silicon carbide ceramics sintered with 1 wt% aluminum nitride and rare earth oxide”, J. Eur. Ceram. Soc., vol. 32, pp. 4427–4434.
    [2012]
  • 76. Volz, E., Roosen, A., Hartung, W., Winnacker, A., 2001, “Electrical and thermal conductivity of liquid phase sintered SiC”, J. Eur. Ceram. Soc., vol. 21, pp. 2089–2093.
    [2001]
  • 75. Ning, L., Feng, Z., Wang, Y., Zhang, K., and Feng, Z., 2009, “Vanadium-doped semi-insulating 6HSiC for microwave power device applications”, J. Mater. Sci. Technol., vol. 25, pp. 102–104.
    [2009]
  • 74. Rasp, M., Straubinger, T.L., Schmitt, E., Bickermann, M., Reshanov, S., and Sadowski, H., 2003, 121 “PVT growth of p-type and semi-insulating 2 inch 6H-SiC crystals”, Mater. Sci. Forum, vol. 433-436, pp. 55–58.
    [2003]
  • 73. Onoue, K., Nishikawa, T., Katsuno, M., and Ohtani, N., 1996, “Nitrogen incorporation kinetics during the sublimation growth of 6H and 4H SiC”, Jpn. J. Appl. Phys., vol. 35, 2240–2243.
    [1996]
  • 72. Silva, A.F., Pernot, J., Contreras, S., Sernelius, B.E., Persson, C., and Camassel, J., 2006, “Electrical resistivity and metal-nonmetal transition in n-type doped 4H-SiC, Phys. Review B, vol. 74, pp. 245201-1–245201-5.
    [2006]
  • 71. Taki, Y., Kitiwan, M., Katsui, H., Goto, T., 2018, “Electrical and thermal properties of nitrogen-doped SiC sintered body”, J. Jpn. Soc. Powder Powder Metall., vol. 65, pp. 508–512.
    [2018]
  • 70. Kim, Y.W., Tochigi, E., Tatami, J., Kim, Y.H., Jang, S.H., Javvaji, S., Jung, J., Kim, K.J., Ikuhara, Y., 2019, “Carrier depletion near the grain boundary of a SiC bicrystal”, Sci. Rep., vol. 9, pp. 18014.
    [2019]
  • 7. Eom, J.H., Kim, Y.W., and Song, I.H., 2012, “Effects of the initial α-SiC content on the microstructure, mechanical properties, and permeability of macroporous silicon carbide ceramics”, J. Eur. Ceram. Soc., vol. 32, pp. 1283–1290.
    [2012]
  • 69. Jenny, J.R., Skowronski, M., Mitchel, W.C., Hobgood, H.M., Glass, R.C., Augustine, G., and Hopkins, R.H., 1995, “On the compensation mechanism in high‐resistivity 6H-SiC doped with vanadium”, J. Appl. Phys., vol. 78, pp. 3839–3842
    [1995]
  • 68. Balestrat, M., Diz Acosta, E., Hanzel, O., Tessier-Doyen, N., Machado, R., Šajgalík, P., Lenčéš, Z., Bernard, S., 2020, “Additive-free low temperature sintering of amorphous Si-B-C powders derived from boron-modified polycarbosilanes: toward the design of SiC with tunable mechanical, electrical and thermal properties”, J. Eur. Ceram. Soc., vol. 40, pp. 2604–2612.
  • 67. Racka, K., Avdonin, A., Sochacki, M., Tymicki, E., Grasza, K., Jakiela, R., Surma, B., and Dobrowolski, W., 2015, “Magnetic, optical and electrical characterization of SiC doped with scandium during the PVT growth”, J. Cryst. Growth, vol. 413, pp. 86–93.
    [2015]
  • 66. Nelson, W. E., Halden, F.A., and Roszengreen, A., 1996, “Growth and properties of β-SiC single crystals”, J. Appl. Phys., vol. 37, pp. 333–350.
    [1996]
  • 65. Heera, V., Madhusoodanan, K. N., Skorupa, W., Dubois, C., and Romanus, H., 2006, “A comparative study of the electrical properties of heavily Al implanted, single crystalline and nanocrystalline SiC”, J. Appl. Phys., vol. 99, pp. 123716-1–6t7123716-8.
    [2006]
  • 64. Roman-Manso, B., Domingues, E., Figueiredo, F.M., Belmonte, M., and Miranzo, P., 2015, “Enhanced electrical conductivity of silicon carbide ceramics by addition of graphene nanoplatelets”, J. Eur. Ceram. Soc., vol. 35, pp. 2723–2731.
    [2015]
  • 63. Miranzo, P., Ramirez, C., Roman-Manso, B., Garzon, L., Gutierrez, H.R., Terrones, M., Ocal, C., Osendi, M.I., and Belmonte, M., 2013, “In-situ processing of electrically conducting graphene/SiC nanocomposites”, J. Eur. Ceram. Soc., vol. 33, pp. 1665–1674.
    [2013]
  • 62. Zhang, B.X., Zhang, Y., Luo, Z., Han, W., Qiu, W., and Zhao, T., 2019, “Monolithic silicon carbide with interconnected and hierarchical pores fabricated by rection-induced phase separation”, J. Am. Ceram. Soc., vol. 102, pp. 3860–3869.
    [2019]
  • 61. Kultayeva, S., Ha, J.H., Malik, R., Kim, Y.W., and Kim, K.J., 2020, “Effects of porosity on electrical and thermal conductivities of porous SiC ceramics”, J. Eur. Ceram. Soc., vol. 40, pp. 996–1004.
    [2020]
  • 60. Taki, Y., Kitiwan, M., Katsui, H., and Goto, T., 2018, “Electrical and thermal properties of offstoichiometric SiC prepared by spark plasma sintering”, J. Asian Ceram. Soc., vol. 6, pp. 95–101.
    [2018]
  • 6. Fukushima, M., and Colombo, P., 2012, “Silicon carbide-based foams from direct blowing of polycarbosilane”, J. Eur. Ceram. Soc., vol. 32, pp. 503–510.
    [2012]
  • 59. Das, D., Baitalik, S., and Kayal, N., 2020, “Properties of multiple oxide-bonded porous SiC ceramics prepared by an infiltration technique”, Int. J. Appl. Ceram. Technol., vol. 17, pp. 476–483.
    [2020]
  • 58. Wu, H., Ma, B., Ren, X., Zhai, Y., Zhang, Y., Yang, W., Qian, F., Liu, G., Zhu, Q., 2020, “Recycling of silicon kerf waste for preparation of porous SiCw/SiC membrane supports by in situ synthesis”, Int. J. Appl. Ceram. Technol., vol. 17, pp.138–145.
  • 57. Durif, C., Wynn, M., Balestrat, M., Franchin, G., Kim, Y.W., Leriche, A., Mille, P., Colombo, P., and Bernard, S., 2019, “Open-celled silicon carbide foams with high porosity from boron-modified polycarbosilanes”, J. Eur. Ceram. Soc., vol. 39, pp. 5114–5122.
  • 56. Hotza, D., Luccio, M.D., Wilhelm, M., Iwamoto, Y., Bernard, S., and J.C.D. da Costa, 2020, “Silicon carbide filters and porous membranes: A review of processing, properties, performance and application, J. Membr. Sci., vol. 610, pp. 118193.
    [2020]
  • 55. Sandra, F., Ballestero, A., Nguyen, V.L., Tsampas, M.N., Vernoux, P., Balan, C., Iwamoto, Y., Demirci, U.B., Miele, P., Bernard, S., 2016, “Silicon carbide-based membranes with high soot particle filtration efficiency, durability and catalytic activity for CO/HC oxidation and soot combustion”, J. Membr. Sci., vol. 501, pp. 79–92.
  • 54. Fukushima, M., Zhou, Y., and Yoshizawa, Y.-I., 2009, “Fabrication and microstructural characterization of porous SiC membrane supports with Al2O3-Y2O3 additives”, J. Membr. Sci., vol. 339, pp. 78–84.
    [2009]
  • 53. Fukushima, M., Zhou, Y., and Yoshizawa, Y.-I., 2008, “Fabrication and microstructural characterization of porous silicon carbide with nano-sized powders”, Mater. Sci. Eng. B, vol. 148, pp. 211–214.
    [2008]
  • 52. Kiselov, V.S., Lytvyn, P.M., Yukhymchuk, V.O., Belyaev A.E., and Vitusevich, S.A., 2010, “Synthesis and properties of porous SiC ceramics”, J. Appl. Phys., vol. 107, pp. 093510-1–093510-6.
    [2010]
  • 51. Rajpoot, S., Malik, R., and Kim, Y.W., 2019, “Effects of polysiloxane on thermal conductivity and compressive strength of porous silica ceramics”, Ceram. Int., vol. 45, pp. 21270–21277.
    [2019]
  • 50. Landauer, R., 1952, “The electrical resistance of binary metallic mixtures, J. Appl. Phys., vol. 23, pp. 779–784.
  • 5. Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., and Yoshizawa, Y.I., 2010, “Fabrication and properties of ultra highly porous silicon carbide by the gelation-freezing method”, J. Eur. Ceram. Soc., vol. 30, pp. 2889–2896.
    [2010]
  • 49. Progelhof, R.C., Throne, J.L., and Ruetsch, R.R., 1976, “Methods for predicting the thermal conductivity of composite systems: a review”, Polym. Eng. Sci., vol. 16, pp. 615–625.
    [1976]
  • 48. Jaffe, R.L., and Taylor, W., 2018, “The Physics of Energy”, Cambridge University Press, Cambridge.
    [2018]
  • 47. Cho, T.Y., and Kim, Y.W., 2017, “Effect of grain growth on the thermal conductivity of liquidphase sintered silicon carbide ceramics”, J. Eur. Ceram. Soc., vol. 37, pp. 3475–3481.
    [2017]
  • 46. Sevostianov, I., Kovacik, J., and Simancik, F., 2006, “Elastic and electric properties of closed-cell aluminum foams cross-property connection”, Mater. Sci. Eng. A, vol. 420, pp. 87–99.
    [2006]
  • 45. Kim, K.J., Lim, K.Y., and Kim, Y.W., 2011, “Effective nitrogen doping for fabricating highly conductive β-SiC ceramics”, J. Am. Ceram. Soc., vol. 94, pp. 3216–3219.
    [2011]
  • 44. Kim, K.J., Eom, J.H., Kim, Y.W., Seo, W.S., Lee, M.J., and Hwang, S.S., 2017, “Highly resistive SiC ceramics sintered with Al2O3-AlN-Y2O3 additions, Ceram. Int., vol. 43, pp. 5343–5346.
    [2017]
  • 43. Seo, Y.K., Eom, J.H., and Kim, Y.W., 2018, “Process-tolerant pressureless-sintered silicon carbide ceramics with alumina-yttria-calcia-strontia”, J. Eur. Ceram. Soc., vol. 38, pp. 445–452.
    [2018]
  • 42. Kim, Y.H., Kim, Y.W., and Kim, K.J., 2019, “Electrically conductive SiC ceramics processed by pressureless sintering”, Int. J. Appl. Ceram. Technol., vol. 16, pp. 843–849.
    [2019]
  • 41. Eom, J.H., Kim, Y.W., Song, I.H., and Kim, H.D., 2007, “Microstructure and properties of porous silicon carbide ceramics fabricated by carbothermal reduction and subsequent sintering process”, Mater. Sci. Eng. A, vol. 464, pp. 129–134.
    [2007]
  • 40. Pappacena, K.E., Faber, K.T., Wang, H., and Porter, W.D., 2007, “Thermal conductivity of porous silicon carbide derived from wood precursors”, J. Am. Ceram. Soc., vol. 90, pp. 2855–2862.
    [2007]
  • 4. Jang, B.K., and Sakka, Y., 2007, “Thermophysical properties of porous SiC ceramics fabricated by pressureless sintering”, Sci. Technol. Adv. Mater., vol. 8, pp. 655–659.
    [2007]
  • 39. Eom, J.H., Kim, Y.W., Song, I.H., and Kim, H.D., 2008, “Processing and properties of polysiloxane derived porous silicon carbide ceramics using hollow microspheres as templates”, J. Eur. Ceram. Soc., vol. 28, pp. 1029–1035.
    [2008]
  • 38. Soto, C., Garcia-Rosales, C., Echeberria, J., Platacis, E., Shisko, A., Muktepavela, F., Hernandez, T., and Huertac, M.M., 2018, “Development, characterization, and testing of a SiC based material for flow channel inserts in high-temperature DCLL”, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 46, pp. 1561–1569.
  • 37. Ordas, N., Bereciartu, A., Garcia-Rosales, C., Morono, A., Malo, M., Hodgson, E.R., Abella, J., Colominas, S., and Sedano, L., 2014, “Testing of porous SiC with dense coating under relevant conditions for flow channel insert application”, Fusion Eng. Des., vol. 89, pp. 1274–1279.
  • 36. Soto, C., Garcia-Rosales, C., Echeberria, J., Martinez-Esnaola, J.M., Hernandez, T., Malo, M., Platacis, E., and Muktepavela, F., 2017, “SiC-based sandwich material for flow channel inserts in DCLL blankets: manufacturing, characterization, corrosion tests”, Fusion Eng. Des., vol. 124, pp. 958–963.
  • 35. Soto, C., Garcia-Rosales, C., Echeberria, J., Platacis, E., Shisko, A., Muktepavela, F., Malo, M., and Hernandez, T., 2019, “Characterization and thermomechanical assessment of a SiC-sandwich material for flow channel inserts in DCLL blankets”, Fusion Eng. Des., vol. 146, pp. 1983–1987.
    [2019]
  • 34. Kim, Y.W., Kim, Y.H., and Kim, K.J., 2019, “Electrical properties of liquid-phase sintered silicon carbide ceramics: a review”, Crit. Rev. Solid State, vol. 45, pp.66-84.
    [2019]
  • 33. Zhan, G.D., Mitomo, M., Xie, R.J., and Mukherjee, A.K., 2001, “Thermal and electrical properties in plasma-activation-sintered silicon carbide with rare-earth-oxide additives, J. Am. Ceram. Soc., vol. 84, pp. 2448–2450.
    [2001]
  • 32. Cai, K.F., Liu, J.P., Nan, C.W., and Min, X.M., 1997, “Effect of porosity on the thermal-electric properties of Al-doped SiC ceramics”, J. Mater. Sci. Lett., vol. 16, pp. 1876–1878.
    [1997]
  • 31. Biasetto, L., Colombo, P., Innocentini, M.D.M., and Mullens, S., 2007, “Gas permeability of microcellular ceramic foams”, Ind. Eng. Chem. Res., vol. 46, pp. 3366–3372.
    [2007]
  • 30. Wang, B., Zhang, H., Phuong, H.T., Jin, F., Yang, J.F., and Ishizaki, K., 2015, “Gas permeability and absorbability of the glass-bonded porous silicon carbide ceramics with controlled pore size, Ceram. Int., vol. 41, pp. 2279–2285.
    [2015]
  • 3. Ihle, J., Martin, H.P., Herrmann, M., Obenaus, P., Adler, J., Hermel, W., and Michaelis, A., 2006, “The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide”, Int. J. Mater. Res., vol. 97, pp. 649–656.
    [2006]
  • 29. Song, I.H., Kwon, I.M., Kim, H.D., and Kim, Y.W., 2010, “Processing of microcellular silicon carbide ceramics with a duplex pore structure”, J. Eur. Ceram. Soc., vol. 30, pp. 2671–2676.
    [2010]
  • 28. Li, Y., Chen, L., Hong, L., Ran, K., Zhan, Y., and Chen, Q., 2019, “Fabrication of porous silicon carbide ceramics at low temperature using aluminum dihydrogen phosphate as binder”, J. Alloys Compd., vol. 785, pp. 838–845.
    [2019]
  • 27. Ding, S., Zhu, S., Zeng, Y., and Jiang, D., 2006, “Effect of Y2O3 addition on the properties of reactionbonded porous SiC ceramics”, Ceram. Int., vol. 32, pp. 461–466.
    [2006]
  • 26. Herzog, A., Vogt, U., Kaczmarek, O., Klingner, R., Richter, K., and Thoemen, H., 2006, “Porous SiC ceramics derived from tailored wood-based fiberboards”, J. Am. Ceram. Soc., vol. 89, pp.1499–1503.
    [2006]
  • 25. Streitwieser, D.A., Popovska, N., and Gerhard, H., 2006, “Optimization of the ceramization process for the production of three-dimensional biomorphic porous SiC ceramics by chemical vapor infiltration (CVI)”, J. Eur. Ceram. Soc., vol. 26, pp. 2381–2387.
    [2006]
  • 24. Eom, J.H., and Kim, Y.W., 2008, “Effect of template size on microstructure and strength of porous silicon carbide ceramics”, J. Ceram. Soc. Jpn., vol. 116, pp.1159–1163.
    [2008]
  • 23. Colombo, P., Bernardo, E., and Baisetto, L., 2004, “Novel microcellular ceramics from a silicone resin”, J. Am. Ceram. Soc., vol. 87, pp.152–154.
    [2004]
  • 22. Parvanian, A.M., Salimijazi, H.R., Fathi, M., and Saadatfar, M., 2019, “Synthesis and thermal shock evaluation of porous SiC ceramic foams for solar thermal applications”, J. Am. Ceram. Soc., vol. 102, pp. 2009–2020.
    [2019]
  • 21. Li, S., Wei, C., Zhou, L., Wang, P., Xie, Z., 2019, “Evaporation-condensation derived silicon carbide membrane from silicon carbide particles with different sizes”, J. Eur. Ceram. Soc., vol. 39, pp. 1781– 1787.
    [2019]
  • 20. Liang, C., and Wang, Z., 2019, “Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties”, Chem. Eng. J., vol. 373, pp. 598–605.
    [2019]
  • 2. Ihle, J., Herrmann, M., and Adler, J., 2005, “Phase formation in porous liquid phase sintered silicon carbide: Part III: Interaction between Al₂O₃-Y₂O₃ and SiC”, J. Eur. Ceram. Soc., vol. 25, pp. 1005– 1013.
    [2005]
  • 19. Ferraro, C., Garcia-Tunon, E., Barg, S., Miranda, M., Ni, N., Bell, R., and Saiz, E., 2018, “SiC porous structures obtained with innovative shaping technologies”, J. Eur. Ceram. Soc., vol. 38, pp. 823–835.
    [2018]
  • 18. Dong, S., Zhang, X., Zhang, D., Sun, B., Yan, L., and Luo, X., 2018, “Strong effect of atmosphere on the microstructure and microwave absorption properties of porous SiC ceramics”, J. Eur. Ceram. Soc., vol. 38, pp. 29–39.
    [2018]
  • 17. Kim, S.C., Kim, Y.W., and Song, I.H., 2017, “Processing and properties of glass-bonded silicon carbide membrane supports”, J. Eur. Ceram. Soc., vol. 37, pp. 1225–1232.
    [2017]
  • 16. Yuan, B., Li, H.X., Wang, G., Yu, J.B., Ma, W.K., Liu, L.F., Liu, Y.S., and Shen, Z.J., 2016, “Preparation and properties of porous silicon carbide based ceramic filter”, J. Alloys Compd., vol. 684, pp. 613–615.
    [2016]
  • 15. Ortona, A., Pusterla, S., Fino, P., Mach, F.R.A., Delgado, A., and Biamino, S., 2010, “Aging of reticulated Si-SiC foams in porous burners”, Adv. Appl. Ceram., vol. 109, pp. 246–251.
    [2010]
  • 148. Codreanu, C., Avram, M., Carbunescu, E., Iliescu, E., 2000, “Comparison of 3C-SiC, 6H-SiC and 4H-SiC MESFETs performances”, Mater. Sci. Semicond. Process., vol. 3, pp. 137-142.
    [2000]
  • 147. Bhatnagar, M., Baliga, B.J., 1993, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices”, IEEE Trans. Electron. Dev., vol. 40, pp. 645-655.
    [1993]
  • 145. Ahmad, R., Ha, J.H., and Song, I.H., 2014, Processing methods for the preparation of porous ceramics, J. Kor. Powd. Met. Inst., vol. 21, pp. 389–398.
    [2014]
  • 144. Scheffler, M., Colombo, P., 2005, Cellular Ceramics: Structure, Manufacturing Properties and Applications, Wiley-VCH, Weinheim.
    [2005]
  • 143. Chi, W., Jiang, D., Huang, Z., Tan, S., 2004, “Sintering behavior of porous SiC ceramics”, Ceram. Int., vol. 30, pp. 869–874.
    [2004]
  • 142. Yamane, H., Shirai, Y., Morito, H., Yamada, T., Hasegawa, Y., Ikeda, T., 2011, “Fabrication of porous SiC ceramics having pores shaped with Si grain templates”, J. Eur. Ceram. Soc., vol. 31, pp. 409–413.
    [2011]
  • 141. Zhang, Z., Wang, F., Yu, X., Wang, Y., Yan, Y., Li, K., Luan, Z., 2009, “Porous silicon carbide ceramics produced by a carbon foam derived from mixture of mesophase pitch and Si particles”, J. Am. Ceram. Soc., vol. 92, pp.260–263.
    [2009]
  • 140. Zhu, S., Ding, S., Xi, H., Li, Q., and Wang, R., 2007, “Preparation and characterization of SiC/cordierite composite porous ceramics”, Ceram. Int., vol. 33, pp. 115–118.
    [2007]
  • 14. Adler, J., 2005, “Ceramic diesel particulate filters, Int. J. Appl. Ceram. Technol., vol. 2, pp. 429–439.
    [2005]
  • 139. Dey, A., Kayal, N., Chakrabarti, O., Caldato, R.F., Andre, C.M., and Innocenti, Murilo D.M., 2013, “Permeability and nanoparticle filtration assessment of cordierite-bonded porous SiC ceramics”, Ind. Eng. Chem. Res., vol. 52, pp. 18362–18372.
    [2013]
  • 138. Liu, S., Zeng, Y.P., and Jiang, D., 2009, “Fabrication and characterization of cordierite-bonded porous SiC ceramics”, Ceram. Int., vol. 35. Pp. 597–602.
    [2009]
  • 137. Seo, W.S., Pai, C.H., Koumoto, K., and Yanagida, H., 1992, “Behavior of stacking faults in β-SiCmechanism of annihilation and additive effects”, Solid State Phenom., vol. 25-26, pp. 133–142.
    [1992]
  • 136. Kim, K.J., Cho, T.Y., Kim, Y.W., Nishimura, T., and Narimatsu, E., 2015, “Electrical and thermal properties of silicon carbide–boron nitride composites prepared without sintering additives”, J. Eur. Ceram. Soc., vol. 35, pp. 4423–4429.
    [2015]
  • 135. Henry, A., Forsberg, U., Linnarsson, M.K., and Janzen, E., 2005, “Determination of nitrogen doping concentration in doped 4H-SiC epilayers by low temperature photoluminescence”, Physica Scripta, vol. 72, pp. 254–257.
    [2005]
  • 134. Bockstedte, M., Mattausch, A., and Pankratov, O., 2004, „Solubility of nitrogen and phosphorus in 4H-SiC: A theoretical study“, Appl. Phys. Lett., vol. 85, pp. 58–60.
    [2004]
  • 133. Castillo-Rodriguez, M., Munoz, A., Dominguez-Rodriguez, A., 2006, “Effect of atmosphere and sintering time on the microstructure and mechanical properties at high temperatures of α-SiC sintered with liquid phase Y2O3-Al2O3”, J. Eur. Ceram. Soc., vol. 26, pp. 2397–2405.
    [2006]
  • 132. Ortiz, A.L., Munoz-Bernabe, A., Borrero-Lopez, O., Dominguez-Rodriguez, A., Guiberteau, F., and Padture, N.P., 2004, “Effect of sintering atmosphere on the mechanical properties of liquid-phasesintered SiC”, J. Eur. Ceram. Soc., vol. 24, pp. 3245–3249.
    [2004]
  • 131. Datta, M.S., Bandyopadhyay, A.K., and Chaudhuri, B., 2004, “The effect of atmosphere on the sintering of nano-crystalline α-silicon carbide doped with boron carbide”, Tran. Indian Ceram. Soc., vol. 63, pp.105–108.
    [2004]
  • 130. Suzuki, K., and Sasaki, M., 2005, “Effects of sintering atmosphere on grain morphology of liquidphase- sintered SiC with Al2O3 additions”, J. Eur. Ceram. Soc., vol. 25, pp. 1611–1618.
    [2005]
  • 13. Soto, C., Garcia-Rosales, C., and Echeberria, J., 2019, “Production of porous SiC by liquid phase sintering using graphite as sacrificial phase: influence of SiO2 and graphite on the sintering mechanisms”, J. Eur. Ceram. Soc., vol. 39, pp. 3949–3958.
    [2019]
  • 129. Kim, K.J., Malik, R., Park, J., and Kim, Y.W., 2020, “Effects of M2O3-Y2O3 (M=Sc and Al) additives on electrical conductivity of hot-pressed SiC ceramics”, Ceram. Int., vol. 46, pp. 5454–5458.
    [2020]
  • 128. Ikeda, M., Matsunami, H., and Tanaka, T., 1980, “Site effect on the impurity levels in 4H, 6H, and 15R SiC”, Phys. Rev. B, vol. 22, pp. 2842–2854.
    [1980]
  • 127. Zhou, Y., Tanaka, H., Otani, S., Bando, Y., 1999, “Low‐Temperature Pressureless Sintering of alpha‐SiC with Al4C3‐B4C‐C additions”, J. Am Ceram. Soc., vol. 82, pp. 1959–1964.
    [1999]
  • 126. Kim, Y.W., Mitomo, M., 1999, “Fine‐grained silicon carbide ceramics with oxynitride glass”, J. Am Cer. Soc., vol. 82, pp. 2731–2736.
    [1999]
  • 125. Kim, Y.W., Mitomo, M., and Zhan, G.D., 1999, “Mechanism of grain growth in liquid-phase-sintered β-SiC, J. Mater. Res., vol. 14, pp. 4291–4293.
    [1999]
  • 124. Kim, H.M., Kim, Y.W., and Lim, K.Y., 2019, “Pressureless sintered silicon carbide matrix with a quaternary additive for fully ceramic microencapsulated fuels”, J. Eur. Ceram. Soc., vol. 39, pp. 3971–3980.
    [2019]
  • 123. Soto, C., García-Rosales, C., Echeberria, J., Platacis, E., Shisko, A., Muktepavela, F., Hernández, T., and Huertac, M.M., 2018, “Development, characterization, and testing of a SiC-based material for flow channel inserts in high-temperature DCLL”, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., vol. 46, pp. 1561–1569.
  • 122. Iwata, H.P., Lindefelt, U., Öberg, S., and Briddon, P.R., 2003, “Stacking faults in silicon carbide, Physica B, vol. 340-342, pp. 165–170.
    [2003]
  • 121. Jana, D.C., Sundararajan, G., and Chattopadhyay, K., 2017, “Effect of porosity on structure, Young’s modulus, and thermal conductivity of SiC foams by direct foaming and gelcasting”, J. Am. Ceram. Soc., vol. 100, pp. 312–322.
    [2017]
  • 120. Kultayeva, S., Kim, Y.W., and Song, I.H., 2021, “Effects of dopants on electrical, thermal, and mechanical properties of porous SiC ceramics”, J. Eur. Ceram. Soc., vol. 41, pp. 4006–4015.
  • 12. Zhong, Y., Kou, R., Wang, M., and Qiao, Y., 2019, “Synthesis of centimeter-scale monolithic SiC nanofoams and pore size effect on mechanical properties”, J. Eur. Ceram. Soc., vol. 39, pp. 2566– 2573.
    [2019]
  • 119. Hotta, M., Kita, H., Matsuura, H., Enomoto, N., Hojo, J., 2012, “Pore-size control in porous SiC ceramics prepared by spark plasma sintering”, J. Ceram. Soc. Jpn., vol. 120, pp. 243–247.
    [2012]
  • 118. Rajpoot, S., Ha, J.H., and Kim, Y.W., 2021, “Effects of initial particle size on mechanical, thermal, and electrical properties of porous SiC ceramics”, Ceram. Int., vol. 47, pp. 8668–8676.
  • 117. Kayal, N., Dey, A., Chakrabarti, O., 2012, “Incorporation of mullite as a bond phase into porous SiC by an infiltration technique”, Mater. Sci. Eng. A, vol. 535, pp. 222-227.
    [2012]
  • 116. Eom, J.H., Kim, Y.W., and Raju, S., 2013, “Processing and properties of macroporous silicon carbide ceramics: a review, J. As. Ceram. Soc., vol. 1, pp. 220–242.
    [2013]
  • 115. Zhang, J.F., Zhou, X.N., Zhi, Q., Zhao, S., Huang, X., Zhang, N.L., Wang, B., Yang, J.F., and Ishizaki, K., 2020, “Microstructure and mechanical properties of porous SiC ceramics by carbothermal reduction and subsequent recrystallization sintering”, J. As. Ceram. Soc., vol. 8, pp. 255–264.
  • 114. Bechelany, M.C., Salameh, C., Viard, A., Guichaoua, L., Rossignol, F., Chartier, T., Bernard, S., and Miele, P., 2015, “Preparation of polymer-derived Si-B-C-N monoliths by spark plasma sintering technique, J. Eur. Ceram. Soc., vol. 35, pp. 1361–1374.
    [2015]
  • 113. Liu, X., Zhou, Y., Liu, X., Li, R., Li, S., and Li, C., 2021, “SiC‐based porous ceramic carriers for heat‐conductive phase change materials through carbothermal reduction method”, Int. J. Appl. Ceram. Technol., vol. 18, pp. 91–99.
  • 112. Das, D., Kayal, N., Antonio, G., Leonardo, M., Damasceno, A., and Innocentini, M.D., 2020, “Permeability behavior of silicon carbide‐based membrane and performance study for oily wastewater treatment”, Int. J. Appl. Ceram. Technol., vol. 17, pp. 893–906.
    [2020]
  • 111. Gomez-Martin, A., Orihuela, M.P., Becerra, J.A., Martínez-Fernández, J., and Ramírez-Rico, J., 2016, “Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters”, Mater. Des., vol. 107, pp. 450–460.
    [2016]
  • 110. Majoulet, O., Sandra, F., Bechelany, M.C., Bonnefont, G., Fantozzi, G., Joly-Pottuz, L., Malchère, A., Bernard, S., and Miele, P., 2013, “Silicon–boron–carbon–nitrogen monoliths with high, interconnected and hierarchical porosity”, J. Mater. Chem. A, vol. 1, pp. 10991–11000.
  • 11. Gomez-Gomez, A., Moyano, J.J., Roman-Manso, B., Belmonte, M., Miranzo, P., and Osendi, M.I., 2019, “Highly-porous hierarchical SiC structures obtained by filament printing and partial sintering”, J. Eur. Ceram. Soc., vol. 39, pp. 688–695.
    [2019]
  • 109. Dey, A., Kayal, N., Chakrabarti, O., Innocentini, Murilo D.M., Chacon, W.S., and Coury, J.R., 2013, “Evaluation of air permeation behavior of porous sic ceramics synthesized by oxidation‐bonding technique”, Int. J. Appl. Ceram. Technol., vol. 10, pp. 1023–1033.
    [2013]
  • 108. Zhou, Y., Fukushima, M., Miyazaki, H., Yoshizawa, Y., Hirao, K., Iwamoto, Y., and Sato, K., 2011, “Preparation and characterization of tubular porous silicon carbide membrane supports”, J. Membr. Sci., vol. 369, pp. 112–118.
    [2011]
  • 107. Fukushima, M., Zhou, Y., Miyazaki, H., Yoshizawa, Y., Hirao, K., Iwamoto, Y., Yamazaki, S., and Nagano, T., 2006, “Microstructural characterization of porous silicon carbide membrane support with and without alumina additive”, J. Am. Ceram. Soc., vol. 89, pp. 1523–1529.
  • 106. Colombo, P., 2008, “In praise of pores”, Science, vol. 322 (5900), pp. 381–383.
    [2008]
  • 105. Lim, K.Y., Kim, Y.W., and Song, I.H., 2013, “Porous sodium borate-bonded SiC ceramics, Ceram. Int., vol. 39, 6827–6834.
    [2013]
  • 104. Chae, S.H., Kim, Y.W., Song, I.H., Kim, H.D., and Narisawa, M., 2009, “Porosity control of porous silicon carbide ceramics”, J. Eur. Ceram. Soc., vol. 29, pp. 2867–2872.
    [2009]
  • 103. Kim, Y.H., Kim, Y.W., Lim, K.Y., and Lee, S.J., 2019, “Mechanical and thermal properties of silicon carbide ceramics with yttria-scandia-magnesia”, J. Eur. Ceram. Soc., vol. 39, pp. 144–149.
    [2019]
  • 102. Pai, C.H., 2004, “Thermoelectric properties of boron compound-doped α-SiC ceramics”, J. Ceram. Soc. Jpn., vol. 112, pp. 88–94.
    [2004]
  • 101. Kim, Y.W., Chun, Y.S., Nishimura, T., Mitomo, M., and Lee, Y.H., 2007, “High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride”, Acta Mater., vol. 55, pp. 727–736.
    [2007]
  • 100. Toropov, N.A., and Vasil’eva, V.A., 1962, “Phase diagram of the scandia-silica binary system”, J. Inorg. Chem., vol. 7, pp. 1938–1945.
    [1962]
  • 10. Wan, P., and Wang, J., 2018, “Highly porous nano-SiC with very low thermal conductivity and excellent high temperature behavior”, J. Eur. Ceram. Soc., vol. 38, pp. 463–467.
    [2018]
  • 1. Ohji, T., and Fukushima, M., 2012, “Macro-porous ceramics: processing and properties”, Int. Mater. Rev., vol. 57, pp. 115–131.
    [2012]